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Brazilian Portuguese exhibits word truncation: e.g., the word cruzeiro ‘cruise’ results in the 
truncated form cruza, where the vowel -a is added to the truncated stem cruz-. Gonçalves (2011) 
claims that truncated words preserve the onset of the rightmost syllable of the first binary foot. 
We argue from a corpus-based perspective instead that the truncated stem is better predicted 
by optimizing two opposing forces: original word recovery and phonological deletion. These 
are formalized and implemented as right-complete counts (RC) and left-complete counts (LC), 
based primarily on the analysis of blends and subtractive word formation in Gries (2006) and 
taking into consideration the informativity of the deleted material as well as the preserved 
material. Specifically, a model incorporating both RC and LC outperforms one that uses only 
one or the other, as well as prosodic models based on binary feet, in predicting truncated 
stems in Brazilian Portuguese. Beyond truncation, our model has implications for morpheme 
segmentation as well as the mechanics of morphological reanalysis.
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1  Introduction
Many languages exhibit truncation (or clipping), whereby a word is shortened, and 
considerable research is on the prediction of the truncated output of a given word 
(Kreidler 1979; 2000; Katamba 2005; López Rúa 2006; Gries 2006). This paper concerns 
Brazilian Portuguese, whose truncations Scher (2012) organizes into four different types 
(1). She mentions that truncation in Brazilian Portuguese is associated with an evaluative, 
appreciative reading, though, like her, we consider this semantic contribution of truncation 
to be beyond the scope of this paper.

Type 1 truncations are formed by taking the initial morpheme in the full form and 
deleting the following material; Type 2 truncations retain part or all of the root from 
the original full form, ending in a vowel from this original root; Type 3 truncations are 
similar to Type 2, with the difference being that the part of the root that remains ends 
in a consonant, followed by insertion of -a; Type 4 truncations are identical to Type 3, 
with the difference being that the inserted suffixal material is either -as or -(i)s. Except 
for Type 1, truncation may occur at an intra-morphemic point. This observation is central 
to a morpheme-agnostic perspective on truncation, which will become clear as the paper 
unfolds.
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(1) Four types of truncation in Brazilian Portuguese (Scher 2012)
a. Type 1: preserve first morpheme

i. psicologia, ‘psychology’ → psico
ii. odontologia, ‘dentistry’ → odonto

iii. fonoaudiologia, ‘speech therapy’ → fono
b. Type 2: preserve (part of) root

i. prejuízo, ‘loss (of money)’ → preju
ii. bijuteria, ‘bijou’ → biju

iii. depressão/deprimido, ‘depression/depressed’ → deprê
c. Type 3: preserve (part of) consonant-ending root and append -a

i. cerveja, ‘beer’ → cerv-a
ii. vagabunda, ‘slut’ → vagab-a

iii. cruzeiro, ‘cruise’ → cruz-a
iv. burgês, ‘burgess’ → burg-a

d. Type 4: preserve (part of) consonant-ending root and append -as/-(i)s
i. saudades, ‘homesickness’ → saud-as

ii. bermuda, ‘shorts’ → berm-as
iii. bobeira, ‘silliness’ → bob-(i)s

While truncation is not restricted to preserving initial material and deleting final material, 
this pattern forms the majority of truncation in English and other languages (Mattiello 
2013). This tendency is reflected in our data, where there were not enough examples of 
right-anchored truncation, or other types of truncations that preserve some intra-word 
material, for a thorough analysis of all forms of truncation. Dressler (2005) shows that the 
beginning of a word is more salient, which likely strongly influences the predominance 
of left-anchored truncation. Due to data limitations, we restrict the scope of our paper to 
only those truncations which preserve left-edge material and delete right-edge material.

In this paper we distinguish the two terms truncated form (TF) and truncated stem (TS). 
We refer to the entire word on the right side of the arrow in (1) as the truncated form, 
which comprises a truncated stem (TS), possibly plus a theme vowel: For example, in 
cerveja, the truncated stem is cerv- to which -a is suffixed (making it Type 3). Evidence 
for -a being suffixed in these truncation types, rather than being retained from the end of 
original word can be seen in (1c–iii) and (1c–iv), where the original words do not contain 
an /a/ segment – cruzeiro and burgês – yet the attested truncated forms contain a final -a: 
cruza and burga, respectively. For the scope of this paper, we consider this to be evidence 
that truncated forms can be derived from truncated stems by appending suffixal material, 
though we do not make any claims for whether this final -a is a morphological suffix or a 
phonological repair for illicit consonant-final words.

Our focus is to model the derivation of the TS from the original word (i.e., cerv- from 
cerveja), rather than the full TF (i.e., cerva). Note, however, that the TS and TF can be 
identical, as in the case of Type 1 and Type 2 truncations, where a word such as bijuteria 
(Type 2) derives the TS biju and the identical TF biju. For Types 3 and 4 where the 
TF differs from the TS, we assume the derivation of the TF to generally be handled 
via independent morphophonological processes operating on a derived TS, which 
may be connected to gender, such as the -o/a in amig-o/amig-a ‘friend’ or phonotactic 
restrictions, such as Portuguese word-final consonants being limited to -s and -r (as well 
as orthographic -l).1 As our approach does not make reference to a priori morpheme 

	1	Thanks to an anonymous reviewer for pointing out this phonotactic observation of Portuguese.
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boundaries, we do not make further distinction between the different types of truncation 
in Brazilian Portuguese.

Previous approaches to truncation in Brazilian Portuguese have either been phonological 
(Belchor 2006; 2009; Gonçalves 2006; 2009; 2011; Gonçalves & Vazquez 2004) or 
morphosyntactic (Scher 2011; 2012). Gonçalves (2011) is an example of the former, where 
there is a phonological process that drops part of the last foot of the original word, but 
preserves that foot’s onset. As Scher (2012) points out, this does not account for data such 
as the TF adrena from the original word adrenalina, where the onset of the last foot’s first 
syllable (the /l/) is not preserved. More generally, analyses that are strictly phonological 
have difficulty accounting for when onsets are preserved in a TS, resulting in a trisyllabic 
TF such as vagaba from vagabunda, and when they are deleted, resulting in a disyllabic 
TF such as cerva from cerveja. These theories by themselves do not distinguish when these 
onsets should be preserved or deleted during truncation.

Alternatively, Scher (2012) derives the TF of Type 3 and Type 4 words by decomposing 
the morphological structure of the original word. For example, she analyzes the TF 
cerva, from cerveja (1c–i), as having the following morphosyntactic structure: √cerv-ej-a. 
In her analysis, √cervej- is further decomposed by providing data that show that -ej- 
(along with -am- and -at-) are unrelated suffixes in other contexts – essentially a reanalysis 
account based strictly on phonological identity to another morpheme (not unlike the 
tongue-in-cheek English example history > his-tory > her-story).

While this presents a strict environment in which truncation in Brazilian Portuguese 
can take place, Scher’s account is problematic within the Distributed Morphology 
framework she utilizes, where Late Insertion prevents any phonological material from 
being visible within the same Spell Out domain. In other words, Scher’s analysis depends 
on morphological reanalysis based on homophony. However, phonological material in 
Distributed Morphology is not inserted into the structure until after (morpho) syntactic 
derivations have already happened. As such, nothing in the morphosyntactic structure 
should be sensitive to phonology prior to Vocabulary Insertion. Given this, it should not 
be possible in Scher’s approach for the morphosyntactic reconfigurations associated with 
reanalysis – i.e., insertion and projection of a new functional head within the noun – to be 
sensitive to phonological identity unless we claim that there is a word-internal Spell-Out 
domain (or phase).

We take a different approach, one that is based on segments (rather than larger prosodic 
units or morphemes) as well as generalizations induced from data distributions. Our 
approach models TS derivation as optimizing two opposing forces: maximal deletion 
and maximal recoverability of the original word. The speaker deletes as much of the 
original form as possible while ensuring that the hearer has enough material in the TS 
to successfully recover the original form. Under this model, vagabunda produces the TS 
vagab-, which is the point at which the most original phonological material has been 
deleted without overly hindering recovery of the original word; the potential TS *vagabu- 
can undergo further deletion, while the potential TS *vaga- has not preserved enough 
material to make the original word reasonably recoverable.

The two opposing constraints – deleting as much material as possible and maintaining 
ease of word recovery – are an extension of Gries (2006), who provides an analysis of 
subtractive word formation processes based on uniqueness points, the point of a word at 
which it can be uniquely identified from a set of candidate words, and recognition points, 
the point of a word at which a majority of speakers can recognize it with high probability. 
Similarly, recoverability of the original word from derived preserved material has been 
used in the analysis of blends (Gries 2004; Cook 2010): e.g., brunch from breakfast and 
lunch. However, while these models incorporate the idea of recoverability of the original 
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source word(s) based on their string similarity to the output word, they do not take 
into account optimization of deleted material in conjunction with the original word’s 
recovery. For Kemmer (2003), there is competition between recoverability and the 
prosodic similarity of the output word to its source word that is balanced in the process 
of blending. This input-output similarity, however, cannot be a motivating factor for 
deletion in truncation, as the output truncated form by definition must be phonologically 
and prosodically smaller than the original source form. Rather than motivating deletion 
as an indirect means of maximizing original word recoverability via preserving prosodic 
similarity, we view deletion of phonological material in truncation to be independently 
motivated as removal of substrings with low informativity. In the following, we show that 
a truncation model that incorporates both maximal deletion and maximal recoverability 
of the original word outperforms a model that has one but not the other.

While we treat each model of truncation, including approaches in previous literature, as 
being independent distinct models, we believe that a more complete analysis from original 
word to truncated form will be influenced by all the factors discussed within this paper 
as well as in the previous literature. For instance, phonotactic and morphological features 
can likely help to explain consonant cluster preservation and sensitivity to morpheme 
boundaries; concrete examples will be discussed in §5. However, we focus on the truncation 
tactics independently to demonstrate the strong influence recoverability and deletability 
have in truncation, when not augmented with other grammatical considerations. We leave 
a more comprehensive model of truncation for further research.

The remainder of this paper is organized as follows. In §2 we describe our methodology 
and the different models of TS prediction under consideration. In §3 we provide the 
results of each model on a gold standard list of nouns with attested TFs in Brazilian 
Portuguese and their evaluation in §4. In §5 we discuss why a truncation model that 
combines maximal word deletion and recoverability outperforms the other models 
under consideration, and provide a more general outlook on our work’s implications for 
morphological segmentation and reanalysis. We conclude in §6.

2  Methodology
In this section, we discuss our methodology – first by defining what right-completes and 
left-completes and their respective counts mean in our models, then by elaborating on 
our data source, and finally by outlining the seven models of truncation in Brazilian 
Portuguese that we construct and evaluate in this paper.

2.1  Right-completes and left-completes
We borrow and modify Gries’s (2006) concept of recovery points to predict the optimal 
truncation point of Brazilian Portuguese nouns with attested truncated forms. Central to 
our work is the notion of a complete of a string s:

(2) Complete of s: an entire word in a lexicon that can be formed by concatenating a 
string of symbols to a given string s. For example, if “abcde” is a word in the lexicon, 
then it is a complete of the string “abc”, as it can be formed by concatenating 
the suffixal string “de” to the given string, s, “abc”. Similarly, “abcde” is also a 
complete of the string “de”, as it can also be formed by concatenating the prefixal 
string “abc” to the given string “de”. For brevity, we use the term complete with 
the implicit understanding that it is always relative to a specific string s.

We further specify two types of completes: right-completes (R-completes) and left-
completes (L-completes). R-completes are the subset of completes that can be formed by 
concatenating a string to the right of a given string – e.g., words formed from attaching 
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suffixes. L-completes are the subset of completes that can be formed by concatenating a 
string to the left of a given string – e.g., words formed from attaching prefixes.

(3) Let a language L be a set of strings w:
a. The right-completes of a string p are the set RCp = {w ∈ L : ∃ s such that 

w = ps}. For instance, spree is an R-complete of “spr”, as it is formed by 
concatenating “ee” to the right of “spr”.

b. The left-completes of a string s are the set LCs = {w ∈ L : ∃ p such that 
w = ps}. For instance, spree is an L-complete of “ee”, as it is formed by 
concatenating “spr” to the left of “ee”.

Given the above definitions, we can define the R-complete count (RC) and the L-complete 
count (LC) as the following:

(4) a. R-complete count (RC): the number of R-completes in a lexicon for a given 
string

b. L-complete count (LC): the number of L-completes in a lexicon for a given 
string

Another way of thinking about RC and LC is that RC is the number of words in a lexicon 
that begin with a certain string, and LC is the number of words in a lexicon that end with 
a certain string. We note that this way of characterizing RC and LC makes them related 
to the much earlier work by Harris (1955) using successor and predecessor frequencies 
for word and morpheme boundary discovery. Our present work differs in that RC is the 
number of words that begin with a given string, whereas Harris’s successor frequency is 
the number of symbols (phonemes or letters) that begin a given string instead; the same 
contrast applies to LC in this paper and Harris’s predecessor frequency.

2.2  Data
Our data source comprises two main components. The first is a Brazilian Portuguese 
lexicon of about 750,000 word types (from a corpus of about 340 million word tokens).2 

The second is a set of 107 gold standard nouns with attested TFs that were pulled primarily 
from data in Scher (2012) and the appendix of Vilela et al. (2006), with additional data 
added from personal communication with a native speaker consultant. Proper names 
were excluded for the divergent and highly idiosyncratic possibilities in truncations (e.g., 
Elizabeth → Eliza, Liz, Beth, Betsy, etc.), as were the relatively few TFs that were not 
aligned with the left edge of the original word. Restricting ourselves to only considering 
left-aligned truncation is a practical matter, and we leave a more thorough investigation 
of more truncation types to future research.

All datasets were used as-is in their ordinary Brazilian Portuguese orthography, as 
the language has fairly high grapheme-to-phoneme correspondence (compared to, say, 
English). To be sure, some digraphs such as “ch”, “lh”, and “ss” have consistent grapheme-
to-phoneme mappings and could have been replaced. Also, there are graphemes such as 
“gu” (for /g/ or /gw/) and “c” (for /s/ or /k/) that might have been handled in some 
way. However, the issue of whether a more phonetic dataset or a more orthographic one 
should be used is not trivial. In addition, as we use large datasets (e.g., the lexicon with 
750,000 word types), there would be practical issues for how to, for example, efficiently 

	2	The Brazilian Portuguese lexicon with word frequency information is from https://github.com/hermitdave/
FrequencyWords. It is derived from a corpus of movie subtitles from http://www.opensubtitles.org/ – 
highly representative of the spoken language.

https://github.com/hermitdave/FrequencyWords
https://github.com/hermitdave/FrequencyWords
http://www.opensubtitles.org/
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replace “gu” with /g/ or /gw/ (which cannot be straightforwardly automated because of 
ambiguity) in a huge amount of words.3

2.3  The tested models
In this paper, we test various models of truncation against each other in order to 
determine which most accurately predicts the attested TSs in Brazilian Portuguese. The 
seven models tested are (i) the RC-only model; (ii) the LC-only model; (iii) the RC+LC 
combined model; (iv) the right to left binary foot model (binRL), following Gonçalves 
(2011), who observed that TFs in Brazilian Portuguese preserve up to the onset of the 
second syllable of the first binary foot, building feet from the right; (v) the left to right 
binary foot model (binLR), which predicts TSs to terminate before the second vowel from 
the left; (vi) the algorithm by Gries (2006); (vii) a baseline model by random sampling. 
The first two models only consider RC or LC independently, while the RC+LC model 
predicts TSs by looking at both RC and LC simultaneously. §3 further elaborates on the 
exact mechanics of these corpus-based models (the RC-only, LC-only, RC+LC combined, 
and Gries models). Below we discuss the two binary foot-based models as well as the 
baseline model.

2.3.1  The binRL model
The right to left binary foot model (binRL) is included as an implementable interpretation 
of Gonçalves (2011), as summarized by Scher (2012). This is the most charitable 
prosodic foot-based model that can account for both disyllabic and trisyllabic TFs in BP 
truncation. For instance, our gold standard list shows that both types of TFs are attested: 
cerveja → cerva (disyllabic); vagabunda → vagaba (trisyllabic). This variation between 
disyllabic and trisyllabic TFs presents a potential problem for a model that derives TSs 
from binary feet: If the feet are constructed from the left edge rightwards, however the 
rules or constraints are formulated, they will favor either a TS that results in a disyllabic 
or trisyllabic TF, but not both. This is because the feet on the left edge of the original word 
are created procedurally before any rightwards material, meaning that word length can 
have no effect on the leftmost feet.

The binRL model builds binary feet from the right edge of the word. It is able to derive 
either disyllabic or trisyllabic TFs by preserving all but the final rhyme of the first binary 
foot in addition to a potential defective non-binary foot on the left edge of the original 
word. In fact, this is the only way in which a model based on prosodic binary feet can 
derive both disyllabic and trisyllabic TFs. Consider how the TSs of the words baterista 
‘drummer’ and Bermuda ‘shorts’ are handled by the binRL and binLR models:

(5) binRL: disyllabic and trisyllabic TFs
a. baterista → (ba.te).(ris.ta) → predicted TS/TF = *bat/*bata

(actual TF = batera)
b. bermuda → ber.(mu.da) → predicted TS/TF = *bermud/*bermuda

(actual TF = bermas)

(6) binLR: only disyllabic TFs
a. baterista → (ba.te).(ris.ta) → predicted TS/TF = *bat/*bata

(actual TF = batera)
b. bermuda → (ber.mu).da → predicted TS/TF = berm/*berma

(actual TF = bermas)

	3	We have experimented with the arguably less controversial replacements for digraphs (ch → S, lh → L, 
nh → N, ss → s, rr → R), available as an option for all tested models of truncation in our code (footnote 6). 
The results bear no qualitative differences from those reported in this paper.
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As (5) shows, because the binRL model builds binary feet from the right, it is able to 
derive TSs that result in both disyllabic TFs (5a) and trisyllabic TFs (5b). In (5a), the 
leftmost foot (ba.te) is a binary foot, and so the cut is made before the vowel of the 
second syllable, resulting in the predicted TS bat. In the case of bermuda in (5b), the 
initial syllable ber is a defective non-binary foot, and so it is ignored; instead, the model 
looks to the leftmost binary foot (mu.da) and makes the cut before the vowel of the 
second syllable, resulting in the predicted TS bermud. Looking at (6), we can see that the 
binLR model is unable to predict any TSs except those that result in disyllabic TFs. This 
is because it builds binary feet from the left, and will thus always make its cut before 
the vowel of the second syllable of the word. In this case, it accurately predicts that the 
TS of bermuda is berm, but inaccurately predicts that the TS of baterista is *bat (attested 
TS is bater).

The binRL model makes a strange prediction about how disyllabic and trisyllabic 
TFs occur: In this model they are ultimately based on whether the syllable count of 
the original word is odd or even. Words with an even number of syllables will derive 
disyllabic TFs and those with an odd number of syllables will derive trisyllabic TFs. 
Crucially, this analysis does not reference word length in any way. This results in an 
undesirable prediction that the length of a TF should vary back and forth between having 
two or three syllables as its original word gains syllables.

2.3.2  The binLR model
While the binLR model is not based on any previous literature on truncation in Brazilian 
Portuguese, we included it to contrast the binRL model with another prosodic binary 
foot-based analysis of Brazilian Portuguese truncation that appears to correctly derive 
attested TSs with some degree of accuracy. The binLR model, then, essentially considers 
truncation that produces disyllabic TFs to be the default pattern, and successfully derives 
those cases, but has nothing to say about the trisyllabic TF cases. This would be somewhat 
analogous to formulating an elsewhere rule and assuming that the exceptions to this rule 
form a minority of the empirical data, and can be handled by more specific rules; only 
in our case, we have not included what these more specific rules that can account for 
trisyllabic TFs are within the binLR model.

2.3.3  The baseline model of random sampling
For the purposes of comparison, we implemented a baseline model based on random 
sampling of the true truncation points. For each word in the gold standard list, the 
normalized true truncation point was computed. For example, if the true truncation 
point for TS is after the second segment in a 10-segment word, then the normalized true 
truncation point is 2/10 = 0.2, where 2 is the length of the attested TS and 10 is the 
number of segments of the original word.4 The mean and standard deviation of all the 
normalized true truncation points were calculated, which are 0.57 and 0.12, respectively. 
For each word in the gold standard list, the truncation point predicted by random 
sampling is the mean of 10,000 random samples drawn from the normal distribution N 
(0.57, 0.122).

3  Results
In this section, we explain and discuss the results of the four corpus-based models: the 
RC- and LC-only models, the RC+LC combined model, and the Gries model.

	4	The implementation was based on a suggestion from a reviewer, for which we are grateful. We acknowledge 
that random sampling of this sort depends on the representativeness of the data, which could be improved 
in further work with a larger, more carefully collected list of gold standard words.
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For each word in our gold standard list, we calculated the RC and LC values for each 
potential stem, as described here. We considered every potential TS derived from iteratively 
deleting right-edge material. Given a non-truncated word of length n, all left-aligned 
substrings of lengths {1, 2, …, n – 1} are considered potential TSs. For each potential TS, 
we calculated its RC and LC. The RC is the number of words in the Brazilian Portuguese 
lexicon ending with the given potential TS, whereas the LC is the number of words in the 
lexicon that begin with what was deleted to form the given potential TS. For example, 
given a potential TS *vagabun from vagabunda, RC is the number of words in the lexicon 
that begin with the string vagabun; the corresponding LC would be the number of words 
that end with the string da. The results can be tabulated as follows for each word. The 
log-transformed counts are also provided due to highly skewed distributions in lexical 
statistics (cf. Baayen 2001).

In Table 1, the top row shows the original word, with the symbols comprising the 
attested TS in capital letters. For RC, the number in each column shows the RC value for 
each potential TS formed from the symbols to the left of and including the symbol heading 
that column. As can be seen in the column headed by “V”, there are 17,979 words in the 
lexicon that begin with the string v; there are 4,393 words that begin with the string va; 
315 beginning with vag; etc. LC values are the reverse: Starting from the right edge, there 
are 107,925 words in the lexicon that end with the string a, 11,171 that end with the 
string da, 1,019 with nda, and so on.

Plotting the log(RC) and log(LC) values provides a graph; see Figure 1. Starting from the 
left edge and moving rightwards, RC begins with a high value and declines as the potential 
TS gets longer. LC mirrors this: It begins with a high value on the right edge and declines 
moving leftwards as the potential deleted material gets longer. The number of words that 
contain a given string declines as that string gets longer. Put another way, looking left to 
right, the RC is monotonically decreasing and the LC is monotonically increasing.

For the RC- and LC-only models, the potential TS is calculated by finding the “elbow 
point” along the respective curves, or the point of maximal curvature where the 
maximum change of the curve occurs; this is computed as the point with the greatest 
second derivative value for each curve. For our purposes of modeling TS prediction, 
we interpret this point as one where original word recovery will begin to become more 
difficult proportionate to the greater number of possible RCs or LCs corresponding to that 
point. To be more concrete, consider the RC-only model: Looking at the raw RC values 
in Table 1, we can see that there are 8 possible words in the corpus that begin with 
vagabunda, meaning that the speaker can be fairly certain that the hearer can recover the 
original word based on this TS, as there are relatively few options. Deleting the final a 
results in the potential TS vagabund, which has 40 R-completes; the jump from 8 to 40 
is relatively minute on the scale of lexicon entries. What is more significant is the point 
at the symbol G, where the number of R-completes goes from 315 to 4,393 at the first 
A symbol. This increase is much more abrupt than those associated with the symbols to 
the right; one might expect a speaker only looking at RC to consider this the TS that best 

Table 1: RC and LC values for vagabunda.

V A G A B u n d a
RC 17979 4393 315 129 57 47 41 40 8

log (RC) 4.25 3.64 2.5 2.11 1.76 1.67 1.61 1.6 0.9

LC 2  2 2 12 28 137 1019 11171 107925

log (LC) 0.3  0.3 0.3 1.08 1.45 2.14 3.01 4.05 5.03
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optimizes deleting right-edge material without introducing too many possible words that 
the TS can be reconstructed as.

The log(LC) curve more or less mirrors the log(RC) curve in terms of general shape. 
Rather than representing the number of possible reconstructions of a potential TS, as 
RC does, the log(LC) curve represents the number of words that also end in the deleted 
material. Another way of looking at this is to say that RC provides a metric for the 
informativity of the preserved material while LC provides a metric for the informativity 
of the deleted material. As such, right-edge material that has a high LC value, such as the 
final a in Table 1 can be seen as relatively uninformative, as there are 107,925 words that 
end with that. Using the graph, then, allows us to predict the point where the optimal 
amount of right-edge material can be deleted. The elbow point of the log(LC) curve is 
exactly this point, where high-frequency material to the right of that point can easily be 
deleted, while the relatively more informative material to the left of that point will have 
greater resistance to deletion. For vagabunda (whose true truncation point is “b”, the fifth 
letter), both the computed RC and LC elbow points are “g” (the third letter).

For the RC+LC model, we consider both the log(RC) and log(LC) curves together 
instead of considering them separately. Rather than directly considering the elbow 
points of each curve to predict the TS, this model predicts the TS to preserve material 
from the left edge to the symbol that has the minimum difference between RC and 
LC. The symbol at which the minimum difference between RC and LC is attained is 
mathematically equivalent to the symbol closest to the intersection of the two curves. As 
can be visually identified in Figure 1, the RC+LC model predicts the letter “b” (closest 
to where the RC and LC curves intersect) to be the truncation point, which is also the 
true truncation point.

With the models based on RC and LC explained above, we are ready to introduce the last 
model implemented, which is the algorithm by Gries (2006) for estimating truncation (as 
observed in blends or truncations more generally). The Gries algorithm is similar to the RC 
model, as the latter is an adaptation of it, in terms of looking at every possible left-aligned 

Figure 1: Log-transformed R- and L-complete counts of vagabunda.
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TS and checking what the right-completes are for each potential TS. The crucial difference 
between the two models is that our RC model derives the predicted truncation point by 
the elbow point computation, as explained above, whereas Gries makes use of word token 
frequency information instead. To concretely illustrate Gries’s method, Table 2 shows his 
example of English agitation.

In Gries’s method, each potential TS is associated with its set of right-completes. These 
right-completes each have their word frequency information available. For each potential 
TS, we check the frequency rank of the original word in question (agitation here) among 
the associated set of right-completes. The method takes as the predicted TS (i.e., Gries’s 
“selection point”) the shortest potential TS where the original word is the most frequency 
word among the relevant right-completes. For agitation in Table 2, the potential TS “a” 
has 4,347 right-completes, with agitation ranking 595th among these right-completes for 
word frequency. As we consider longer potential TS, the number of the right-completes in 
question decreases while the original word remains in the set of right-completes and its 
frequency rank climbs. As Table 2 shows, the potential TS “agi” is the shortest one where 
agitation is the most frequent word among the relevant right-completes, and is considered 
the predicted TS in this method.

4  Evaluation
4.1  Overall accuracy
The basic evaluation metric of the seven models is to compare the percentage of TS 
accurately predicted by each model, as in Table 3 (the best result is bolded).

At first glance, we can see from Table 3 that while no model is perfectly accurate at 
predicting TSs, the relative accuracies are quite clear. The RC+LC model is the most 
accurate of all the models tested. Its accuracy of 43% is higher than the accuracy of 
37.4% for the baseline model by random sampling. Because accuracy is a rather crude 
measure, in that just one segment off from the true truncation point makes a predicted 
TS categorically wrong, we examine the TS truncation results in greater detail with more 
refined metrics in the following.

4.2  Distance errors
Beyond the cursory measure of accuracy, we use an array of more detailed metrics 
based on distance error, as defined below, for understanding the nuanced picture of TS 
predictions by the models:

Table 2: Type and token frequencies of words beginning with beginnings of agitation, based on 
Table 2 in Gries (2006: 543).

Potential TS Number of 
right-completes 

Frequency rank of 
agitation among 

these right-completes

a 4,347 595

ag 137 24

agi 12 1

agit 8 1

agita 8 1

agitat 8 1

agitati 3 1

agitatio 2 1

agitation 2 1
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(7) Distance error: the number and direction of symbols between the attested 
truncation point and the predicted truncation point.

Consider the example metaleiro ‘metalhead (fan of metal music genres)’ with the TS (and 
TF) metal. Table 4 shows the RC and LC values for metaleiro, whereas Figure 2 plots the 
log-transformed values.

In order to acquire a numeric value for the termination point (or length) of the attested 
and predicted TSs, we assign each symbol an integer equal to the length of the potential 

Table 3: Percentages of TSs accurately predicted.

Model % correct
RC 24.3

LC 24.3

RC+LC 43.0

binRL 25.2

binLR 32.7

Gries 21.5

Baseline 37.4

Figure 2: Log-transformed R- and L-complete counts of metaleiro.
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Table 4: RC and LC values for metaleiro.

M E T A L e i r o
RC 50090  8254  1104  387  88  4  3  3  2 

log (RC)  4.7  3.92  3.04  2.59  1.94  0.6  0.48  0.48  0.3

LC 1  1  7  26  98  1280  1767  6258 95398

log (LC) 0.0  0.0  0.85  1.41  1.99  3.11  3.25  3.8  4.98
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TS up to and including that symbol. For example, starting with 1 on the left edge (“M”), 
we can see that the attested truncated stem terminates at “L”, yielding a string of length 
5 (metal).

Using these string length values for each potential TS for a given word, we calculate the 
distance error, E, for each model, using the formula below:

(8) E = |TSx| — |TS0|

The distance error E is equal to the length of the attested truncated stem (|TS0|) 
subtracted from the length of the predicted truncated stem (|TSx|) for a given word. E 
carries both a sign and a magnitude. If E is positive, the predicted TS is longer than the 
attested TS; a negative E means the predicted TS is shorter instead. The magnitude of 
E is the number of symbols by which the lengths of the predicted TS and attested TS 
differ. As an example, Table 5 shows the distance errors for all possible TS of metaleiro 
(attested TS: metal).

Table 6 shows the attested and predicted TS and distance errors for each model for 
metaleiro.

As can be seen in Table 6, the TS prediction by both the RC+LC and baseline models 
has an E of 0. This means that both models tied as the most accurate models in predicting 
the attested TS for metaleiro, as they exactly predicted the attested TS. Compare this to the 
RC or Gries model, which has an E of 1, meaning that it predicts a TS one symbol longer 
(*metale) than the attested TS metal. The other three models all underpredict the TS, as 
can be seen by the negative E values.

We calculate the distance error in number of symbols between the predicted TS of all 
the models and the attested TS of each word in the gold standard list. Doing so allows 
us to look at the distribution of distance errors for each model, as in the boxplot in 
Figure 3.

Two intuitions follow from Figure 3. First, an accurate model will have distance errors 
centered at or around zero. Second, a consistent model will have densely distributed 
errors, as opposed to sparsely distributed, “spread-out” errors. These intuitions guide us 
through the interpretation of the error distributions. Eyeball examination of this boxplot 
suggests that the RC+LC model is the best, as its distance errors are the least spread out 
and centered around zero. While the boxplot provides a good visual comparison of the 
models’ performances, we would like to be able to compare them more quantitatively. For 
this, the models can be compared along two measures of accuracy: (i) the mean (μ), (ii) 
standard deviation (σ).

Table 5: E values for each potential TS of metaleiro.

M E T A L e i r o
|TSx| 1 2 3 4 5 6 7 8 9

E –4 –3 –2 –1 0 1 2 3 4

Table 6: E values for each model’s TS prediction for metaleiro.

RC LC RC+LC binRL binLR  Gries Baseline
|TSx| 6 2 5 3 3  6  5

E 1 –3 0 –2 –2 1  0 
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In order to determine whether or not a model biases towards underprediction or 
overprediction, we calculate the mean μ of all the distance errors of a model. A better 
model should have the mean closer to zero. The second measure we take into account 
is standard deviation, σ, a measure of the spread of the distance errors. In terms of our 
models, a low standard deviation means that the distribution has a small spread, and 
that most of the values lie closer to the mean point. On the other hand, a model with a 
high standard deviation value is one with a large spread. A model with a lower standard 
deviation is more desirable for consistency in making predictions.

With these evaluation metrics of model error, Table 7 shows the performance of the 
seven models tested in this paper. According to the evaluation, the RC+LC model 
is the best performing one in terms of overall accuracy (% = 43.0) and standard 
deviation (σ = 1.04). Although the binRL model appears to be the best with respect to 
overprediction/underprediction bias (μ = 0.02), the RC+LC model is very similar in 
this regard (μ = 0.04). Because the mean involves directly summing errors, it is affected 
by the sign of each individual E value, and thus reflects how much a model overpredicts 
or underpredicts TSs on average. A mean distance error of 0 may only tell us that the 
particular model is just as likely to predict a TS to be too short as it is to predict it to be 
too long.

5  Discussion
In this section, we elaborate in §5.1 on why the RC+LC model outperforms the other 
models of TS prediction under consideration. In §5.2, we discuss implications of our work 
for morphological reanalysis.

Figure 3: Error distribution of the seven models.

Table 7: Error evaluation.

RC LC RC+LC binRL binLR Gries Baseline
% 24.3 24.3 43.0 25.2 32.7 21.5 37.4
μ –0.12 0.30 0.04 0.02 –1.28 0.65 0.22 
σ 1.70 2.14 1.04 1.82 1.10 1.70 1.12 

%: higher is better μ: closer to 0 is better σ: lower is better
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5.1  Why right-completes and left-completes together work
Our results show that the RC+LC model is the most accurate among the tested models 
in predicting attested TS. The RC- and LC-only models respectively provide measures of 
optimal preserved material and optimal deleted material in truncation, and combining the 
two measures provides an intuitively – and testably, as we have shown – better result than 
considering either independently.

One way to interpret the underprediction of the RC model is that it is not the absolute 
value of the right-complete counts that matters, but their relative relationship to each 
other – specifically, the rate of change in their values. What this means is that while the 
curve’s elbow point may be the optimal point of truncation from the point of view of 
minimizing the number of words that begin with the same string as TS, it appears that 
this often does not preserve sufficient material for recoverability. Better recoverability is 
ensured when we also maximize confidence about how the string beginning with the TS 
will end. If this is the case, then the actual truncation point will occur to the right of what 
the RC model predicts, in order to further drive down the RC value and ensure hearer 
recovery of the original word. This could be what we are seeing for the RC model in terms 
of its negative mean value (underprediction).

Another reason RC tends to underpredict could be the fact that it does not take phonotactics 
into account. Because the RC, LC, and RC+LC models consider candidate truncated stems 
segment by segment, they can predict a truncated stem that splits a consonant cluster: 
RC+LC predicts the TS *buroc instead of burocr for burocrata ‘bureaucrat’. If there were 
a phonological preference to preserve consonant clusters – as is the case in English Pig 
Latin, for example, which derives ate-skay from skate rather than *kate-say – then we 
would expect fewer RC underpredictions. This is evidence that a more complete model 
of truncation needs to incorporate knowledge of phonotactics. Because the LC model is 
essentially the RC model in reverse, we expect that it should have a positive mean rather 
than a negative one. This is indeed the case, with μ = 0.30, meaning that the LC model 
tends to overpredict TSs.

It is also instructive to compare the results between the RC-only and LC-only models. In 
general, the LC model fares worse than the RC one, based on the measures of the mean 
error and standard deviation in Table 7. In other words, if one had to pick only RC or LC 
to pay attention to in truncation, then RC would be a better choice. This is reasonable, 
as the RC model is a measure of recovery. After all, if the original is not recoverable 
from a TS, then any pragmatic or semantic effect triggered by deletion is moot. Given 
that the beginning of words are more salient (Dressler 2005), this preference of recovery 
over deletion is likely to be an important factor in why truncation primarily preserves 
from the left and deletes from the right cross-linguistically (Mattiello 2013): If the left-
edge is asymmetrically more salient than the right edge of a word, then preserving the 
leftmost material of a word in truncation will independently maximize recoverability of 
the original.

Another aspect worth noting about comparing RC and LC is that, with respect to 
vagabunda in Figure 1, both the RC and LC models predict its TS to be *vag instead of the 
attested vagab. This suggests that optimizing RC and LC is not about balancing the two 
models by splitting the distance, so to speak, between their predicted truncation points. 
Optimizing between RC and LC does not depend as much on their individual elbow points 
as it does on where the two curves intersect.

The binLR model occasionally makes accurate predictions when the TF is bisyllabic, but 
consistently fails to capture the fact that not all truncation results in a bisyllabic form. 
Rather, it seems to be an analysis of the minimal possible TS, analogous to a minimal 
prosodic word requirement.
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Although the Gries model is the inspiration for the RC model, it tends to overpredict the 
TS (the RC model tends towards underprediction), with a positive μ (0.65). The reason for 
overprediction by the Gries model is potentially due to the fact that Brazilian Portuguese 
is inflectionally more complex than English (the language under study in Gries 2006), 
with many of these inflectional morphemes being suffixes. Because there are relatively 
more candidate word forms that share the same root but differ in suffixal material, 
the predicted TS within the word where the original word is sufficiently unique and 
recoverable tends to be longer. A relatively inflectionally robust language like Brazilian 
Portuguese has more word types that share the same root than a relatively inflectionally 
impoverished language like English; if these inflections are primarily suffixal, we expect 
to see a Gries-style model overpredict due to the existence of more candidate word types 
that share phonological material until the right edge of the word. The Gries model also 
makes use of word token frequency information, something that is important for avoiding 
issues associated with the pure use of word types for a language like Brazilian Portuguese 
with more complex inflectional morphology.5 Further research could possibly implement 
a model of truncation that takes into account the opposing influences of RC and LC, as 
well as the interaction of word token frequencies and word type ranks as Gries’s analysis 
does.

Finally, for the given dataset, the performance of the best model, RC+LC, is still far 
from being perfect. This is likely due to the fact that the RC+LC model is purely based 
on the segments, and does not have phonotactic and morphological knowledge at all. An 
examination of the nouns for which the RC+LC model made the incorrect TS predictions 
reveals that this is indeed the problem for quite a number of cases.

For instance, extraordinário ‘extraordinary’ has the attested TS (and TF) as extra, but 
was incorrectly predicted to have the TS *extraord- by the RC+LC model, an error that 
morphological information might have helped avoid. As it stands, the RC+LC model 
tends to disprefer a TS like “extra” due to the relatively high number of right-completes 
following a morphological prefix. Also, the complete ignorance of the consonant-vowel 
distinction as well as phonotactics has also led to other errors. The case of TS *buroc- for 
burocrata (attested TS: burocr-) discussed above is an example of incorrectly splitting a 
consonant cluster. Travesti with the predicted TS *trave- (attested: trav-) is an example 
where a better model of truncation would potentially benefit from a preference of making 
a cut immediately after a consonant rather than a vowel. Further research with the higher-
order goal of a more comprehensive model of truncation would likely have to address 
these issues.

5.2  Implications for morphological reanalysis
The goal of our model is to find the optimal truncation point within a given word. This can 
be alternatively seen as a model of morphological reanalysis: i.e., how do phonologically 
similar sequences within other words affect where a speaker creates an internal boundary 
within a word? Importantly, our RC+LC model makes no a priori assumptions about the 
internal structure of the words it looks at; it treats all word forms as being monomorphemic 
at the outset and decides where the optimal boundary should be.

Another characteristic is that unlike other computational models of morphological 
segmentation (see Goldsmith et al. 2017), our model of truncation does not assume 

	5	In our models involving RC and LC, it is the word types that are counted, and it is legitimate to ask if word 
token frequencies should be incorporated in these models. A variant of these models is available in our 
code (footnote 6) where each word type is not counted as 1 (by default) but as log(token frequency of that 
word type) instead; if this latter number is zero (log(1) = 0, for a word type whose frequency is 1), use 0.1 
instead. The results are not qualitatively different from those reported in this paper.
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morpheme consistency. It determines a single morpheme boundary independently for 
each word: If some substring X is predicted to be a(n optimal) subpart for a given word, 
then the identical substring X may not be considered an optimal subpart for another word. 
Instead, a morpheme boundary within a word can be created based on comparing it to 
other words in the lexicon, as the model is only looking at the segments of words. Our 
approach, then, can be interpreted as a way of potentially modeling reanalysis.

To see the connection between our work and reanalysis, we return to the analysis of 
Brazilian Portuguese truncation by Scher (2012) discussed in the introductory section 
of this paper. In Scher’s analysis, she implicitly assumes that reanalysis occurs based on 
phonological similarity. Consider the following words and their proposed morphological 
decomposition:

(9) a. cerveja, ‘beer’ > √cerv-ej-a
b. pijama, ‘pajamas’ > √pij-am-a
c. burocrata, ‘burocrat’ > √burocr-at-a

(cf. (20) in Scher 2012)

In each of the examples in (9), “the forms -ej-, in cerveja, -am- in pajama or -at- in burocrata 
are not supposed to be considered separate morphemic units in these words” (Scher 
2012). Scher proposes that speakers of Brazilian Portuguese are treating these pieces as 
derivational suffixes based on their surface similarity to other, independent derivational 
suffixes in the language: -ej is a diminutive suffix, -am is a collective suffix, and -at is a 
nominalizing suffix. Essentially, Scher is claiming reanalysis of a single morpheme into 
a new, decomposed morphological representation based on phonological similarity. She 
extends this claim to other phonological sequences as well, besides the three mentioned 
above: -un, -und, -ul, -ar, -et, and -ab.

By looking at RC and LC in this paper, we are able to provide strongly empirical motivation 
for Scher’s analysis of morphological decomposition in Brazilian Portuguese truncation. 
We have shown that the frequency of a string across the lexicon, as represented by our 
RC+LC model, has a significant influence on where a speaker might place a boundary 
within a word. In doing so, they may create a new morpheme boundary that shows up 
in reanalysis. Within this hypothesis, the English word alcoholic, which originally was 
morphologically parsed as alcohol-ic, might be reparsed as alc-oholic due to RC+LC type 
frequency effects. At some stage after this, speakers might identify these reanalyzed 
elements as alc-, ‘alcohol’ (this in itself may be sensitive to alcohol being the more frequent 
and/or salient right complete of alc-), and -oholic, ‘person addicted to X’. This in turn can 
lead to the newly reanalyzed suffix -oholic to be applied in novel constructions, such as 
shop-oholic.

6  Conclusion
When looking at several truncation strategies in Brazilian Portuguese independently, 
we have found that truncation is best modeled as optimizing original word recovery 
(minimizing the right-complete counts) and deletion of uninformative right-edge material 
(minimizing left-complete counts). We show that a model that considers both right- and 
left-complete counts together not only outperforms a model that only considers each (or 
a variant) independently, but also outperforms prosodic models based on binary feet. 
We take this to be evidence that frequency-based informativity should be incorporated 
into a complete theory of truncation, in conjunction with other phonological and/or 
morphological constraints.
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Our model of truncation is sensitive to the distribution of surface similarities between 
words, and is thus affected by the morphological composition of words. While the model 
itself is not a priori aware of morphological structure, it is sensitive to the presence of 
these morphemes indirectly through surface similarities, which may have implications 
for further work on models of morphological segmentation. Because this sensitivity to 
morphological composition of words in the lexicon is purely segment-based, our model 
allows independent homophonous morphemes to affect forcible (re)segmentation of a 
given form, allowing for potential morphological reanalysis of that form.

This paper highlights the importance of taking into consideration the effects of 
recoverability and deletability in truncation derivation. While the RC+LC model 
outperforms the other models, it is less than ideal as a general model of truncation 
prediction. An inclusive model that incorporates the RC+LC approach with prosodic and 
phonotactic information, as well as some knowledge of morpheme boundaries would be 
likely to significantly increase the accuracy of truncation prediction. Moreover, a natural 
area of further work is blending. While previous work on blends have incorporated 
recovery of original source words from preserved material in their analysis (Gries 
2004; Cook 2010; Lignos & Prichard 2015), they have not treated deletion as being 
independently motivated as our RC+LC model does. As such, our approach to truncation 
could be tested on other subtractive word-formation processes such as blending.

In the interest of reproducible and extensible research, we have made our complete 
software package (including all datasets of the lexicon and gold standard wordlist, as 
well as code for running all models discussed and evaluation results) publicly available 
to provide a basis for further research on truncation, extension to blending, and beyond.6

Our work has shown that linguistic strategies for word-formation likely involve speakers 
making inferential generalizations based on statistical knowledge. Specifically, it is 
desirable to model truncation as something that involves generalizations made about the 
entire lexicon. As the global linguistic knowledge, such as the lexicon, of an individual 
speaker changes with their experience, these inferential generalizations might also 
change; further research may reveal if this may lead to changes in linguistic phenomena, 
such as truncation, for a given speaker as a result. One of the greatest benefits to our 
perspective here is that it makes these potential variations and changes inherent in a 
person’s grammar, rather than assuming a static set of absolute rules. We do not draw 
a strong distinction between knowledge and use of language, especially for innovative 
linguistic processes such as truncation. Time will tell if the blurring or dissolution of this 
distinction holds for more conventional linguistic processes as well.

Abbreviations
binLR = left to right binary foot model, binRL = right to left binary foot model, 
LC = left-complete count, RC = right-complete count, TF = truncated form, 
TS = truncated stem
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