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In several three cell paradigms, it has been observed that one logically conceivable pattern – 
ABA under some arrangement of cells – is unattested. Existing approaches assume that such 
*ABA generalizations provide evidence for feature inventories which are restricted to features 
that stand in containment relations, and are thus subject to Pāṇinian rule order. We present a 
novel approach to *ABA generalizations that derives from general properties of feature-based 
morphology. To this end, we develop a formal account of the widespread view that morphological 
paradigms derive from rules that relate abstract features from an inventory to morphological 
exponents. We demonstrate that the feature-based view restricts the space of typological 
patterns even without any further assumptions. We show furthermore that the feature-based 
theory derives *ABA as a special case of a broader class of generalizations if the number of 
features in the inventory must be minimal, and that these generalizations arise under a variety 
of general assumptions about feature-algebras (extrinsically ordered or Pāṇinian and with or 
without feature intersection). We discuss which explanation might be correct for actual cases of 
*ABA constraints, and we explore the consequences of the feature-based general approach for a 
range of paradigm sizes including those with more than three cells.
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1  Introduction
One of the most interesting and difficult questions in research on language lies in 
formally characterizing the class of possible grammars. One aspect of this challenge asks 
whether there are constraints on grammars of a general, abstract nature, and in turn, 
whether these constraints are specific to language or instantiations of even broader, 
domain-general constraints on cognitive systems, with manifestations observable 
elsewhere. For example, some progress has been made in syntax on the basis of Formal 
Language Theory and the Chomsky Hierarchy (Chomsky 1956) for the analysis of sets 
of string sequences. We aim to contribute to the development of a similarly general 
perspective for morphology, particularly with respect to morphological features, i.e. 
the features that underlie the variation in how different concepts are grouped across 
languages as evidenced by exponence by the same form (syncretism). The architecture 
of feature-based morphological systems predicts that only certain patterns of variation 
are possible. In this paper, we address *ABA generalizations from this perspective. We 
show that a class of *ABA-type generalizations can be derived from the feature-based 
architecture in conjunction with a minimality assumption. We furthermore argue that 
such a derivation may be plausible for some cases of an *ABA generalization, but not 
for others.

The term *ABA generalization refers to morphological patterns in which, given some 
arrangement of the relevant forms in a structured sequence, the first and third may share 
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some property “A” only if the middle member shares that property as well. If the middle 
member is distinct from the first, then the third member of the sequence must also be 
distinct. Bobaljik (2012) demonstrates that a *ABA generalization holds for adjectival 
suppletion in the sequence positive-comparative-superlative: across a large cross-linguistic 
sample, one finds ABB patterns such as good-better-best, where the comparative and 
superlative share a root be(t)- distinct from the positive, but what is not found is an ABA 
pattern: *good-better-goodest, in which the positive and superlative share a root, distinct 
from the comparative. Similar *ABA effects have been noted in extensive studies of case 
syncretism (Caha 2009), suppletion for both case and number in pronouns (Smith et al. 
2016), Germanic verbs and participles (see Wiese 2008 on German, and class material 
cited by Starke 2009 on English), and in other domains.

In one way or another, almost all existing accounts of these generalizations have argued 
that the *ABA effect arises as a result of nesting or containment relations among features, 
along with the assumption that linguistic rules are arranged such that a more specific 
rule takes precedence over (bleeds) a more general one, the so-called Elsewhere or 
Pāṇinian ordering (Kiparsky 1973; 1979). For the example above, Bobaljik argues that the 
representation of the superlative properly contains the representation of the comparative, 
which in turn properly contains the basic form of the adjective, as in (1).

(1) a. Positive: [adjective]
b. Comparative: [[adjective] comparative]
c. Superlative: [[[adjective] comparative] superlative]

If a language has a rule of suppletion such as good ↦ be(t)- / __ comparative, that rule 
will block the basic root good in both the comparative and the superlative, in virtue of 
being the most specific rule compatible with the context. Nothing forces the comparative 
and superlative to share a root – Latin uses an ABC pattern (bonus-melior-optimus) with a 
distinct root in each of the three grades, but the containment relation in (1) ensures that 
the ABA pattern is underivable (except as a case of accidental homophony).1

In this paper, we discuss some results of an ongoing project studying the combinatorial 
properties of rule systems that describe syncretism in morphological paradigms. Although 
that project did not set out to examine *ABA patterns per se, it turns out that *ABA-
like restrictions emerge as a quite general prediction from the assumption that Universal 
Grammar selects the minimal feature inventories needed to generate a paradigm of a given 
size. We call this the assumption of Minimality. We present both a general and a narrow 
version of this restriction. The narrow, more specific prediction arises if we assume that 
feature intersection is permitted in the formulation of rules of exponence. We believe 
this narrow result is particularly interesting, since the *ABA restriction emerges without 
the containment/nesting hypothesis that characterizes other accounts. Intuitively, *ABA 
emerges when a three-element sequence is the product of two overlapping features and 
their intersection: in the sequence (“paradigm”) x,y,z, if x and y share a feature, and 
y and z share a feature, but x and z do not share a feature, then even without a total 
containment relation among the features, it follows that the patterns ABC, ABB, and AAB 
are generable, but ABA is excluded. Most of the paper is devoted to showing that this state 
of affairs is not only formally possible, but is in fact forced in some contexts by plausible 
minimal assumptions about feature logics. While this approach seems implausible for 

	1	Recently, Graf (2017) presents a novel account that derives *ABA and other constraints from an abstract 
order of cells, i.e. cell-x < cell-y < cell-z, rather than containment relations among features. See note 17 
for some more discussion.
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some *ABA patterns (we think there are good reasons independent of suppletion to 
assume that superlatives contain comparatives), we wish to bring this to the table as 
a possible alternative in other instances. The broader result is that the assumption of 
minimality, with or without feature intersection, and with or without a limitation to 
Pāṇinian ordering, yields a class of restrictions on the distribution of paradigm types, of 
which *ABA is a special case.

Although we have identified the *ABA result as an important point of contact with other 
current theoretical morphosyntax work, a significant portion of this paper will be devoted 
to presentation of a framework where classes of morphological models can be formally 
discussed, and where the effects of individual assumptions can be explicitly computed, 
for example, in terms of their restrictiveness. Alongside the *ABA result, we also discuss 
the effect of imposing Pāṇinian ordering on feature models, and show that its effects are 
comparatively weak in certain classes of models.2

2  Paradigms: Partitions, Features, and Sequences
2.1  Paradigms
Paradigms represent information about the pairing of grammatical properties and 
linguistic forms. Thus, a paradigm can be seen as a list of cells representing an inventory 
of linguistic forms 〈x,y,z,…〉, each paired with a unique property or combination of 
properties or features (Stump 2016). As already mentioned in the introduction above, we 
explore an approach where the order that the cells are presented in plays no role in the 
morphology. That is our proposal applies to any set of cells regardless of whether a one-
dimensional linear order of the cells is assumed or some multidimensional arrangement 
of the cells. For presentational purposes, we assume there is a conventional linear order 
for a given inventory of cells, and thus for the corresponding paradigms (lists of forms). 
As a simple illustration, partial case paradigms for selected German pronouns can be 
given as in (3), where the cases are presented in the order in (2):

(2) nominative, accusative, dative,…

(3) a. 1sg: 〈ich, mich, mir〉
b. 1pl: 〈wir, uns, uns〉
c. 3pl: 〈sie, sie, ihr〉

The German pronouns further illustrate a property that is central to the study of paradigms, 
namely, syncretism, the many-to-one mapping from features or properties (like case) to 
exponents (phonological forms) seen in (3b)–(3c). Where the first person singular pronoun 
is characterized by a three-way contrast, the first and third person plural forms each 
show only a two-way distinction in form, corresponding to a three-way distinction in 
grammatical properties. Describing these patterns as syncretic constitutes a claim that 
the identity of form is represented grammatically, and is thus distinct from accidental 
homophony (see Harbour 2008; Sauerland & Bobaljik 2013). In the notation of the previous 
section, a syncretic pattern ABB, as in (3b), has only two listed forms (A=wir, B=uns), 
and the grammar codes the fact that the B form occupies the second and third cells of 
the paradigm. Accidental homophony is the state of affairs where the grammar lists three 
forms (ABC), but two of those forms simply happen to have the same phonology. Our 
investigation concerns only syncretism, although we recognize that it is in practice a 

	2	See also remarks in Pertsova (2011) on the possibly limited role of Pāṇinian ordering in explaining cross-
linguistic patterns of syncretism.
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notorious analytical challenge to identify a sharp dividing line for the analysis of specific 
data points.3

It is widely held that syncretism is central to investigating the nature and inventory 
of features as in (2). That the accusative and dative forms of the 1pl pronoun are 
syncretic suggests that those two cells share a feature, a property not represented in (2).4 
In this manner, comparing the range of attested and unattested syncretisms over some 
sufficiently large sample may reveal the underlying inventory and organization of the 
relevant features.

When we abstract away from the details of particular forms, the study of syncretic 
patterns is at its core the study of partitions of a set, a well-defined mathematical concept. 
The number of distinct partitions for an n-celled paradigm is the Bell number: Bn. For a 
three-celled paradigm, the B3=5 distinct partitions are listed in (4a). The same information 
is displayed graphically in (4b) to emphasize that the absolute values (A, B, etc.) are not 
relevant; all that matters is sameness or difference of cell contents:

(4) a. AAA, AAB, ABA, ABB, ABC
b.

6 Bobaljik & Sauerland

(4) a. AAA, AAB, ABA, ABB, ABC
b.

The Bell number grows very fast. There are B8 = 4,140 logically possible par-
titions of an 8-cell paradigm, and a 10-celled paradigm space (arguably, the
number of cases in Russian, see Corbett 2008) has 115,975 possible partitions.
In medium- to large-scale studies of syncretism (Cysouw 2003; Bobaljik 2012;
Baerman et al. 2005; Harbour 2016), it is commonly observed that only a
subset, often only a very small subset, of the theoretically distinct partitions
are attested. For example, Cysouw (2003, 2011) considers a sample of person
paradigms drawn from more than 250 languages, characterized as an 8-cell
paradigm space,5 but finds only 60-some-odd distinct partitions from among
the more than 4,000 logically possibilities. The *ABA generalizations, men-
tioned above, make the same point: over some sizeable range of data, where
5 patterns are possible, only four are actually found in the world’s languages:
AAA, AAB, ABB, and ABC, but not ABA. Typically, studies of syncretism
seek explanations for such typological patterns — i.e. develop theories that
predict only a subset of partitions to be possible. In what follows, we address
exactly this problem but one level of generality higher — we investigate how
general assumptions about morphological analysis restrict which subsets of
partitions can arise as typological predictions. For example, we show that a
restriction to the partition set {AAA, ABB, ABC} cannot be derived solely
within our general assumptions, while the *ABA condition can be derived. In
this, we hope here to make new contributions in the formal investigation of
the restrictiveness of competing models.

2.2 Features
In order to make headway on these issues, we propose to start by presenting a
largely theory-neutral means for representing features. Our notation allows us
to express any of numerous competing assumptions about features and feature-
logics, allowing us to then compare them directly. We start by recognizing that
at its most basic, a feature is a name for individual cells or sets of cells in a
paradigm. With reference to an n-celled paradigm, we write a feature as f
indexed with a binary vector, where 1 indicates the cell or cells that feature

5 Four persons (1,2,3 and inclusive) × two numbers; see Harbour (2016) for more discussion
in particular of other number values. See also appendix ?? below.

The Bell number grows very fast. There are B8 = 4,140 logically possible partitions of 
an 8-cell paradigm, and a 10-celled paradigm space (arguably, the number of cases in 
Russian, see Corbett 2008) has 115,975 possible partitions. In medium- to large-scale 
studies of syncretism (Cysouw 2003; Bobaljik 2012; Baerman et al. 2005; Harbour 
2016), it is commonly observed that only a subset, often only a very small subset, of the 
theoretically distinct partitions are attested. For example, Cysouw (2003; 2011) considers 
a sample of person paradigms drawn from more than 250 languages, characterized as 
an 8-cell paradigm space,5 but finds only 60-some-odd distinct partitions from among 
the more than 4,000 logical possibilities. The *ABA generalizations, mentioned above, 
make the same point: over some sizeable range of data, where 5 patterns are possible, 
only four are actually found in the world’s languages: AAA, AAB, ABB, and ABC, but not 
ABA. Typically, studies of syncretism seek explanations for such typological patterns—i.e. 
develop theories that predict only a subset of partitions to be possible. In what follows, 
we address exactly this problem but one level of generality higher—we investigate how 
general assumptions about morphological analysis restrict which subsets of partitions can 
arise as typological predictions. For example, we show that a restriction to the partition 
set {AAA, ABB, ABC} cannot be derived solely within our general assumptions, while the 
*ABA condition can be derived. In this, we hope here to make new contributions in the 
formal investigation of the restrictiveness of competing models.

	3	One criterion for the division is that abstract patterns of syncretism that recur across unrelated languages—
our main interest here—are more likely to constitute syncretism than convergent accidental homophony. 
By this criterion, the patterns in (3b–c) are consistent with a cross-linguistically robust pattern (Smith et 
al. 2016) and are likely to constitute syncretism. A plausible example of accidental homophony is the 2pl 
suffix -t and the 3sg.present suffix -t in German verbal inflection, which are normally treated as formally 
distinct, homophonous elements (Albright & Fuß 2012). The discussion in this paper holds for cases of 
syncretism and not accidental homophony.

	4	Or equivalently, for example, that features have internal hierarchical structure, or a geometry.
	5	Four persons (1,2,3 and inclusive) × two numbers; see Harbour (2016) for more discussion in particular of 

other number values. See also appendix A below.
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2.2  Features
In order to make headway on these issues, we propose to start by presenting a largely 
theory-neutral means for representing features. Our notation allows us to express any of 
numerous competing assumptions about features and feature-logics, allowing us to then 
compare them directly. We start by recognizing that at its most basic, a feature is a name 
for individual cells or sets of cells in a paradigm. With reference to an n-celled paradigm, 
we write a feature as f indexed with a binary vector, where 1 indicates the cell or cells 
that feature names. Thus, one way of naming features that generate a 3-celled paradigm 
is as in (5), with a unique feature naming each cell.

(5) a. f100
b. f010
c. f001

We define a model of a given paradigm as having two components: an inventory of 
features, and rules of exponence, which relate features to form. Alongside the simple 
feature inventory in (5), we may state the rules of exponence in (6):

(6) a. f100 ↦ A
b. f010 ↦ B
c. f001 ↦ C

Each model is a grammar (fragment), generating one paradigm. In the trivial example 
just considered, the model comprising (5) and (6) generates an ABC partition—a three-
celled paradigm that is maximally differentiated, i.e., in which each cell has a distinct 
form. Any number of examples of such an approach can be found in morphological 
descriptions. The description of the German 1sg pronouns in (3a) could be expressed 
in these terms. Three unanalyzable case features are assumed: f100= “nominative”, f010 
= “accusative”, etc., and each one is associated with exactly one exponent, yielding 
the maximally differentiated paradigm. Analysis of personal pronouns that use three 
unanalyzed features like “first person” (f100), “second person” (f010), and “third person” 
(f001) also instantiate this schema.6 Any maximally differentiated paradigm can be 
expressed in these terms. In fact, from the inventory in (5), the maximally differentiated 
partition ABC is the only complete partition that may be generated. (By complete, we 
mean that a phonological form is assigned to every cell of the paradigm space.) Using 
only rules of exponence of the format in (6), only maximal differentiation is possible, 
because the cells share no features in common.

But as we have already seen, maximal differentiation is by no means the only way in 
which an n-celled paradigm space may be partitioned. Thus a feature inventory that is 
restricted to generating the maximally differentiated partition provides no purchase for 
an account of syncretic patterns, such as ABB, AAB and the like, other than via accidental 
homophony.7

Characterizing syncretic partitions such as the ABB pattern seen in (3b) thus requires 
features that name (contain) more than one cell of the paradigm such as f011. Consider, 

	6	Appeal to a “default” form implicitly invokes an additional feature, shared by all the cells: f111, and there 
is no such feature in (6). We return to the status of the default feature in Section 3.2.2 below, as well as 
implications of claims of the sort that third person is the absence of a feature (Benveniste 1956), etc.

	7	Or by using more powerful algebras, such as the curly brackets in SPE notation (Chomsky & Halle 1968) 
representing the disjunction of two distinct rules; see McCawley’s (1974) critical remarks on this device; see 
also section 3.2 below.
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from this perspective, the inventory in (7), which represents the standard approach to 
*ABA generalizations in the notation used here:

(7) a. f001
b. f011
c. f111

This encodes the same relationship among paradigm cells as (1). One feature is shared by 
all three cells ((7c)—this constitutes the default), one by two, and one is unique to a single 
element. On the assumption that the feature inventory in (7) remains constant across 
languages, but that the rules of exponence may vary from language to language or even 
from lexeme to lexeme, a variety of different paradigms (partitions) may be generated 
from this single, shared inventory of features. Rules of exponence for two models sharing 
the inventory in (7) are given in (8) and (9).

(8) a. f001 ↦ C
b. f011 ↦ B
c. f111 ↦ A

(9) a. f011 ↦ B
b. f111 ↦ A

As the reader may verify, the model in (7) + (8) derives a maximally differentiated, ABC 
paradigm, one in which each cell is distinct from the others. The model consisting of 
(7) + (9) derives an ABB paradigm, with syncretism of the last two cells. In these models, 
rules of exponence are ordered sequentially (read by convention from top to bottom), and 
disjunctively – the first rule of exponence specified for any given cell must apply to that 
cell, and once one rule has applied, no other rule may apply. In both (8) and (9), the final 
exponent (A) is the default – in principle it is compatible with all three cells – but it does 
not appear in any but the first cell because the rule introducing the default is ‘blocked’ by 
the application of the more specific rules.

Returning to our German pronoun example, the feature inventory in (7) (unlike the one 
in (5)) could then support the description of each of the pronouns in (3); the 1sg pronoun 
using rules of exponence corresponding to (8) and the 1pl to (9). We may represent this 
outcome more compactly, by listing the features realized by rules of exponence in the 
feature-based morphological analysis of a given data set as a sequence of features (ordered 
left-to-right, rather than top-to-bottom for compactness). (10a) represents the ordered 
rules in (8) as a sequence and (10b) that in (9) ((10c) derives (3c) from the same feature 
inventory). The string to the right of each sequence characterizes the partition defined by 
that sequence.8

(10) a. 〈f001, f011, f111〉: ABC
b. 〈f011, f111〉: ABB
c. 〈f001, f111〉: AAB

The presentation in (10) expresses the fact that several different partitions are derivable 
from the common feature inventory in (7), by invoking different sequences of features in 
the rules of exponence.

	8	Unlike our list notation for paradigms, where order is arbitrary (see section 2.1), the order in a sequence is 
meaningful, since it represents the bleeding relationships among disjunctively ordered rules.
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2.3  Partition Sets
This now gives us the tools we need to introduce the main object of inquiry, namely 
partition sets:

(11) For any feature inventory I, the Partition Set of I, PSI, is the set of all partitions 
that may be generated from I.

As we have seen, the partition set of (5) is trivial: PS(5)={ABC}. That is, the inventory 
in (5) will generate all and only maximally differentiated partitions. The partition set 
of (7) is more interesting, and (10) represents only a subset. To see this, consider all 
the sequences generable from (7). Since there are 3 features, there are 3! = 6 (total) 
sequences to consider, as in (12) (we explain the use of blue font presently):

(12) a. 〈f001, f011, f111〉: ABC
b. 〈f001, f111, f011〉: AAB
c. 〈f011, f001, f111〉: ABB
d. 〈f011, f111, f001〉: ABB
e. 〈f111, f001, f011〉: AAA
f. 〈f111, f011, f001〉: AAA

Collecting the derivable partitions, we find that PS(7)={AAA,ABB,AAB,ABC}. Notably, 
of the B3 = 5 possible partitions of the three-celled space, one is missing: ABA is not 
included in the partition set of (7).

A different feature inventory may yield a different partition set. For example, adding 
the default feature f111 to the inventory in (5) renders the inventory unrestrictive: any 
logically possible partition may be derived. The following partial list of sequences, from 
among the 4!=24 possibilities, demonstrates this point:

(13) a. 〈f001, f010, f100, f111〉: ABC
b. 〈f001, f111, f010, f100〉: AAB
c. 〈f010, f111, f001, f100〉: ABA
d. 〈f100, f111, f010, f001〉: ABB
e. 〈f111, f001, f010, f100〉: AAA

In this way, we see the general logic that relates typological generalizations to 
conclusions about features in Universal Grammar. The data we have are the attested 
partition sets in some domain—the range of partitions that are (un)attested cross-
linguistically. The explanans is then the feature inventory: Domains in which the 
*ABA generalization holds are domains in which one logically possible partition 
is not attested. The gap is explained if Universal Grammar admits only the feature 
inventory in (7)—as (12) shows, the unattested partition is not in the partition set of 
this inventory.

Our aim in this article is to attempt to approach the issues here from the other direction. 
In the following, we use the notation introduced here to explore the consequences of 
various kinds of formal restrictions one could conceivably apply to models of this sort 
(inventories of features and associated rules of exponence). We do so in the first instance 
entirely in the abstract, with no connection to substantive features or empirical data. 
Our goal is to better understand some of the formal properties of feature logics, and 
to compare the ways in which various intuitively plausible assumptions do and do not 
restrict the combinatorics.
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That is, rather than starting with some observed partition sets and attempting to infer 
the feature inventory (a task for which there are often multiple solutions), we investigate 
here ways in which general constraints on feature algebras do (or do not) restrict the 
hypothesis space. In other words, rather than arguing that something like (7) is a plausible 
feature inventory in some domain because it derives the observed facts, we will look 
instead for general reasons which may favour an inventory like (7) over other inventories 
on a priori grounds.

One reason to pursue this exercise is that, as our notation calls attention to, absent any 
prior assumptions about the content of features, the number of possible features that can 
be defined grows quickly. For a paradigm of n cells, there are 2n – 1 non-empty features 
that may be defined. For a three cell paradigm, the 7 definable features are these:

(14) f100
f010
f001
f110
f101
f011
f111

If features could be freely chosen to form inventories, then 128 distinct feature inventories 
could in principle be constructed from these features (including the empty set). For a four 
cell paradigm, there are correspondingly 15 features and 32,768 possible inventories to 
consider. As we have seen above, from each inventory, a number of distinct models can be 
constructed. That is, each inventory can be mapped to one or more sequences, thus yielding 
a variety of partition sets. If rule ordering is unconstrained, then from a single inventory 
with n features, there are n! distinct sequences that may be so constructed.9 The number of 
possible models (and thus grammars) thus quickly becomes astronomical, and we suggest 
it is therefore important to ask whether there may be some universal constraints that 
drastically restrict the classes of possible models to be considered. Thus, we will spend 
a fair part of the following discussing the combinatorics involved. We will approach this 
as follows: Using the understanding of features, paradigms, and models outlined above, 
we will set out to explore in quantitative terms various conditions that may be imposed, 
and show explicitly how they do and do not restrict the space of possibilities. Many of 
the numerical results are non-obvious, and we provide the code in on-line supplemental 
materials for this paper.

Before proceeding further, by way of a brief housekeeping remark, we note that some 
of the features in some sequences are redundant. The redundant features in (12) are 
indicated in blue. Because sequences are ordered, once each cell has been assigned an 
exponent, all further features will have no effect in characterizing the partition. That 
is, a feature is redundant in a sequence if it is bled by earlier rules of exponence, and 
thus in principle cannot be exponed. Eliminating a redundant feature from a sequence is 
indistinguishable from the sequence with that feature (compare the notion of inessential 
feature in Kracht 1997; Pullum & Tiede 2010). The sequence (12d), for example, is 
formally indistinguishable from the partial order in (10b), since the first two rules are 

	9	The number is even larger if partial sequences are admitted: the total number of arrangements of a set 
with n elements: a(n) = n*a(n – 1) + 1, a(0) = 1. Some of the feature sequences in this group would be 
incomplete though.
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sufficient to cover all of the cells.10 If no feature in a sequence is redundant, we call it 
redundancy-free.

The careful reader may have noticed that in presenting the range of sequences generable 
from one inventory in (12) we gave only sequences that represent total orderings among 
the features of the inventory. However, in our exposition above, we also included 
sequences that contained only a subset of the features (as in (10)). It turns out that 
consideration of the total sequences is sufficient for calculating the range of partitions 
generated by an inventory, under the assumption of completeness, which we may define 
as follows:

(15) A sequence S is complete with respect to a paradigm P iff S generates a form 
(possibly zero) for every cell in P.

The partial sequence in (10) is complete, but the partial sequences in (16) are not (each 
leaves one cell without an exponent):

(16) a. 〈f100, f010〉: AB__
b. 〈f001, f011〉: __AB

In general, as a simplification in what follows we will consider only non-redundant 
complete sequences, since this class is sufficient to exhaustively characterize the partition 
set of any inventory.11

2.4  Restricting the hypothesis space: the minimal valid inventory
Here, we define briefly the two conditions, and note a third assumption, that will be 
central in the investigation that follows. We suggest these are a priori plausible conditions 
to restrict the class of possible inventories, and we will work through their consequences 
in detail in sections 4 and 5 and appendix A below.

The first, basic condition is that an inventory be valid.

(17) An inventory I is valid for a paradigm P iff there exists a model M including I 
that generates the maximally differentiated partition of P.

The maximally distinct partition of a paradigm (space) is the partition in which 
each cell is distinct from every other cell. In other words, for a three cell paradigm, 
a valid inventory is one for which there is some set of rules that will derive ABC. 
Note that Validity is a property of inventories, not models (grammars). The rules of 
exponence in (8) demonstrate that (7) is a valid inventory, but we do not require that 
every grammar (model) generate ABC; syncretism by definition precludes there being 

	10	We can characterize redundancy abstractly as follows: In a feature sequence S the feature in position j is 
redundant iff the conjunction of Sj with the disjunction of the features S1, …, Sj–1 is identical to Sj. As a 
reviewer observes, various authors have argued that features which may be redundant in one part of an 
analysis may be useful in another part (see Trommer 2008 for an example). We do not exclude redundant 
features from inventories categorically.

	11	Paradigms that appear to have gaps are well attested in the literature, suggesting that completeness is 
not a universal condition. A famous example is Russian verbs which lack a first person singular present. 
A reviewer likewise asks about more widespread examples such as apparently deficient (incomplete) 
pronoun systems in Southeast Asian languages and elsewhere. As the reviewer notes, we may make the 
provisional assumption here that the deficiency is a matter of lexicalization, and assume that the inventories 
underlying even incomplete paradigms are valid (as defined in the next subsection): the features are part of 
the grammar, even if they are not (always) lexicalized. Completeness for us does not constrain inventories 
and thus does not play a significant role in the main results discussed below. If incomplete paradigms are 
allowed, then there is a formal distinction to be drawn between *ABA and ØBØ; the former underivable, 
but the latter describable as an incomplete paradigm.
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such a requirement for every model.12 The model consisting of (7)+ (9) is perfectly 
well formed (and examples apparently conforming to such ABB patterns are widely 
instantiated).

The second, and more interesting condition on inventories is Minimality:

(18) An inventory I constitutes a Minimal Valid Feature Inventory for some paradigm P 
iff
a. I is valid for P, and
b. there is no subset I′ of I s.t. I′ is also a valid inventory for P and I′ has fewer 

features than I

In Section 4 and Appendix A, we will work through these conditions for various sizes of 
paradigms, starting with 2-celled and then 3-celled paradigms. One finding in this paper 
is that the two simple assumptions on inventories just noted – that inventories use the 
minimal number of features to describe a paradigm space – have the curious effect that 
in certain paradigm spaces, notably those with three cells, certain patterns of syncretism 
become unstatable. In a sense to be made clear below, ABA patterns of a certain type 
are indescribable. More accurately, no minimal valid inventory yields a paradigm set 
that includes all three bifurcations of the three celled space: {AAB,ABA,ABB}. If two are 
included, the third is not. Since we have treated order in a paradigm as arbitrary, all 
of the results we describe hold only up to linear permutations in this way. This result 
is of interest, because it arises without the nesting/containment assumption that plays 
a central role in other treatments of *ABA generalizations (Bobaljik 2012; Caha 2009; 
Starke 2009). Another result is a curious pattern in the nature of the restrictiveness that 
these assumptions create.

Lastly, at least to start, we will assume following standard practice in morphology 
that intersection of features is available. If fa and fb are in an inventory, then  
fa ∩ fb ↦x is a well-formed rule of exponence. (I.e., in more standard notation, if [F] 
↦ A and [G] ↦ B are well-formed rules of exponence, then so is [F,G] ↦ C.) Most 
feature-based morphological analyses invoke this (for example, if [feminine] and 
[plural] are features in the inventory, then there can be an unanalyzable exponent 
of [feminine,plural], without needing a separate feature [fempl]). We assume that 
intersection is the only Boolean operation on features that is available (but see below 
for further discussion).

Adding intersection is not innocuous. Because of the way we have defined features and 
inventories, intersection intersects with Minimality in a non-trivial fashion. Intersection, 
like rule ordering, allows for exponents that do not directly conform to features that are 
in the inventory. If an inventory consists only of f110 and f101, a rule can be stated referring 
to: f110 ∩ f101 = f100. While this generates an exponent that only expresses the first cell, 
it does so without the feature f100 being contained in the inventory. This will play an 
important role in the discussion of 3-cell paradigms. Of course, it is worth considering 
the consequences of minimality and validity without the additional assumption that 
intersection is available. We do so in section 5.4 below. Note that the core result holds 

	12	Maximal differentiation is also not a requirement for every language. Famously, although there are 
many ways to define the case paradigms for Russian nominals, there is no paradigm that is maximally 
differentiated in Russian—all Russian case paradigms have some measure of syncretism (Jakobson 
1936/1971; see Bobaljik 2002 for some implications of this old observation). Validity is related to, but 
distinct from, another condition: completeness, which we have mentioned above. Completeness (if it holds) 
is a property of sequences (and thus derivatively of models), not of inventories.
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either way, but the inclusion of intersection is a widespread assumption in morphology, 
so we consider that scenario first.13

Before proceeding to the discussion of our main results, we will present a number of 
additional concepts and assumptions which we hope will allow for more familiarity 
with the general notation. In particular, we offer some remarks on how various current 
ideas can be rendered in our notation, allowing for commensurability among analyses or 
frameworks. The reader interested primarily in the consequences of the assumptions just 
made can skip ahead to section 4.

3  Additional considerations
Our formalism allows us to selectively add or subtract conditions in order to examine 
the consequences of any particular set of assumptions. In principle, we can translate 
sets of assumptions from other feature logics into our notation, and can thus accurately 
investigate the algebra of different combinations. The following subsections illustrate 
some well-discussed conditions in the field, showing how they can be expressed and 
evaluated in our terms.

3.1  Extrinsic Order and Pāṇinian Sequences
Above we have noted that sequences (i.e., rules of exponence) must in some cases be 
ordered. The sequences in (19) contain the same features, but the difference in order 
alone yields different partitions:

(19) a. 〈f110, f011〉: AAB
b. 〈f011, f110〉: ABB

As is well known from early discussions of rule systems, rule ordering may be extrinsic 
(a stipulated language-particular order, as in (19)) or intrinsic, i.e., such that more 
specific rules automatically bleed more general rules. A specific formulation of the 
intrinsic Pāṇinian ordering principle or Elsewhere Condition is as in (20) (after Kiparsky 
1973):

(20) If two (incompatible) rules R1, R2 may apply to a given structure, and the 
context for application of R1 is a (proper) subset of the context for that of R2, 
then R1 applies and R2 does not.

We translate the operative notion into our set up as in (21), which picks out the class of 
sequences for which any reordering that does not introduce redundancy has no effect on 
the partition set. That is, a Pāṇinian sequence is not necessarily a total order, but all order 
with any consequence is determined by (20).

(21) A (redundancy-free) sequence S is a Pāṇinian sequence if and only if any 
redundancy-free permutation of S yields the same partition as S.

The sequences in (19) do not satisfy (21). Since (19a) and (19b) are permutations of one 
another and yield different partitions, neither of them is Pāṇinian. Other than (12a), the 
sequences in (12) likewise cannot be Pāṇini-sequences since they are not redundancy-free. 

	13	A reviewer asks how our condition of Minimality relates to the condition of Primitivity proposed in (Harbour 
2016: Chapter 7). Harbour’s Primitivity condition excludes feature inventories that include features which 
are interdefinable. As can be seen in section 5, not all inventories excluded by Minimality would run afoul 
of Harbour’s primitivity condition, but the reverse should hold.
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But the redundancy-free sequence in (22a) is Pāṇinian because it and its only redundancy-
free permutation in (22b) yield the same partition: ABC.

(22) a. 〈f010, f011, f110〉: ABC
b. 〈f010, f110, f011〉: ABC

This raises two points. First, Pāṇinian ordering is the kind of general condition one could 
entertain as a restriction on rule systems. As the comparison of (19) and (22) shows, 
imposing a condition that sequences must be Pāṇinian may reduce the partition set 
for some inventory I by excising all partitions that are derived only by non-Pāṇinian 
sequences. Rather than build this assumption in, we see our goal as investigating the 
effects of assumptions, since we have a notational apparatus that allows us to directly 
compare systems with and without such an assumption. As it happens (we will present this 
in more detail below), imposing Pāṇinian ordering will have a drastic effect on minimal 
feature inventories that are closed under intersection, essentially preventing analysis of 
syncretism in the three-cell cases.

Now consider again the observation that the sequences in (19) are not Pāṇinian, but 
those in (22) are. The features invoked in these sequences are not unrelated. The features 
f110 and f011 are common to all of these sequences, and the relation between them is 
that they have partial overlap, but neither is contained in the other. Generally such a 
relationship between two features fa and fb is what makes a sequence non-Pāṇinian, unless 
there is another feature or other features fc1, …, fcn that cover the intersection of fa and 
fb and are contained within both fa and fb. One easy case is that there is only one other 
feature fc (i.e. n = 1), namely the intersection or conjunction of the two features fa and 
fb. This is what we see in (22): adding the feature that corresponds to the intersection of 
the two features in (19) renders the sequences Pāṇinian. Generally, if a redundancy-free 
sequence is closed under intersection, then it is Pāṇinian. This provides another reason for 
us to include intersection: allowing intersection makes it easier to compare intrinsically 
ordered and Pāṇinian analyses. It does, though, raise the question of whether any other 
Boolean operations on features should be countenanced.

3.2  Feature Algebra: Privativity, Defaults, Containment, and Intersection
While all Boolean operations are generally assumed to be available in semantics, most 
work in morphology assumes that the feature algebra is restricted and that e.g. the union 
operation is not available.14 As noted, we adopt the assumption that intersection, but no 
other algebraic operation is part of morphology (we do however consider systems without 
this assumption in section 5.4). We briefly mention some alternatives in the following 
subsections.

3.2.1  Binarity and Dimensions
Consider the example of binary features. Our features are, by definition, privative, rather 
than binary, in the sense that these terms are understood in the morphological and 
phonological literature. Binary features, of the sort typically written [±F] are, in our 
terms, names for pairs of features: one feature that names a set of cells, and another 
feature that names the complement set. In our terms, feature binarity could be expressed 
by holding that if f1100 is a feature in some inventory, then f0011 is also a feature in that 
inventory, etc. Assuming binary features is tantamount to assuming privative features 

	14	But see, for example, Stump (2016), who allows other Boolean operators, including union (disjunction) 
in the construction of complex features. We suspect that allowing union will render any valid inventory 
unrestrictive: any inventory that can generate ABC can generate all other partitions.
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along with a negation operation that is restricted to atomic (non-derived) features.15 We 
accord no special status to pairs of features in this way: an inventory containing f0011 
may or may not contain the complement as a second feature (see also Pullum & Tiede 
2010). In at least some cases, including two- and three-cell paradigms, imposing binarity 
complicates the analysis (cf. Corbett 2010).

Feature binarity is connected to the notion of dimensions in paradigms, raised by a 
reviewer. The type of representation entertained here readily accommodates multi-
dimensional syncretism, a prima facie challenge for theoretical approaches, such as 
Nanosyntax, which adopt a universal total (containment) ordering among features (see 
Caha & Pantcheva 2012 for ideas on how to extend the Nanosyntax model to accommodate 
this.) We have thus far represented paradigms as one-dimensional lists, as in (23), although 
one often finds four-celled paradigms presented as a 2 × 2 matrix, encoded as two binary 
features, as in (24).

(23) <A,B,C,D>

(24) –α +α
–β A B
+β C D

Translation is straightforward: First one has to choose one order of the four cells in 
(24). This is arbitrary, but for concreteness we use the order ABCD as indicated in 
(24). The the feature –α, shared by cells A and C in (24), is encoded relative to the 
list in (23) in our terms as f1010. Similarly, +β, shared by cells C and D, as f0011, etc. 
But dimensions of paradigms, underlying horizontal and vertical syncretisms, have no 
a priori special status—we can just as readily define a feature f1001 which picks out cells 
A and D, a diagonal syncretism in (24). For us, this flexibility is an advantage, since it 
allows us to take any existing partition set and probe what the optimal underlying feature 
inventory might be, given any combination of assumptions such as binarity, Pāṇinian 
order, Minimality etc. Rather than setting the features ahead of time, we can in this way 
discover whether features should be binary or not. In our terms, the two binary features 
that define the matrix in (24) are the inventory: {f1010, f0101, f1100, f0011}, but this is simply 
one of more than 32,000 inventories that could have been used in the analysis of a given 
four-cell paradigm.16

	15	Even proponents of binarity and intersection of features assume that -[A ∩ B] isn’t necessarily part of an 
inventory containing features A and B.

	16	There are (24 – 1 =) 15 different features, and thus 215 definable inventories (not all of which will be valid, 
of course). (i) provides a model using the inventory corresponding to binary features.

(i) a. Inventory: f1010, f1100, f0101, f0011
b. f1010 ∩ f1100 ↦ A

f0101 ∩ f1100 ↦ B
f1010 ∩ f0011 ↦ C
f0101 ∩ f0011 ↦ D

An alternative analysis of the four cell paradigm without binarity is given in (ii):

(ii) a. Inventory: f1010, f1100, f0111
b. f1010 ∩ f1100 ↦ A

f1100 ∩ f0111 ↦ B
f1010 ↦ C
f0111 ↦ D

Note that eschewing binarity allows for a smaller inventory of features (three features instead of four), 
hence there is no a priori argument from simplicity in favour of binarity.
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3.2.2  Defaults and containment
A default feature (or value) is one that is compatible in principle with all cells, 
i.e., f11…1, for a paradigm of any arbitrary size. Many approaches accord a special 
status to the default. For example, as a reviewer notes, theories that treat features as 
attribute:value pairs, or equivalents, such as category:feature/value etc., may allow 
for reference to the category as a whole as a default (Adger & Svenonius 2011 is a 
recent, explicit example of this, but the general approach has many antecedents). A 
three-celled paradigm could be described in these terms such that one element is the 
default, corresponding to the absence of a value for the attribute, as in (25), where 
the third line spells out the absence of a value (a category, but no feature, in Adger & 
Svenonius’s terms):

(25) f100 ↦ A
f010 ↦ B
f ↦ C

Such analyses are readily found in the literature. For example, analyses that treat the 
third person as the “absence” of person or the default person instantiate (25). But in our 
terms, (25) is simply a notational variant of (26). An underspecified, default exponent 
corresponds to an exponent that is compatible with any cell in the paradigm, and surfaces 
wherever it is not bled by an earlier rule.

(26) f100 ↦ A
f010 ↦ B
f111 ↦ C

Just as with feature binarity, we choose from the outset not to assign any privileged status 
to the default (or to inventories containing a default)—it is simply one feature among 
many to be considered. We consider full sets of inventories, including those that do and 
do not contain the default. Doing so allows us to compare the results of inventories that 
include the default with those that do not. For example, it could turn out that inventories 
that include the default as one of the features are more highly valued along some 
dimension than those that do not. But unlike Adger & Svenonius (2011), we do not build 
this assumption in from the start.

Related to defaults, there are also theories that build containment in as a prior assumption 
about feature inventories. Much of the *ABA literature relies on partial or total containment 
among classes of features in an inventory. The Nanosyntax framework codes this as an 
fseq, assumed to be universal and invariant across languages (Caha 2009). Other ABA 
literature (Bobaljik 2012; Smith et al. 2016) assumes containment in the contexts where 
ABA is excluded, but without a total commitment to invariant fseqs. As described above, 
feature containment relations can readily be expressed in our notation, as in (7). The fseq 
assumption would then elevate that to a general condition: for any two features fa, fb in 
an inventory, either fa ⊂ fb or fb ⊂ fa. Once again, we do not impose a priori conditions 
of this sort, as our aim is to see whether these arise as plausible conditions from other 
considerations.

In the above paragraphs, we hope to have shown that any of a number of other conditions 
on inventories or sequences could be expressed in our system.17 Our primary strategy here 

	17	We have not engaged here with the proposals in Harbour (2011; 2016), and Ackema & Neeleman (2013). 
Harbour and Ackema and Neeleman contend that standard frameworks treat features as first order 
predicates, whose values serve as one-place truth functors, but that this should be replaced by a perspective 
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is to limit building assumptions into our system, so that this will allow us, at least in 
principle, to consider the restrictiveness of various possible assumptions in the abstract, 
and to allow for direct formal comparison of classes of competing frameworks. We now 
begin the process of exploring the consequences of the assumptions we did suggest for 
paradigms of different sizes.

4  Two-Cell Paradigms
Consider first the case of paradigms with two cells. Analysis of a two-cell paradigm space 
is relatively trivial, but serves as a warm up for the more interesting cases, and offers an 
opportunity to become more familiar with the notation for presenting the analysis.

For the analysis of a two-celled paradigm space, there are three logically possible 
features: f10, f01, and f11 – this corresponds to the general formula that for n-cells there are 
2n – 1 possible features. From three features, eight distinct inventories of features may be 
defined, i.e., the power set of the features. Of these, we may discard the empty set – if 
there are no features, nothing can be described.

Of the seven remaining inventories, any inventory consisting of just a single feature 
will fail our criterion of Validity: The maximally differentiated partition of a two-celled 
paradigm space is AB, i.e., the two cells are distinct. Since our features are privative, a 
single feature is not sufficient to analyze the AB paradigm: If the single feature is f11 it 
isn’t possible to make the required distinction between the A and the B cell – the only 
partition that can be generated is AA. And if the single feature was either f10 or f01, 
no analysis of the two cell paradigm is possible at all. Only one cell could receive an 
exponent. Recall that we made the decision not to assign the ‘default’ f11 some special 
status but to include it as just one possible feature among many. Therefore if only a rule 
of exponence f10 ↦ A is specified, the second cell wouldn’t be filled at all. Therefore this 
analysis fails to be valid under (17). This shows that at least 2 features are required to 
analyze the AB paradigm.

That two features are sufficient is shown by looking at Table 1. This table displays the 
four inventories with two or three features. For each inventory, the set of possible rules 

in which features are operators that induce partitions of lattices (or their atoms). Harbour’s approach 
supports recursive composition of feature values, such as a number value like [–singular,+augmented, 
–augmented] = trial. This is non-contradictory, since the outer value of augmented acts on the result 
of having previously applied the inner value. We believe that these types of proposals can be expressed 
in our notation (although the composition of feature inventories becomes non-trivial) since our features 
fundamentally, like Harbour’s, define a partition of a set (in our case, the list indicated as a binary vector on 
f. Direct engagement with these proposals takes us far too far afield for the present article, though.

Another approach for which we postpone fuller engagement is that in Graf (2017), which does not use 
features as such, and instead operates on cells directly, positing an abstract order of cells, i.e. cell-x < cell-y 
< cell-z. Though Graf’s proposal is more complex, at this point we can offer a remark on a version of his 
proposal that relates to the convexity assumption (cf. Gärdenfors 2000). Assume that the set of all cells 
with the same exponent must be convex: if cells x and z have the same exponent and there is a cell y such 
that x < y < z relative to the order, then y must also have the same exponent as x and z. Convexity stated 
in this way predicts that, if three cells are ordered linearly as x < y < z, the pattern *ABA is ruled out. 
Note that Graf’s proposal relies on three assumptions that should be discussed further: that there is always 
an order of cells in a paradigm, and that the convexity constraint must apply directly to cell-exponent 
relations, and cannot be satisfied at an intermediate featural level. Graf discusses the former assumption 
explicitly – consider, for example, that an ABA-pattern does not violate convexity if the cells only stand in 
a partial order where x > y and x > z but where y and z are not ordered relative to one another (cf. Smith 
et al. 2016). The latter assumption is not discussed by Graf in detail, but is clearly necessary: Consider both 
a feature fxyz shared by all three cells xyz and a feature fy singling out just y are convex assuming the linear 
order x < y < z. Then the exponence mappings fy ↦ B and fxyz ↦ A derive the ABA-pattern. Specifying these 
assumptions helps us locate our discussion relative to Graf’s proposal. Namely, the proposal for deriving 
*ABA we explore in the following takes the opposite direction of Graf’s: we assume no inherent order of 
cells, but rely strongly on features. It is interesting that these two at least superficially quite different routes 
arrive at similar results and we hope this will encourage a more detailed comparison of the two approaches 
in the future.
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of exponence are given (redundant features are in parentheses), and in the rightmost 
column, the corresponding partitions that can be generated. As the table shows, any 
selection of two features from the three possible features will allow an analysis of the 
AB-paradigm. Thus these three subsets represent possibilities for a restrictive Universal 
Grammar satisfying Minimality—the three-feature inventory (#4) is excluded by this 
criterion.

The same information can be represented graphically as patterns of squares, here aligned 
vertically using colour to define features, exponents and partitions. In Table 2, we display 
the three valid systems that contain the minimal number of features, i.e., two features, in 
the two-cell case in this way. As we discuss immediately below, while there are three such 
distinct feature inventories, inventory 1 and inventory 2 predict the same sets of possible 
partitions. But inventory 3 predicts a smaller set of possible partitions, namely only the 
AB partition.18

Inventory #1 is valid, since there is a sequences of features from this inventory, which 
generates the maximally differentiated partition AB. This sequence is in the first line: 
there are two, ordered rules of exponence (f01 ↦ B, and f11 ↦ A). As the table shows, the 
AA partition may also be generated from the same inventory. The first sequence provides 
a rule of exponence only for the feature f11. This generates the fully syncretic paradigm: 
AA. Continuing through the table, we see in this way that the first and the second possible 

	18	We remind the reader that the only information that colours signal is sameness or difference of exponents. 
Thus  and  are not in any way distinct from one another. Below, we will present information in the 
partition column starting with dark orange at the top for ease of comparison among partition sets, even 
where this means that the colours in the partition column sometimes do not match to the colours in the 
sequences column.

Table 1: Table of valid feature inventories and corresponding partition sets for two-cells. 
** = incomplete sequence.

# inventory sequence partition
1 f01, f11 f11 AA

f11, (f01) AA

f01, f11 AB

f01 **

2 f10, f11 f11 AA

f11, (f10) AA

f10, f11 AB

f10 **

3 f10, f01 f10, f01 AB

f01, f10 AB

f01 **

f10 **

4 f10, f01, f11 f10, f01, (f11) AB

f01, f10, (f11) AB

f10, f11, (f01) AB

f11, (f01, f10) AA

f01 **

f10 **
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universal inventory each allow two classes of languages corresponding to the partitions 
AA and AB. The third feature inventory, although Valid and Minimal, only predicts the AB 
partition as possibility. On this analysis, if AA were to surface in any language it would 
need to be the result of accidental homophony.

The fourth inventory contains all three features and therefore allows 6 sequences with 
rules of exponence for 3 features, 6 sequences with 2 features, and 3 with single features, 
which we show in a condensed form in Table 1. However, as noted, this inventory fails 
the Minimality condition.

Recall from above that we defined the partition set of an inventory as the set of paradigms 
that can be derived from it. For the three minimal complete inventories of the two cell 
case, the partition sets can be read off the partitions column of Table 2.

Typological evidence ultimately can inform us which partitions are attested.19 If a 
typological survey shows that both AA and AB patterns exist, then the the third inventory, 
though valid and minimal, is not the actual inventory made available by UG. We note in 
passing that it is the only minimal valid analysis that uses a binary feature, rather than the 
equivalent of a default and “marked” combination.

However, the typological evidence cannot alone decide between different inventories 
that both predict the same possible partitions like inventories #1 and #2 above.

Despite the relatively trivial nature of the exercise with the two-cell paradigm space, 
the preceding discussion demonstrates that assumptions have consequences, and the 
the assumption that UG inventories be both minimal and valid has reduced the space 
of possible inventories from 7 (or 8 with the empty set) to 3. We have shown how 
typological evidence can be brought to bear on the choice. Finally, we note that the two 

	19	It may also be possible to use learning experiments to differentiate partitions by learnability.

Table 2: Graphical display of table of minimal valid two-cell inventories and derivation of the 
predicted partitions. Compared to table 1, incomple sequences and redundant features are 
omitted here, and sequences that are order-invariant shown only once. Inventory 4 of table 1 
is excluded here by minimality.

# inventory sequences partitions

1

2

3

count 3 2
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minimal valid inventories that are capable of generating both AA and AB patterns are 
in fact related to one another by a permutation of the cells. For example, the inventory 
f01, f11 contains a default feature (naming both cells) and a specific feature naming the 
second cell in the list (“Y” in <X,Y>). This is equivalent to the inventory f10, f11 relative 
to a permutation of the list, that is, in which the specific feature names the first cell in 
the list <Y,X>. Since we have taken the order of cells in a list to be arbitrary, there is no 
way on our assumptions to distinguish among inventories that are permutations of one 
another in this way. To take a more concrete example, in order to describe a two-way 
number contrast, one could invoke two features: singular and plural, corresponding to 
inventory #3, or posit a single marked number value (f01) and leave the other unmarked 
(f11 = number) (or combine these to use two marked features and a default). Minimality 
prefers one of the first three inventories; if there is syncretism in some paradigms, then 
one of the first two is to be preferred. But considerations of Minimality and Validity 
alone do not resolve the venerable debate about which value of number is marked 
(Sauerland et al. 2005 and others): f01 corresponds to “plural” if the cells are ordered 
<singular,plural>, but to “singular” if the cells are ordered <plural,singular>, and 
vice versa for f10.

Our first result is that in a paradigm space that constitutes only a binary opposition, 
the only minimal valid analyses that also permit syncretism are the ones that takes UG to 
have a single feature that names one member of the opposition, and which is contrasted 
with a default feature, compatible with both members. In this way, there would be an 
empirically-grounded argument to be made that if Minimality is assumed, then Binarity 
should be rejected as a general condition on feature inventories. In the manner just noted, 
the two assumptions make contrasting predictions about the state of the world. But we 
have no way on these considerations alone of saying which member of the opposition is 
‘marked.’

5  Three-Cell Paradigms
Turning to the three-cell paradigm space, we begin to see the growth in the space of 
analytical possibilities, and we also see how various assumptions such as Minimality and 
intrinsic, i.e., Pāṇinian ordering restrict that space. For a three-cell paradigm space, there 
are 23 – 1 = 7 possible features, listed in (27):

(27) f100, f010,  f001, f110, f101, f011, f111

If features could be freely chosen to form inventories, then 128 distinct feature inventories 
could in principle be constructed from these features (including the empty set), i.e., (22n–1, 
a function with double exponential growth). Each inventory is in turn relatable to n! 
(total) sequences.

5.1  Restrictions
We now consider the degree to which the assumptions mentioned above restrict the space 
of possible grammars (analyses).

5.1.1  Validity
The first restriction we impose is Validity, as in (17). For example, the inventory f100, f010, 
f001 is valid, in that it describes a three-way contrast, while the inventory f100, f110, f010 is 
invalid – it is not complete, as it provides no means to describe the third cell. It turns 
out that 96 of the 128 possible inventories of active features are valid in this sense in the 
three cell case (see Table 3 below). With four cells, the ratio is 31,962 out of 32,768 (see 
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Table A2 below). Validity thus restricts the number of feature sets, but the restriction is 
not particularly strong.

5.1.2  Minimal Feature Inventory
The more interesting (and less obviously empirically motivated) requirement is Minimality. 
As defined above, a minimal valid feature inventory is an inventory that contains the 
minimal number of features needed to describe the maximally differentiated partition. 
For the two-cell space, the minimality requirement does not restrict the possibilities in 
any interesting way (it excludes only one inventory out of the 4 valid ones), but for the 
three-cell space, the minimal number of features that is needed to describe the maximally 
differentiated partition is two, as we show presently. Validity plus Minimality together 
thus restrict the choice from among 128 different logically possible feature inventories to 
the following three:

(28) a. f110, f101
b. f101, f011
c. f110, f011

To see that (28) are the minimal valid inventories, consider first that they are indeed 
each valid: (29) gives the rules of exponence that generate the maximally differentiated 
partition from the inventory in (28c). For (28a) and (28b) analogous sequences can be 
specified.

(29) a. f110 ∩ f011 = f010 ↦ B
b. f110 ↦ A
c. f011 ↦ C

Now consider minimality: Obviously, no inventory with fewer than two features can be 
valid, hence we only need to show that the inventories in (28) are the only valid two 
cell inventories. Assume that there was another valid inventory I with only two features. 
Because (28) lists all combinations of the features f110, f101, and f011, I would need to 
contain one of f100, f010 and f001, or f111. But it is easy to see that for any these features, it is 
impossible to satisfy validity by only adding one further feature to I. Hence, (28) are the 
three minimal inventories for three cells.

5.1.3  Order and the Effect of Pāṇini
Note that in order to describe the ABC pattern, the rules of exponence must be (partially) 
ordered, such that the exponent of the conjoined features takes preference over the rules 
in (29b)–(29c) (this holds for any of the three inventories in (28)). The property of Order 
was not relevant in the two-cell paradigm, but the Pāṇinian order condition has a strong 
effect with the valid three cell inventories.

Because each of the inventories in (28) has two basic features that may be conjoined to 
define a third feature, the number of possible sequences for each inventory is 16, although 
many of these sequences will be redundant or incomplete. The order (29) is in addition 
to deriving the complete partition also Pāṇinian as defined above. To see this consider 
first that if the order of (29b) and (29c) is changed as in (30), the resulting sequence still 
derives the complete partition ABC.

(30) a. f110 ∩ f011 = f010 ↦ B
b. f011 ↦ C
c. f110 ↦ A
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Other orders of the rules in (29) render feature f010 redundant. For example, if the 
order of the first two rules in (30) is exchanged, then the rule f110 ↦ A will assign 
the exponent A to the first two cells, bleeding rule (31b) (i.e., rendering rule (31b) 
redundant).

(31) a. f110 ↦ A
b. f110 ∩ f011 = f010 ↦ B
c. f011 ↦ C

As a general property (well understood from studies of Rule Ordering), ordering fa before 
fa ∩ fb will render the conjunction redundant, and is thus equivalent to not selecting (or 
having no rule referencing) the conjoined feature. This corresponds to an intrinsic order: if 
the conjoined rule is active, it must be ordered before its individual conjuncts.

If the conjoined rule is omitted or not ordered first, it can be omitted and only the order 
between the two rules referring to the basic features matters. The resulting sequences are 
not Pāṇinian, but require extrinsic order. (32) yields AAC while (33) yields ACC.

(32) a. f110 ↦ A
b. f011 ↦ C

(33) a. f011 ↦ C
b. f110 ↦ A

The following table shows, for one inventory, the six possible sequences (six distinct 
orders of three rules) and the three corresponding partitions that are derived. (As before, 
redundant elements in the sequences are in parentheses). The analogous table for the 
other two choices can be readily constructed. As an expository device, we use green 
text to indicate a feature that is derived as the intersection of the two basic features. As 
explained in section 2.4, the green features are not part of the feature inventory, but are 
a convenient abbreviation for rules of exponence that make reference to the intersection 
of two features in their structural description.

(34) inventory sequences partition
f110, f011 f010, f110, f011 ABC

f010, f011, f110 ABC

f110, (f010), f011 AAC
f110, f011, (f010) AAC

f011, (f010), f110 ACC
f011, f110, (f010) ACC

3

What (34) shows is the following: There are (only) three minimal valid feature inventories 
that can generate a maximally differentiated three-celled paradigm space. One such 
inventory is {f110, f011}. From that inventory, 6 (=3!) sequences may be formulated, where 
each sequence is a distinct, total ordering of rules of exponence for the two features 
and their intersection.20 While there are six rule orderings possible, only three distinct 
partitions are generated. The first two lines in (34) derive the same surface patterns 
(partitions), since the ordering of the last two rules is irrelevant.

	20	If non-total sequences are included, there are 15 possibilities, but the additional sequences are either 
incomplete, or indistinct from the sequences in (34) which have redundant rules.
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As the reader may verify, the other two minimal valid inventories (in (28)) have the 
same properties as (34). The three inventories amount to permutations in the order of 
the cells, but are otherwise identical in their formal properties. Each inventory generates 
a partition set that contains only two of the three logically possible bifurcations of the 
paradigm. Since we have not stipulated a meaningful order of the paradigm cells, the 
three are equivalent, up to linear order.

The information in (34) is represented graphically in (35):

(35) universal features sequences partition

5.2  Result: Generalized *ABA
At this point, we note two properties we believe to be of theoretical interest. For a three-
celled paradigm space, there are B3 = 5 distinct partitions. However, imposing the 
conditions of Validity and Minimality on the UG feature inventories restricts the expressive 
power of the system, such that each inventory generates only 3 of the 5 possible partitions. 
The three inventories that are permitted are moreover linear permutations of one another. 
We believe this is of interest since it appears to be true at least in some domains that 
the number of attested partitions is a small subset of the logically possible ones. The 
example we noted above was that in the 8 cell division of the person/number space, only 
60-some-odd distinct partitions, out of B8 = 4,140 possibilities, are attested in Cysouw’s 
250+ language sample. Being able to predict restrictions on the space of possibilities is 
thus of potential theoretical interest, if the restrictions indeed line up with the data. In the 
case at hand, the following restrictions obtain:

Of the five possible partitions of a three-cell space, four show some differentiation among 
the cells. However, each of the inventories in (28) generates only three of those partitions. 
As in the case of inventory #3 in the two-celled paradigms, we are now able to connect 
our formal results to potential empirical evidence. If there is, as we have hypothesized, 
a fact of the matter for some domain, such that UG contains only one of the inventories 
in (28), then this should show up as the following empirical generalization: across the 
relevant domain, only three of the four possible patterns of differentiated partition should 
be attested. In (34), we show that the inventory f110, f011 generates the partition set {ABC, 
AAB, ABB}; that inventory does not generate ABA. No sequence from that inventory will 
generate a pattern in which the first and last cell share an exponent, to the exclusion of 
the middle cell.

The same holds for the other two inventories, up to the linear order of the cells: each 
inventory will fail to generate exactly one of the possible partly syncretic partitions. 
Inventory f110, f101 in (28)a generates the partition set {ABC, AAB, and ABA}, but it does 
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not generate ABB. Similarly, the inventory f101, f011 in (28b) generates the partition set 
{ABC, ABB, and ABA} but does not generate AAB. As discussed above, since the linear 
order of the cells is arbitrary, these inventories and partition sets are permutations of 
one another, and thus each can be reduced to the first via permutation of the cells. For 
example, syncretism of the accusative and dative, to the exclusion of the nominative (as 
in (3b)) would be described as an ABA pattern if the order of cases were acc-nom-dat, 
but if we permute the order of cells, giving the list nom-acc-dat as in (2), then the 
same pattern is described as an ABB pattern. In this way, there is, in what we develop 
here, a formal equivalence among partition sets that differ only as a function of linear 
permutations of the cells. We cannot, in principle, say that *ABA is excluded absolutely 
(rather than *AAB, for example, since what counts as ABA under one order counts as AAB 
under a linear permutation), but what we have found is instead a generalized version of 
*ABA: the three inventories in (28) all exclude precisely one pattern in which two cells 
are syncretic and one distinct. They either exclude *ABA or are reducible to this by linear 
permutation alone.

This result is noteworthy in the current context, since it provides a means of 
characterizing the absence of *ABA patterns without assuming featural containment. 
Existing accounts of *ABA patterns invoking containment are all built on what, in our 
terms, is a non-minimal feature structure, with strict nesting of features – some version 
of: f100, f110, f111.

In other words, what we have just shown has two parts. The easy part is a demonstration 
that it is possible to derive a *ABA generalization for some domain without invoking 
containment. We have just done so. The slightly harder part was the demonstration that 
the type of feature inventory that derives *ABA without containment is not only possible, 
but is in fact preferred (over containment), if UG makes use of Minimal Valid feature 
inventories. We postpone until the next section some speculative remarks on whether this 
result constitutes a plausible alternative scenario for the account of *ABA generalization 
examples in the literature.

Before that discussion, we note one further point about these inventories. No valid, 
minimal inventory for a 3-cell paradigm space generates the maximally undifferentiated 
partition AAA. Curiously, it is not a general property of our assumptions that such 
undifferentiated partitions are universally excluded in the minimally valid inventories, 
and we show below that it does not hold for four cells. We can say that at this point that 
the undifferentiated partitions are excluded when the number of cells is from the sequence 
2n – 1 for n ≥ 2, i.e. 3, 7, 15, …. We note this, but leave it as an unexplored aspect of 
the system. Total syncretism appears to exist, of course, and we do not exclude it across 
the board. We return to this issue again in section 5.4, where we show that giving up 
the assumption that intersection is always available will preserve the generalized *ABA 
result considered here, but will admit AAA patterns. The upshot of that section will be 
that the (equivalent of the) 3 inventories considered to be minimal valid inventories with 
intersection become three among a larger class of minimally valid inventories (including 
the containment patterns). Some inventories from among the larger class permit AAA, but 
the general result holds: no member of that larger class admits all three bifurcations of the 
paradigm space: any minimal valid inventory whose partition set contains ABB and AAB 
will necessarily exclude ABA.

5.3  More on the 3-cell space: Non-Minimal sets
Thus far, we have examined only the three minimal valid inventories that generate a 
three-cell paradigm. To evaluate the effect of minimality, we now look also at non-
minimal inventories. In the two-cell case, we were able to present a complete discussion 
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of all the possible inventories and of the partition sets described by each inventory. There 
were only 8 possible inventories for the features definable over a two-cell paradigm, 
and 4 inventories were invalid. But for a three cell space, there are 128 inventories, and 
numerous sequences to consider.

Table 3 provides a summary of important aspects of the grammar of three-celled 
paradigms and the models that generate them. In the next paragraphs, we walk through 
this table in some detail, identifying various properties that are of potential interest. 
Among these, we note that imposing Pāṇinian ordering—limiting all models to intrinsic 
rule ordering—turns out to have rather drastic consequences. Possibly of more interest, 
we note that there are some partition sets that do not arise under any constellation of the 
assumptions considered here. Even without Minimality, for example, feature inventories 
turn out to be somewhat restrictive.

Table 3 is divided horizontally into two halves. Each half tabulates all the valid feature 
inventories, and counts inventories grouped by the number of features they contain 
(y-axis) × the partition sets that may be generated from them (x-axis). The two halves 
of the table differ as follows: In the top half, it is assumed that extrinisic order of rules of 
exponence is permitted, while in the bottom half, we add the additional assumption that 
only intrinsic (Pāṇinian) ordering is permitted. We discuss the differences below.

The columns in Table 3 represent possible partition sets of a three-cell paradigm space, 
using colour instead of letters, as in (35) above: the same colour in two cells indicates the 
same exponent (syncretism). There are B3 = 5 distinct partitions (the rightmost column) 
and 16 different subsets of partition that contain the maximally differentiated partition 
(ABC = dark orange, light orange, light purple).

Table 3: Table showing which 12 of the 16 logically possible three cell partition sets can be 
generated by feature inventories (applying intersective closure) and by how many inventories. 
Partition sets related by cell permutation are grouped together.

2 features, order – – – – – 1 1 1 – – – – – – – –

3 features, order 1 2 2 2 – 3 3 3 – – – 1 3 3 3 3

4 features, order – 1 1 1 – 3 3 3 – – – 3 2 2 2 14

5 features, order – – – – – 1 1 1 – – – 3 – – – 15 

6 features, order – – – – – – – – – – – 1 – – – 6

7 features, order – – – – – – – – – – – – – – – 1

total with order 1 3 3 3 0 8 8 8 0 0 0 8 5 5 5 39

2 features, Pāṇini 3 – – – – – – – – – – – – – – –

3 features, Pāṇini 4 4 4 4 – – – – – – – 1 3 3 3 3

4 features, Pāṇini – 3 3 3 – 1 1 1 – – – 3 2 2 2 14

5 features, Pāṇini – – – – – 1 1 1 – – – 3 – – – 15

6 features, Pāṇini – – – – – – – – – – – 1 – – – 6

7 features, Pāṇini – – – – – – – – – – – – – – – 1

total Pāṇini 7 7 7 7 0 2 2 2 0 0 0 8 5 5 5 39
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The header of each column represents a distinct partition set, and the number in a given 
column represents the number of formally distinct (valid) inventories that can in principle 
generate that set. The three minimal valid inventories that we have discussed above are in 
the top row of the top half of the table (columns 6–8). These are the only three valid, two-
feature inventories. But the table provides a range of information about what happens if 
we do not include the minimality requirement.

In the leftmost column of the line “3 features, order”, one finds the number 1. Assuming 
extrinsic rule ordering is allowed, there is exactly one choice of an inventory with three 
features, from among the 7 possible features, which yields only an ABC partition. We have 
seen that already; it was the inventory in (5). If that inventory is chosen, from among the 
128 possible inventories, then the only partition that can be generated is ABC.

On the same line, the number in the rightmost column is 3. There are (exactly) three 
distinct choices of feature inventories from each of which all five logically possible 
inventories can be derived. One such inventory is f110, f101, f111, i.e. it is derived from a 
valid two-feature inventory by adding the default f111. The other two inventories are also 
of this type; i.e., the two linear permutations of this inventory.21

This line also shows that there are 3-feature inventories that generate a partition set 
which excludes ABA. For example, the third columnn from the right notes that there are 
three inventories whose partition sets contain ABC, AAB, ABB, and AAA, but not ABA. 
One of the three inventories which generate this partition set is f001, f011, f111 as we saw 
above already (the containment inventory). A second possibility is f100, f110, f111 (a linear 
permutation of the previous one). Finally, the inventory f100, f001, f111 also generates this 
partition set, but without containment. Furthermore, all three inventories exclude *ABA 
from their corresponding partition set regardless of whether extrinsic ordering is allowed 
or not.

Bear in mind that the numbers in this table do not count models or sequences, but 
count inventories. Other than those in the leftmost column, each valid inventory in the 
table may be contained in multiple models, thus yielding sets of generable partitions. For 
example (34) (= (35)) is here coded by the number 1 in the top line, column 7. This is a 
two-feature inventory that generates the partition set at the top of column 7; moreover, 
this is the only choice of (two) features which generates that exact partition set (and 
requires extrinisic rule ordering to do so).

5.3.1  Results: Impossible Partition Sets
One point of interest is that there are four partition sets that are underivable no matter 
the size of the inventory: four columns total to zero (in fact the same four with or without 
a limitation to Pāṇinian ordering). As the fifth column shows, there is, for example, no 
valid inventory (minimal or otherwise) that has the partition set {ABC, AAA}. In other 
words, no combination of features will admit all and only the maximally and minimally 
differentiated partitions. Also excluded are patterns that allow ABC, AAA and exactly one 
syncretic grouping (columns 9–11).

	21	The following partial list of (redundancy-free) sequences demonstrates that this inventory is unrestricted:

(i) a. 〈f110 ∩ f101, f110, f111〉: ABC
b. 〈f110 ∩ f101, f111〉: ABB
c. 〈f101, f111〉: ABA
d. 〈f110, f111〉: AAB
e. 〈f111, …〉: AAA
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This latter fact is particularly interesting, since the last of these (column 11) is what 
Bobaljik (2012) finds empirically for suppletion in adjective gradation: ABA and AAB 
are unattested, but the other patterns are allowed. Our result means that the suppletion 
pattern of gradation isn’t predicted by any variation of the morphological assumptions we 
consider here – i.e. whether Pāṇini, Minimality or other similar conditions are assumed. 
However, Bobaljik also proposes to separate the component accounts of *ABA from *AAB 
in adjectival gradation, arguing that only *ABA is excluded by the logic of features and 
syncretism, and proposes an additional, syntactic locality condition to exclude *AAB (see 
also Bobaljik & Wurmbrand 2013).

5.3.2  Pāṇini
Before leaving the domain of three-cell paradigm spaces, we will consider the effect of 
one additional restriction, namely the idea that there is no extrinsic ordering of rules, and 
only Pāṇinian ordering. Each of the three valid, minimal feature inventories makes use of 
two basic overlapping features, and derives a third by using the intersection of those two. 
We showed above that reordering the rules has the effect of deriving syncretic patterns, in 
effect, by rendering the intersective feature redundant. The order in (31a) is equivalent to 
a system that uses only the two basic features, but not their conjunction.

We may consider imposing Pāṇinian-order-only as a restriction on valid sequences, 
corresponding to the hypothesis that grammars make use of only intrinsic, but not 
extrinsic, ordering of rules. Comparing the top and bottom halves of Table 3 allows us to 
evaluate the effects of this assumption, for three-celled paradigms.

One result which we find interesting is that for 3-cell paradigms, imposing Pāṇinian 
ordering has no effect on the total number of valid inventories. (This turns out to be 
different for 4-celled paradigms). We simply note this here, without further comment.

However, comparing the first line of each half of the table shows that imposing 
Pāṇinian ordering in addition to Minimality is a severe restriction. This constellation of 
assumptions has the effect that only the maximally distinct partition is describable (the 
leftmost column in Table 3). All three valid minimal inventories will derive that order and 
no other. Technically, intrinsic ordering does not restrict the relative order of f110 and f011, 
but since the conjunction will identify the middle cell, the remaining ordering is free (the 
two are non-distinct).

Since syncretism is abundant in paradigms of all sizes, imposing a Pāṇinian ordering, 
along with the other assumptions considered above, seems, in its combination with 
intersection, pathologically over-restrictive. Somewhat different results obtain if we do 
not assume that intersection is freely available, so we turn to that now.

5.4  Deriving *ABA in Intersection Free Systems
As we mentioned in section 3.2 above, assuming that intersection of features is available 
to rules of exponence accords with standard practice in morphological theory. Systems 
where the feature set is closed under intersection, combined with the assumptions of 
minimality and validity, yield tight restrictions on paradigm sets, including one that 
seems to be of special interest in current morphology and therefore we have focussed 
so far on systems with intersetcion. In this section we discuss what happens if we 
drop this requirement. In particular, we show that these allow a different route to 
derive a generalized *ABA constraint. Table 4 shows an overview of the possibilities 
for deriving the 16 valid partition sets for the three cell case when feature intersection 
isn’t available.
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One consequence of assuming that intersection is not available for morphological feature 
algebras is that a valid inventory must contain at least three features.22 This can be seen as 
follows: the minimally valid inventories with two features when intersection is available 
contain two features such as f110 and f011 which each contain two cells. But if intersection 
is not available, such a system cannot describe the maximally differentiated paradigm and 
thus is not valid. In this case, {f110, f011, f010} is available only as a three feature inventory 
– the feature f010 corresponding to the intersection of the other two features must be 
included explicitly.

Generally, any partition set that can be generated in a morphology that allows 
intersection can also be generated in an non-intersective one by explicitly adding the 
features intersection would derive. In the three-cell case, this relationship holds also in 
the reverse direction as the comparison of Table 4 with 3 shows: any partition set that 
can be generated non-intersectively can also be generated in a system with intersective 
closure.23

Returning to the *ABA constraint, and related considerations of restrictiveness, there are 
results that we believe should be of interest here. First, we note that admitting or banning 
intersection has no role on the overall impossibility of the four partition sets identified 
in section 5.3.1 as ungenerable. But rejecting intersection does make a difference in the 

	22	More generally, only an inventory that contains at least n different features can describe the maximally 
differentiated n-cell paradigm if intersection is not available.

	23	For n > 3, there can be partition sets that can be generated only in non-intersective systems. One such 
system for n = 6 is derived from the features f111100, f001111, f100000, f010000, f001000, f000100, f000010, f000001. This set of 
features cannot generate the pattern AABBCC, but its intersective closure can generate AABBCC.

Table 4: Table showing which 12 of the 16 logically possible three cell partition sets can be 
generated by feature inventories (not applying intersective closure) and by how many 
inventories. Partition sets related by cell permutation are grouped together.

32
Bobaljik

&
Sauerland

2 features, order – – – – – 1 1 1 – – – – – – – –
3 features, order 1 2 2 2 – 3 3 3 – – – 1 3 3 3 3
4 features, order – 1 1 1 – 3 3 3 – – – 3 2 2 2 14
5 features, order – – – – – 1 1 1 – – – 3 – – – 15
6 features, order – – – – – – – – – – – 1 – – – 6
7 features, order – – – – – – – – – – – – – – – 1
total with order 1 3 3 3 0 8 8 8 0 0 0 8 5 5 5 39
2 features, Pān

˙
ini 3 – – – – – – – – – – – – – – –

3 features, Pān
˙
ini 4 4 4 4 – – – – – – – 1 3 3 3 3

4 features, Pān
˙
ini – 3 3 3 – 1 1 1 – – – 3 2 2 2 14

5 features, Pān
˙
ini – – – – – 1 1 1 – – – 3 – – – 15

6 features, Pān
˙
ini – – – – – – – – – – – 1 – – – 6

7 features, Pān
˙
ini – – – – – – – – – – – – – – – 1

total Pān
˙
ini 7 7 7 7 0 2 2 2 0 0 0 8 5 5 5 39
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2 features, order – – – – – – – – – – – – – – – –

3 features, order 1 2 2 2 – 3 3 3 – – – – 3 3 3 –

4 features, order – 1 1 1 – 3 3 3 – – – 3 4 4 4 7

5 features, order – – – – – 1 1 1 – – – 3 1 1 1 12

6 features, order – – – – – – – – – – – 1 – – – 6

7 features, order – – – – – – – – – – – – – – – 1

total with order 1 3 3 3 0 7 7 7 0 0 0 7 8 8 8 26

2 features, Pāṇini – – – – – – – – – – – – – – – –

3 features, Pāṇini 4 4 4 4 – – – – – – – – 3 3 3 –

4 features, Pāṇini – 4 4 4 – 1 1 1 – – – – 4 4 4 7

5 features, Pāṇini – – – – – 2 2 2 – – – – 1 1 1 12

6 features, Pāṇini – – – – – – – – – – – 1 – – – 6

7 features, Pāṇini – – – – – – – – – – – – – – – 1

total Pāṇini 4 8 8 8 0 3 3 3 0 0 0 1 8 8 8 26
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definition of minimal valid inventories. In (the top half of) Table 3, where intersection is 
admitted, there are exactly three minimal valid inventories, which are linear permutations 
of one another, all of which derive a partition set with exactly three members. When 
intersection is not admitted, the number of minimal valid inventories increases to 
25. Even so, the system is restrictive: without the Pāṇinian restriction, only 10 of 16 
conceivable partition sets are generable.24 None of the minimal valid inventories generates 
the unrestricted partition set (the rightmost column in Table 4) and none generates the 
partition set that excludes only AAA (column 12). Note that that pattern is derivable from 
non-minimal feature inventories, as indicated in the table. Hence it is Minimality that is 
playing a key role in excluding that partition set.

In other words, we include the following among our results. Regardless of whether 
intersection is admitted, and regardless of whether Pāṇinian ordering is enforced, the 
assumption of Minimal Validity as a condition on feature inventories ensures the following:

(36) No minimal valid feature inventory for a 3-cell paradigm space includes all three 
bifurcations of the paradigm in its partition set.

These results amount to a generalization of the *ABA generalization up to linear permutation. 
A special case of (36) is the rightmost column of Tables 3 and 4: no minimal valid feature 
inventory generates an unrestricted partition set. The assumption of minimality always 
entails a restriction. Another special case is the implication that if any two bifurcations of 
the three-celled space are in the partition set of (minimal valid) inventory, then the third 
is not. Up to linear permutations of the cell orders, this is the *ABA generalization: if AAB 
and ABB are admissable paradigms, then ABA is not.25

6  *ABA – empirical considerations
Coming up out of the heady sea of numbers for air, we are now at a point to step back and 
ask whether the results of our investigation of the formal combinatorics of features has 
any bearing on the actual *ABA generalizations discussed in the literature. Our tentative 
conclusion is that some domains where a *ABA generalization is observed do not seem to 
conform to the profile of the minimal valid inventory (with intersection), while for others, 
the situation is less clear, and the minimal valid inventory, with overlapping features, 
rather than containment, seems to us to be a direction worth pursuing.

We opened this article with reference to the *ABA generalization in adjectival gradation, 
investigated extensively in Bobaljik (2012). We see no reason from the discussion here 
to think that it would be profitable to reanalyze that as arising from a minimal valid 
2-feature inventory. Doing so would invoke two privative features, one shared by the 
positive and comparative grade (but not the superlative), and another shared by the 
comparative and superlative, but not the positive. There is, however, fairly extensive 
evidence independent of patterns of suppletion for a containment relation in adjectival 
gradation: the superlative transparently contains the comparative in many languages.26 

Some examples are given here (from Bobaljik 2012:31):

	24	The Pāṇinian restriction without intersection restricts this further to 7 possible partition sets, as seen in the 
line “3 features, Pāṇini” in Table 4.

	25	Likewise, if AAB and ABA are permissible, then ABB is not, and if ABB and ABA are permissible, then AAB is 
not. As discussed in section 5.2, these three cases are mutually reducible by linear permutation of the cells 
and thus indistinguishable from *ABA.

	26	Recall that the inventory that respects containment is a minimal valid inventory if feature intersection is 
not permitted, as discussed in 5.4. As noted there, no inventory at all, not even the containment one, yields 
the actual profile seen in adjectival suppletion, where the partition set is exclusively {AAA, ABB, ABC} 
excluding both ABA and AAB.
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(37) pos cmpr sprl
a. Persian: kam kam-tar kam-tar-in ‘little’
b. Cimbrian: šüa šüan-ar šüan-ar-ste ‘pretty’
c. Czech: mlad-ý mlad-ší nej-mlad-ší ‘young’
d. Hungarian: nagy nagy-obb leg-nagy-obb ‘big’
e. Latvian: zil-ais zil-âk-ais vis-zil-âk-ais ‘blue’
f. Ubykh: nüs◦ə ç’a-nüs◦ə a-ç’a-nüs◦ə ‘pretty’

In addition, it is not at all obvious that it makes sense to consider adjectival degrees as 
grammatical features, in the way that, for example, classificatory elements such as gender 
are.

On the other hand, there are other domains in which *ABA generalizations have been 
observed, where there is less independent reason to think that the constituent elements 
are arranged in a containment relation.

One such domain, perhaps, is person. Vanden Wyngaerd (2016) sees a *ABA generalization 
in (plural) independent pronouns. Building on prior cross-linguistic investigations (Cysouw 
2003; Baerman et al. 2005), he observes that there are languages where first and second 
(plural) pronouns are syncretic, contrasting with the third person (such as Slave, in (38), 
from Cysouw 2003:124), and there are languages where second and third (plural) are 
syncretic, contrasting to the first person (as in the Nez Perce ‘unmarked’ pronouns in (39), 
Cysouw 2003), but virtually no good examples of syncretism of first and third person, 
contrasted with second.27

(38) sg pl
1 sį naxį
2 nį naxį
3 Ɂedį Ɂegedį

(39) sg pl
1 ’íin núun
2 ’íim ’imé
3 ‘ipí ’imé

Vanden Wyngaerd (2016) argues for a containment relation among the features that 
define person, as in the following:28

(40) a. 1st: [[[person] participant] author]
b. 2nd: [[person] participant]
c. 3rd: [person]

In our terms, this is (a linear permutation of) the inventory in (7): f100, f110, f111 and its 
properties are well understood. However, there are few, if any, languages in which such 
a decomposition of pronouns is transparently manifest in surface forms. As we have seen 

	27	In bound person marking (agreement) more patterns are attested, though of varying frequency (Cysouw 
2003; 2010; Baerman et al. 2005). The asymmetry whereby 1–3 syncretism is rarer than the other two 
combinations is generally supported in these studies: see Ackema & Neeleman (2013) for discussion, but 
see Chapter 1 of Harbour (2016) for important reservations.

	28	This is one of the current prominent views about the decomposition of person features in the literature; 
see for example: Sauerland (2008); Zeijlstra (2015). For contrasting views, see Bobaljik (2008); Ackema & 
Neeleman (2013); Harbour (2016).
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above, this inventory is valid, but non-minimal. A minimal valid inventory would be one 
that composes the three persons out of two privative features: f110 corresponding to the 
feature ‘participant’, and f011, which is in essence the privative feature ‘non-author’. On 
this alternative analysis, first and third person pronouns cannot be syncretic, excluding the 
second person, since they share no feature. Hence *ABA. Ackema & Neeleman (2013:905) 
offer an analysis in essentially these terms, motivated in large part by the patterns of 
syncretism. As noted above, Ackema and Neeleman’s approach to features treats them as 
functions that operate on a set of discourse referents, but the key point is the proposal 
that first and second person share a feature, as do second and third person, but first and 
third do not.29

In work in progress (see Sauerland & Bobaljik 2013) we are exploring the typology 
of syncretism in person feature inventories more broadly, drawing on the extensive 
data in Cysouw (2003), to determine what feature inventory assigns a high likelihood 
to a pattern like the observed partition sets, not just in plural pronouns, but in the 
full range of person marking systems, including clusivity distinctions. We may wager 
that if we are right to suspect a minimal valid inventory at work in the patterns of 
syncretism in the free-standing pronouns, then we will see that emerge as well in the 
larger study.

Before closing, we note as well that *ABA generalizations have also been noted in verbal 
inflection (Wiese 2008; Starke 2009), case (Caha 2009; Smith et al. 2016), and number 
(Smith et al. 2016). Of these, case is another domain in which there is little independent 
morphological evidence for containment relations, at least among ‘core’ cases.30

Pavel Caha (personal communication and to appear) calls our attention to at least one 
sub-part of the case hierarchy which appears to reflect the kind of feature structure we 
would expect on the approach taken here. Blansitt (1988) surveys the marking of the 
following four functions across the world’s languages: direct object, dative (recipient), 
allative (goal of motion), and location. Blansitt notes a generalization, exceptionless in 
transitive clauses, whereby no two functions are marked identically unless all intervening 
functions in the order just given are also marked identically. In other words, a *AB(B)A 
generalization. One way to approach this, following Caha (2009) (but see also Caha & 
Pantcheva 2012), would be to assume that there is a monotonic containment relationship 
among the features (we consider the last three for ease of exposition):

(41) a. f111 = dative
b. f011 = allative
c. f001 = locative

An alternative, following the approach laid out here, would be the minimal valid inventory 
in (42):

(42) a. f110 = dative
b. f011 = locative

	29	Ackema & Neeleman (2013: 925) note that there is a sense in this perspective in which the second person is 
the most “marked” person – the first and third are each defined by a single feature, while the second person 
is the intersection of two features. They suggest that evidence from the acquisition of agreement supports 
this view, inasmuch as second person agreement forms are often acquired last among the persons.

	30	Caha (2009); Smith et al. (2016) report some examples of, e.g., dative built on accusative, etc., but these 
are surprisingly rare, in contrast to, e.g., what we find with adjectival gradation. For spatial/locative cases, 
there is a much richer amount of transparent embedding; see Comrie & Polinsky (1998); Radkevich (2010); 
Pantcheva (2011). See Zompì (2017) however for other arguments that the dependent case hierarchy can 
profitably be understood in terms of containment.
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From this inventory, the allative can be described as the intersection of the other two 
cases. As Caha notes, Blansitt offers at least one language that seems to transparently 
reflect (42) rather than (41). Tigrinya prepositions include ne which marks dative 
(and some objects, presumably an instance of differential object marking, which quite 
commonly uses the dative, Bossong 1985) and locative ab. The allative is marked 
by the conjunction of the two: nab < ne ab. This is also broadly consistent with the 
results of Radkevich (2010) who found no evidence of a simple, monotonic transparent 
relationship among local cases as (41) might predict (although her survey also finds 
cases of portmanteaus and internally complex case morphology that are equally hard to 
reconcile with (42)).

7  Conclusion
In this paper, we introduced a notation for approaching feature logic from an algebraic 
perspective, abstracting away both from any empirical consideration and from any 
assignment of particular meanings to the features. Features are merely names for addresses 
(cells or groups of cells) in a list. In this way, we provided a calculus by which one can 
derive the paradigm set corresponding to any inventory of features, under varying sets 
of assumptions. This has two benefits. In the first place, we can investigate the formal 
properties of adding or subtracting individual assumptions, translating competing 
approaches into a common notation and working through the consequences at a formal 
level. The size of the partition set derivable from any inventory serves as a measure of 
restrictiveness—combinations of assumptions that decrease the number of partition sets 
are more restrictive.

We have shown a number of results that are, we hope, of potential interest regarding 
three-celled paradigms. One of these is that certain partition sets are indescribable—no 
inventory of features yields exactly these partition sets without further assumptions. This 
group includes the set that has only the maximally differentiated and undifferentiated 
partitions: AAA, ABC (column 5 in Tables 3 and 4), as well as the three that allow only 
one of the three bifurcations in addition.

Another result arises from the assumption that feature sets must be minimal. With that 
assumption, a variety of generalized *ABA-like constraints are derived, among which the 
actual *ABA generalizations appear to be a special case. From this basic result, further 
restrictions are obtained by adding in the assumption that intersection is permitted 
(reducing the space of possibilities from 25 inventories and 10 paradigm sets to 3 
inventories deriving 3 paradigm sets).

The effect of imposing Pāṇinian ordering as a condition on grammars (models) was also 
considered. With feature intersection, it proved overly drastic, excluding syncretism from 
the minimal valid inventories, but without feature intersection, the Pāṇinian restriction 
was weaker, excluding 3 of 10 paradigm sets admitted by intersection-free minimal valid 
inventories that incorporate the possibility of extrinsic order.

One specific result of interest to the study of *ABA generalizations is that the 
containment relationship among features, which is standardly invoked in accounts of *ABA 
generalizations in the literature turns out to be not only not the only type of inventory 
that can explain the generalization, but in fact, under the assumption that intersection is 
permitted, also not one of the minimal valid inventories.

In work in progress, we investigate additional extensions of the considerations presented 
here. In Appendix A, we begin the process of looking at larger paradigm spaces. As 
paradigms grow, the considerations become more intricate, but there may still be ways 
in which the minimal valid inventory stands as a contender for imposing restrictions that 
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map to observed typological generalizations. In Sauerland & Bobaljik (2013), we note that 
for the four-cell paradigm space corresponding to the first person (inclusive vs. exclusive 
× singular vs. plural), 9 of the 15 possibilities are indeed attested (Cysouw 2003). The 
four cell space can be described as two intersecting binary features, but that inventory is 
not minimal. Rather, using intersection, a more minimal inventory is the one containing 
the three features in (43) (and thus allowing the intersection of the first two in the rules 
of exponence):

(43) a. f0101
b. f0011
c. f1111
d. (f0101 ∩ f0011 = f0001)

While eschewing binary features, this yields a partition set that contains 9 of the B4 = 
15 logically possible partitions of the four cell space (this corresponds to the first line of 
the third block in Table A3). If we map the lists in the partition set to a binary table as 
in (24), we we may observe that this partition set contains partitions corresponding to 
horizontal and vertical syncretisms, but no diagonal syncretisms. In Sauerland & Bobaljik 
(2013), we reached the conclusion on independent grounds that this was the optimal 
analysis of the first person paradigm space, i.e., the inventory that yields the best fit to the 
observed distribution of paradigms as documented in Cysouw (2003), while minimizing 
the incidence of accidental homophony. We turn to more discussion of larger paradigm 
spaces in Appendix A, below.

Without probing deeper, we hope to have shown that the derivation of *ABA 
generalizations entertained here may indeed get off the ground in some domains, leaving 
for future work the fuller empirical investigation of this approach.

Finally, returning to the question we raised at the outset, we may step back even further 
and ask why UG might have the types of constraints it does. We are obviously far from an 
answer, but can add a few, very tentative remarks here.

To this point, we have assumed that it is reasonable to think that UG feature inventories 
respect a condition of Minimality, and have shown how this assumption restricts the 
hypothesis space to be considered in determining the actual feature inventory corresponding 
to paradigms of a given size. Minimality has a somewhat different flavour than some of 
the other restrictive assumptions we have entertained. In principle, one could think of 
this from a different perspective. Rather than imposing a condition of Minimality on 
inventories, one could imagine instead that the features are whatever they are, but that UG 
shows maximal use of the features it has. For a domain with two features, UG generates in 
principle a three-celled space: each feature on its own, plus their intersection. This builds 
in the assumption of minimality – and thus means that all true three-celled paradigms 
are those projected from the two-feature inventories, yielding the *ABA prediction (up to 
linear permutation).

This alternative (maximal use of minimal resources), implies that there should be no 
four, or five-celled paradigms. If there are two features (in a given domain) then the 
maximal paradigm in that domain will have three cells. If there are three features, then 
the paradigms generated will have 7 cells. The appearance of a four-celled paradigm in 
some domain then necessarily involves syncretism.

This concludes the discussion of 2 and 3-cell paradigm spaces, and the connection with 
the *ABA patterns. As an appendix, we turn to a rather less in-depth investigation of the 
effects of the assumptions here on larger paradigm spaces, notably 4-cell paradigms.
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