
RESEARCH

Determining underlying presence in the learning of
grammars that allow insertion and deletion
Alexandra Nyman1 and Bruce Tesar2

1 University of Massachusetts, Amherst, N408 Integrative Learning Center, 650 North Pleasant Street, Amherst, MA, US
2 Rutgers University, 18 Seminary Place, New Brunswick, NJ, US
Corresponding author: Alexandra Nyman (anyman@umass.edu)

The simultaneous learning of a phonological map from inputs to outputs and a lexicon of
 phonological underlying forms has been a focus of several research efforts (Jarosz 2006; Apoussi-
dou 2007; Merchant 2008; Merchant & Tesar 2008; Tesar 2014). One of the numerous challenges
is that of computational efficiency, which led to the investigation of learning with output-driven
maps (Tesar 2014). Prior work on learning with output-driven maps has focused on systems
in which the only disparities between inputs and outputs were segmental identity disparities
(differences in the value of a feature). Inclusion of segmental insertion and deletion disparities
exacerbates computational concerns, as it increases the number of possible correspondence
relations between an input and an output, and makes the space of possible inputs for a word
infinite due to the possible presence of an unbounded number of deleted segments. We propose
an extension of that earlier work to handle phonologies that permit insertion and deletion,
and evaluate the proposal by applying it to cases in Basic CV Syllable Theory (Jakobson 1962;
 Clements & Keyser 1983; Prince & Smolensky 2004). First, we propose that a learner represent
information about the possible presence/absence of a segment in an underlying form via a pres-
ence feature. The presence feature can be set using the same inconsistency detection method
that has previously been used to set other segmental features. This allows the learner to com-
bine evidence from paradigmatically related words in a single compact representation. Second,
we propose that the learner only consider for underlying forms segments that surface in at least
one surface realization of the morpheme. This approach is justified by the structure of output-
driven maps, and avoids the potential for an unbounded number of possibly deleted segments
in an underlying form. A proof is given for the validity of the method for avoiding unbounded
deletion. The resulting learner is able to learn some grammatical regularities about segmental
insertion and deletion; this is shown via two manual step-by-step applications of the algorithm.
Verificatory simulations for learning the entire typology of Basic CV Syllable Theory are left to
work in the near future.

Keywords: phonology; learning; Optimality Theory

1 Introduction
The simultaneous learning of a phonological map from inputs to outputs and a lexicon of
phonological underlying forms has been a focus of several research efforts (Jarosz 2006;
Apoussidou 2007; Merchant 2008; Merchant & Tesar 2008; Tesar 2014).1 One of the
numerous challenges is that of computational efficiency: how can a phonology be learned
using only a plausible amount of computational effort? Contributing to this challenge
is the vast quantity of possible lexica for even modest collections of underlying forms.
This fact led to the investigation of learning with output-driven maps, resulting in the

 1 References containing, at the end, the text “ROA-” are available for download on the Rutgers Optimality
Archive, http://roa.rutgers.edu/. The number after “ROA-” indicates the ROA number of the paper.

Glossa general linguistics
a journal of Nyman, Alexandra and Bruce Tesar. 2019. Determining underlying presence in

the learning of grammars that allow insertion and deletion. Glossa: a journal
of general linguistics 4(1): 37. 1–41. DOI: https://doi.org/10.5334/gjgl.603

mailto:anyman@umass.edu
http://roa.rutgers.edu/
https://doi.org/10.5334/gjgl.603

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 2 of 41

Output-Driven Learner (Tesar 2014). A key property of output-driven maps is that they
impose a kind of formal structure on the space of underlying forms that makes it possible
to search the space without needing to explicitly construct and evaluate all, or even most,
of the possibilities in the space.

Prior work on the Output-Driven Learner has focused on systems in which the only
 disparities between inputs and outputs introduced by the phonology were segmental
identity disparities (differences in the value of a feature). In particular, no segmental
deletion or insertion was considered. The present work proposes an algorithm for learn-
ing phonologies that permit insertion and deletion, using an approach that leverages
the structure of output-driven maps to contend with the additional challenges raised by
 insertion and deletion.

Two specific problems raised by insertion/deletion are tackled in this paper. The first
is that the surface form for an individual word does not overtly indicate which seg-
ments are present underlyingly, and which are inserted, let alone indicate the under-
lying presence of segments that have been deleted. How does the learner learn about
inserted and deleted segments? We argue that the integration of a presence feature into
the underlying representations of segments provides an answer. A learner uses the pres-
ence feature to represent their knowledge about the status of hypothesized segments in
an underlying form. For each segment of the surface realizations of a morpheme, the
learner constructs a corresponding hypothesized underlying segment in the underlying
form for the morpheme, with a presence feature that is initially unset. If the learner
determines that a hypothesized segment must be present in the underlying form, then
that segment’s presence feature is set to +presence. If the learner is convinced that a
hypothesized segment cannot be present in the underlying form, then that segment’s
presence feature is set to –presence. An unset presence feature indicates uncertainty on
the part of the learner as to whether the bearing segment is in fact part of the underly-
ing form. Ultimately, the addition of presence features to underlying segments allows
the learner to combine evidence from paradigmatically related words in a single com-
pact representation.

The second problem tackled in this paper is the potential for an unbounded number
of possibly deleted segments in an underlying form. If the number of such segments is
unbounded, then it is infeasible to pursue a simplistic strategy like explicitly representing
every possibly present segment in an underlying form, and evaluating the presence fea-
ture for every possible segment. The structure of output-driven maps makes the solution
proposed here possible, by ensuring that a segment can only be necessarily present in
an underlying form if it surfaces in at least one surface realization of the morpheme.
The learner can thus limit the hypothesized segments for an underlying form to the
 modestly sized set of segments that have been thus far observed in at least one surface
realization (and can add hypothesized underlying segments during the course of learning
if and when observation of new surface realizations suggests it).

The presence feature allows the learner to approach insertion and deletion in the same
way as other phonological phenomena. The same kinds of evidence and reasoning pre-
viously used in the learning of segmental features in underlying forms can be applied
to the learning of presence “features”, in turn allowing the learner to learn when and
where segments are deleted or inserted. It is important to note that the presence feature
is not being proposed as a phonological segmental feature in any traditional sense.
The presence feature, as proposed here, is strictly a representation constructed and
 utilized by the learner.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 3 of 41

2 Basic CV Syllable Theory
The illustrations given in this paper involve Basic CV Syllable Theory, abbreviated BST
(Jakobson 1962; Clements & Keyser 1983; Prince & Smolensky 2004). The version used
here derives from the Optimality Theoretic system developed by Prince and Smolensky,
while using correspondence-based faithfulness (McCarthy & Prince 1995) rather than con-
tainment-based faithfulness, and with the constraints against insertion conditioned simply
on the segmental type (C or V) of the inserted segment (rather than being conditioned on
what type of syllabic position they are in). This system has the virtues of being familiar
and simple. The phonological activity of BST consists largely of insertion and deletion,
lending itself to evaluation of the proposals of this paper.

In BST, an input is any string of the symbols C and V (C for consonant, V for vowel).
Possible outputs consist of syllabified C’s and V’s, where a syllable mandatorily has a
nucleus containing exactly one V, and may have an onset containing exactly one C, and
may have a coda containing exactly one C. No metathesis or multiple correspondence is
permitted. Input-Output corresponding segments must be of the same type: a C in the
input can only have a C as an output correspondent, etc.

The theory has five constraints, shown in Table 1: two markedness constraints and three
faithfulness constraints. Of the faithfulness constraints, Max is violated by instances of
deletion, and DepC and DepV are each violated by certain instances of insertion.

BST was the first Optimality Theoretic system to be studied with respect to learning
(Tesar & Smolensky 1994; Tesar 1995), but that was in a context in which underlying
forms were provided as part of the input, and the learner was only attempting to learn
the constraint ranking. Recent work on the simultaneous learning of constraint ranking
information and a lexicon of underlying forms has focused on systems that only have
identity disparities, where underlying segments may surface non-identically, but there is
no insertion or deletion. BST provides a convenient system for studying the complexities
of learning with insertion and deletion, while being simple in that it has no issues of iden-
tity disparities: an underlying C may only surface identically as a C, and an underlying V
may only surface identically as a V. Setting aside identity disparities in this way makes
the analysis simpler, but is not essential to the success of the presence feature proposal
given in this paper.

3 Output-driven maps
Recent work has demonstrated that the learning of phonologies, in particular the simul-
taneous learning of constraint rankings and underlying forms, can be greatly facilitated
if the learner knows that the phonological input-output map has a property known
as output-drivenness. The structure of output-driven maps is here shown to be just as
 valuable when learning is extended to include insertion and deletion.

Table 1: The constraints of Basic CV Syllable Theory.

Name Description

Onset A syllable should not lack an onset.

NoCoda A syllable should not have a coda.

Max An input segment should not lack an output correspondent.

DepC An output C should not lack an input correspondent.

DepV An output V should not lack an input correspondent.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 4 of 41

3.1 Output-drivenness
Output-drivenness (Tesar 2014) concerns entailment relations between different input-
output mappings in a map. Roughly stated, an input-output map is output-driven if
 whenever an input maps to an output, all other inputs with greater “similarity” to that
output also map to the same output.

A phonological map contains a set of representations, each representation relating an
input to an output. A particular input-output representation will be commonly referred to
as a candidate. It is often convenient to think of a map as a function, with one input-output
mapping for each possible input: any given map contains, for each possible input, one of
the many candidate input-output representations containing that input. Borrowing a sys-
tem for illustration from (Tesar 2014) involving stress and vowel length, a possible input
in that system is /paká:/, where the first vowel is unstressed (–stress) and short (–long),
while the second vowel is stressed (+stress) and long (+long). There are a total of eight
candidates containing that input, as shown in (1). Any phonological map for this system
would include one of the eight candidates for that input, along with one candidate for
each other input.

(1) The candidates for the input /pa:ká/
/paká:/ → [paká] /paká:/ → [páka]
/paká:/ → [paká:] /paká:/ → [páka:]
/paká:/ → [pa:ká] /paká:/ → [pá:ka]
/paká:/ → [pa:ká:] /paká:/ → [pá:ka:]

While candidates compete when they share the same input, the concept of similarity
behind output-driven maps actually concerns the comparison between different candi-
dates, which share the same output. Similarity is based on disparities. A disparity is a
specific difference between the input and the output of a candidate. The overall similarity
between an input and an output is expressed as the set of disparities between them. In the
stress/length system, the relevant disparities are identity disparities. An identity disparity
is a difference in the values of a feature for corresponding input and output segments.
The corresponding input and output segments are not identical, and the identity dispari-
ties identify the ways in which they are not identical (the features on which they differ).
The two candidates in (2) illustrate both identity disparities and relative similarity.

(2) Candidate b. has greater similarity than candidate a.
a. /páká/ → [paká:]
b. /paká/ → [paká:]

Candidate (2)b has one disparity: the second vowel of the input is –long [a], while the cor-
responding second vowel of the output is +long [a:]. Candidate (2)a has two disparities:
the same disparity in length between the second vowels, and a disparity in stress between
the first vowels (input first vowel is +stress, output first vowel is –stress).

The candidates in (2) have the same output, [paká:]. They differ only in their inputs.
Given that, we can relate the two candidates, based on the shared output form, and say
that the disparity in length in the second vowels of each of the candidates are identical
corresponding disparities. The disparities are identical because each has an input –long
vowel corresponding to an output +long vowel. The disparities are corresponding because
they involve the same segment of the same output, the second vowel of [paká:]. The
other disparity of (2)a (stress on the first vowels) has no corresponding disparity in (2)b.
Because every disparity in (2)a has a corresponding disparity in (2)b, (2)a is said to have
greater similarity than (2)b. Importantly, this similarity relation is not simply a matter of

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 5 of 41

having fewer disparities: the disparities of one candidate must effectively be a subset of
the disparities of the other. Every disparity in the greater similarity candidate must have
an identical corresponding disparity in the lesser similarity candidate.

Given that candidates must have the same output in order to possibly have a similarity
relation between them, the similarity relation can (to a large extent) be thought of as an
expression of the relative similarity that two different inputs have to the same output.
In (2), the input of (2)b, the greater similarity candidate, is “more similar”, or “closer”,
to the shared output than is the input of (2)a, the lesser similarity candidate. Relative to
the input of (2)a, the input of (2)b is a step closer to the output because the first vowel’s
stress has been changed to match the output, thus eliminating a disparity. Candidates with
greater similarity have inputs that are “closer” to the shared output in this relational,
subset-like sense of closeness.

The definition of an output-driven map invokes the similarity relation just described.
A map is output-driven if, for every candidate contained in the map, every candidate of
greater similarity is also part of the map. For the candidates in (2), if candidate (2)a is
part of a map, then candidate (2)b must also be part of that map. Put another way, if a
given input maps to an output, then all other inputs which are more similar to that output
must also map to that same output. If an output-driven map introduces several disparities
in mapping an input to its output, then that knowledge entails the output for numerous
other inputs (all those with greater similarity to the same output).

The best that a candidate can do with respect to input-output similarity is zero dis-
parities. Thus, if a candidate like /páká/ → [paká:] is included in a map, and the map
is output-driven, then it follows that the candidate /paká:/ → [paká:] is also part of the
map. Generally speaking, output-driven maps are idempotent: roughly speaking, if some-
thing maps to an output, then that output maps to itself.

The complete relative similarity relation for [paká:] is given in Figure 1. Each node of
the graph represents a candidate with output [paká:], and the input of the candidate is the
text shown inside the node’s oval. The figure is oriented so that higher in the graph means

Figure 1: The relative similarity relation for output [paká:].

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 6 of 41

greater relative similarity. The top node has the greatest similarity: it contains the input
that is identical to the output, with no disparities. The nodes in the next row down each
represent a candidate containing a single disparity. The bottom node includes the input
with the least similarity: every single vowel feature value (stress and length) differs from
its correspondent in the output. Each candidate has greater similarity than the candidates
below it in the figure, either directly below or via transitivity.

3.2 Insertion and deletion disparities
The problem addressed in this paper involves disparities that are not identity disparities,
but insertion disparities and deletion disparities. An insertion disparity is an output segment
with no corresponding input segment. The candidate in (3) has an insertion disparity: the
second vowel of the output has no corresponding segment in the input. The subscripts in
this and subsequent examples indicate input-output correspondents.

(3) /C1V2C3/ → [C1V2C3V]

A deletion disparity is an input segment with no corresponding output segment. The candidate
in (4) has a deletion disparity; the final consonant of the input has no corresponding seg-
ment in the output.

(4) /C1V2C/ → [C1V2]

The map in (5) illustrates output-drivenness with insertion and deletion disparities.
Note that all four of the candidates in (5) have the same output, [CV].

(5) An output-driven map with insertion and deletion disparities
a. /V2C/ → [CV2]
b. /C1V2C/ → [C1V2]
c. /V2/ → [CV2]
d. /C1V2/ → [C1V2]

In an output-driven map, the inclusion of (5)a in the map automatically entails the inclu-
sion of (5)b, (5)c, and (5)d in the map, as each of those has greater similarity than (5)a.
Candidate (5)a has two disparities: the final consonant of the input is a deletion disparity,
and the first consonant of the output is an insertion disparity. Candidate (5)b has an iden-
tical deletion disparity, but lacks the insertion disparity. Candidate (5)c has the insertion
disparity but not the deletion disparity, and candidate (5)d has no disparities at all.

In the map in (5), candidate (5)d has greater similarity than each of the other candi-
dates. Neither of candidates (5)b and (5)c has greater similarity than the other; each one
has a disparity that the other lacks.

3.3 Learning with output-driven maps
The structure of output-driven maps provides a great deal of power for phonological
learning, especially with respect to the learning of underlying forms for morphemes.
This power can be leveraged in learning approaches that make use of inconsistency
 detection to determine when the value of an underlying feature can be set (Tesar 2006;
Merchant 2008). A learner determines that a given feature of the underlying form for a
morpheme must be set to a given value if all possible underlying forms with a conflict-
ing value for that feature are inconsistent with what the learner already knows about the
grammar (a kind of process of elimination). The structure of output-driven maps greatly
accelerates the determination of inconsistency.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 7 of 41

Returning to the stress/length illustration from section 3.1, if the output [paká:] is gen-
erated by the grammar, then some input must map to it. The structure of output-driven
maps says that if any input maps to it, then the input with zero disparities must map to
it: /paká:/ → [paká:]. However, if a learner observes a particular word [paká:], they are
not guaranteed that the lexicon’s input for that particular word is /paká:/. One or more
of the underlying features might have different values for that word, and those values are
changed by the phonology to reach the output. The learner can determine which under-
lying feature values are necessary to reach the output by testing each one separately.
To determine if the length feature of the second vowel must be +long, the learner could
test all of the possible inputs that have a second vowel with the feature value –long, and
see if any of those could map to the output [paká:] via some constraint ranking consistent
with the learner’s ranking information. If none of those inputs can lead to [paká:], then
the correct input must have the second vowel +long. The feature value of –long has been
determined to be inconsistent, allowing the learner to set, in their lexicon, the value of
that second vowel’s length feature to +long.2 This approach requires determining that
all possible inputs with the second vowel +long be inconsistent. If that were to require
separately constructing and evaluating every possible such input, the computational cost
of the approach could become quite high. This is where the structure of output-driven
maps makes its contribution.

The structure of output-driven maps is, at its heart, entailment relations between candi-
dates: if A→X is in the map, then every candidate B→X of greater similarity must also be
in the map. Learning underlying feature values takes advantage of the logically equivalent
contrapositive form: if candidate B→X is not in the map, then any other candidate A→X
of lesser similarity also cannot be in the map.

In the illustration from section 3.1, because the target map is output-driven, the learner
can test the length feature of the second vowel by constructing a candidate with an
input which differs from the output, [paká:], solely on the value of the length feature of
the second vowel, /paká/. This input has only one disparity. The resulting candidate is
(2)b, /paká/ → [paká:]. If (2)b proves to be inconsistent with the learner’s current gram-
matical knowledge, then it cannot be part of the map being learned. Any other candidate
with an underlying value of –long for the second vowel will have that same disparity, plus
others. Candidate (2)a, /páká/ → [paká:], has lesser similarity than (2)b. In an output-
driven map, if (2)a is grammatical, then (2)b is also grammatical. The contrapositive
direction states that if (2)b is not grammatical (B→X is not in the map), then (2)a is also
not grammatical (A→X is not in the map).

The inconsistency of the single disparity candidate /paká/ → [paká:] obviates the need
for constructing or computing any of the possibly many other candidates with a value
of –long for the input second vowel such as (2)a, due to the greater internal similarity
of the single disparity candidate, combined with the structure of output-driven maps.
Thus, the single disparity candidate acts as a proxy for the many possible candidates
with the underlying value –long for the second vowel. If the single disparity candidate
is inconsistent, then all such candidates are inconsistent, and the learner has determined
that the underlying value of length for that vowel must be +long.

3.4 Contrast, alternation, and learning
When an underlying feature is determined to necessarily have a specific value, the
linguistic interpretation is that the particular instance of the feature is contrastive for
that environment. It is contrastive in that, if the underlying feature were instead given

 2 See (Tesar 2014) for further discussion of how inconsistency is detected computationally.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 8 of 41

a different value, then the resulting input would have a different surface realization.
In order for a learner to set a feature’s value with complete confidence, they must observe
that feature in an environment where it is contrastive, where the feature’s value makes a
difference in the surface realization of a word.

Setting the underlying value for a feature can lead to further information for the learner
when it is part of a morpheme that appears in multiple words. If the surface word [paká:]
discussed in section 3.3 consists of two morphemes, with the first syllable realizing
 morpheme r1 (“root 1”) and the second syllable realizing morpheme s4 (“suffix 4”), then
setting the underlying value of the length feature for the second vowel means setting it in
the underlying form for s4 (the phonological input for the word is constructed by concat-
enating the underlying forms of the morphemes of the word). This value of +long for s4,
set in the environment of the word r1s4, will then be carried into the learner’s analysis of
any other word containing the morpheme s4.

Observing a morpheme in a different environment is particularly informative if the set
feature is neutralized to the feature’s other value in the different environment. For example,
when suffix s4 is combined with a different root, r3, to form the word r3s4, with output
[páka]. The key point here is that, whereas s4 surfaced as [ká:] in word r1s4, it surfaces as
[ka] in r3s4. s4 exhibits a morphemic alternation, and in particular alternates with respect
to its length feature. Because the learner knows that s4 is underlyingly +long, it can
conclude that the length feature is being neutralized in word r3s4: the phonology is short-
ening the vowel of s4 in this context. That allows the learner to obtain non-phonotactic
ranking information: ranking information that requires evidence of disparities forced by
the grammar.

In this approach to learning, contrast indicates aspects of underlying forms that must be
faithfully preserved in a particular context, and alternation indicates aspects of underlying
forms that must be neutralized in a particular context. Both the faithful preservation and
the neutralization are the responsibility of the constraint ranking. Extending this approach
to linguistic systems involving insertion and deletion requires identifying instances of con-
trast with insertion and deletion, representing them appropriately in underlying forms,
and using those representations to uncover and interpret instances of insertional and
deletional neutralization.

4 The idealization of the learning situation
The idealized learning situation used in this paper posits that the learner receives gram-
matical word outputs, each in the form of a syllabified sequence of C’s and V’s. For each
observed output, the learner is provided with an indication of the morphemes making
up the corresponding word. Each segment of each output is labeled as affiliated with a
morpheme. Thus, for each output, the learner is provided with the information of what
morphemes make up the word, and which segments of the output are the surface realiza-
tion of each morpheme of the word.

The learner is also provided with some correspondence information between paradig-
matically related outputs. In previous work involving the Output-Driven Learner, this
information was entirely implicit. Because the only disparities considered were identity
disparities, every surface realization of a morpheme had the same number of segments,
and the learner “assumed” that the first segment of one surface realization corresponded
to the first segment of another surface realization of the same morpheme, the second with
the second, and so forth. If a morpheme surfaced as [ka] in one word, and as [ká:], the
learner infers that the same underlying segment is the input correspondent for [a] in the
first word and for [á:] in the second.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 9 of 41

Once insertion and deletion are introduced, morphemes can have surface realizations
of different lengths in different words. Under the present idealization, the learner is pro-
vided with an indication of which segments correspond to each other in different surface
realizations of the same morpheme. If a morpheme surfaces as [V] in one word and as
[VC] in another word, the learner is given the knowledge that the V in the first corre-
sponds to the V in the second; they are both the “same” segment, in this sense. Note that
this does not guarantee that the V has an underlying correspondent segment (it could be
an inserted V in both cases), but if the V in the first word has an underlying correspondent
(in the underlying form of the morpheme), then the V in the second word has the same
underlying correspondent. Similarly, there is no guarantee that the C in the second sur-
face realization does not have an underlying correspondent; it might well have one, but it
is deleted in the first word. See section 9.5 for further discussion.

The paradigmatic correspondence information just described is assumed to ultimately
result from the same paradigmatic morphological analysis, performed by the learner,
that is ultimately necessary for the learner to determine what morphemes are present in
which words in the first place. The present idealization side-steps the very complex topic
of how the learner performs such analysis to gain the information, and simply posits that
the information is provided. The research presented here aims to better understand how
such paradigmatic information could be effectively used by a learner to learn the under-
lying forms and the constraint ranking. How the learner arrives at that paradigmatic
 information is left to future research.

5 The presence feature
The learning algorithm for identity disparities was able to representationally distinguish
between underlying features for which the learner had committed to a specific value
and underlying features for which the learner had not (yet) made any such commitment.
If a similar learning strategy is to be applied to learning in the face of insertion and
deletion disparities, the learning algorithm must also be able to representationally dis-
tinguish between underlying segments for which the learner has committed to being
present/absent, and underlying segments for which the learner has no commitment
(the learner has not yet determined if the hypothesized segment is actually there in the
 underlying representation or not).

The proposal here is for the learner to use a feature-like representational structure,
called the presence feature. By making it a feature-like representational structure, the same
feature-setting strategy used for learning underlying feature values can be applied to the
learning of the presence feature, and thus the determination of which segments are actu-
ally present in the underlying forms. The current proposal is that the presence feature is
a representational device constructed and used by the learner for the purpose of learning,
and is not part of the linguistic theory itself. The presence feature is added to segments
that are contained in underlying forms and linguistic inputs.

5.1 Representing presence and absence
Each hypothesized segment explicitly represented in the input has a presence feature. If a
segment is set to +presence (present) in the input, this indicates that the segment must
be present underlyingly. If none of the other features (the regular phonological features)
have been set on that segment, that the learner has determined that a segment of some
sort must be there, but nothing about the segment’s phonological featural specifications.
If some of the phonological features have been set on the segment, then the value +pres-
ence indicates that a segment with those set feature values must be present at that loca-
tion in the input.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 10 of 41

If a segment is set to –presence (absent) in the input, this indicates that the segment
cannot be present underlyingly. Having a segment marked as –presence in an underlying
form serves to block the learner from hypothesizing that type of segment in that position
in response to other data.

A feature is unset if it has not been set to a specific value underlyingly. An unset feature
is denoted with a question mark (?) in place of the value of the feature. At a given point
in learning, a feature might be unset because the learner has not yet acquired the infor-
mation necessary to set the feature, or it might be unset because it is not contrastive in
any environment for the target language, so no information is forthcoming which would
justify setting it one way or the other. A chart summary of the notations for a presence
feature is given in Table 2.

The representation in (6) has two potential input segments: the first potential input
segment is a potential correspondent to the first output segment [C], and the second
potential input segment is a potential correspondent to the second output segment [V].
Both input segments have their presence feature unset; the learner is uncertain if either
segment is actually present in the correct input for the word.

(6) /(?,C)(?,V)/ → [CV]

In (7), the underlying consonant segment has been set to +presence. The learner has
committed to the presence of that segment in the input. The underlying vowel’s presence
feature has not been set.

(7) /(+,C)(?,V)/ → [CV]

In (8), the underlying vowel segment has been set to –presence. The learner has com-
mitted to the absence of that segment in the input. The effective candidate represented
is /C1/ → [C1V], meaning that the output consonant has an input correspondent, while
the output vowel is inserted.

(8) /(+,C)(–,V)/ → [CV]

5.2 Setting presence features
When a learner first starts learning underlying forms, it adjusts the underlying form
for a morpheme on the basis of the output forms of words containing that morpheme,
and in particular on the basis of the identified surface realization of that morpheme in
those words. Each segmental representation in the underlying form for a morpheme is a
 potential correspondent to an output segment in at least one of the surface realizations of
that morpheme.

All constructed input segments initially have their presence feature unset, just as all
other segmental features are initially unset. As described in section 3.3, the learner sepa-
rately tests each feature using inconsistency detection. For a given word, with a given

Table 2: Notations for the possible states of a presence feature.

Symbol Meaning
+ Segment must be in the input

– Segment cannot be in the input

? Unset

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 11 of 41

output, the learner has evidence that a feature must be set to one value if setting that
feature to its other value would force the word’s output to be something different from its
actual (observed) output. When a presence feature cannot have one value, the learner can
commit to the feature being set to the other value.

To foreshadow the illustration in section 8.2.2, suppose the learner observes a word
with a single morpheme, r1, surfacing as [V], and the underlying form for r1 is /(?,V)/.
The solitary potential segment in the input is the potential correspondent of the solitary
V in the output. An assigned value of +presence to the presence feature in r1 will clearly
be consistent: the resulting candidate is /V1/ → [V1], an identity candidate for an attested
output, which is guaranteed to be grammatical by output-drivenness. The underlying V
could be +presence; the learner will test to see if it must be +presence by testing the
value –presence. The test candidate, /(–,V)/ → [V], with no segments in the input, cannot
be optimal, as it will always lose to a candidate with no segments in the output. No rank-
ing of the constraints of BST will ever compel an entire inserted syllable. This detected
inconsistency tells the learner that, because the value of the presence feature cannot
be –presence, it must therefore be +presence, and the learner sets the corresponding
 feature in the lexicon to +presence.

As discussed in section 3.4, a feature can be set when it is contrastive. Here, the presence
feature is contrastive: if this particular presence feature were set to –presence instead,
a different output would result. Positing a presence feature on input segments allows
this general principle of feature setting to extend to the learning of presence vs. absence
of segments.

5.3 Learning deletion and insertion
As discussed in section 3.4, an underlying feature that has been set can reveal evidence of
neutralization if it surfaces unfaithfully in a different morphemic context. If an underlying
segment has been set to +presence, then a context in which it is unfaithfully realized
(does not surface) provides evidence of deletion. To neutralize a +presence segment is
to delete it.

If an underlying segment has been set to –presence, then a context in which it is
 unfaithfully realized (has a possible output correspondent) provides evidence of insertion.
While a bit counterintuitive, an output segment with a potential input correspondent set
to –presence is the way that an inserted segment is represented in this system. In essence,
it states that the output segment cannot have an input correspondent segment that is actu-
ally present in the underlying form, because if it were present, it would cause a different
word containing that morpheme to surface with the wrong output.

Features set to +presence create the opportunity for observing deletion; features set
to–presence create the opportunity for observing insertion.

5.3.1 Deletion
A segment can only be set to +presence in a context in which it has a realized output
correspondent (and is contrastive in that context). If the same morpheme appears in a
different context and that (+presence) segment does not have an output correspondent,
then the learner has direct evidence of neutralization in the form of segment deletion.
The learner can conclude that the segment in question has been deleted in the second
context, because it knows that the segment actually is present underlyingly as a result of
the first context. Identifying a concrete instance of deletion allows the learner to obtain
ranking information that forces the learner’s ranking to delete the segment in the latter
context, with the effect of also forcing deletion of analogous other segments in analogous
other contexts.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 12 of 41

To foreshadow the illustration in section 8.2.4, suppose the learner has already set two
presence features for morpheme r1, so that its underlying form is /(+,V)(+,C)/. The pres-
ence feature of the second segment, the C, was set on the basis of a word containing the
morpheme r1 in which that segment was contrastively present in the output. However,
the output of the word containing only the morpheme r1 is [V], and the corresponding
candidate is /V1C/ → [V1]. This candidate is necessarily grammatical, and the underlying
C is deleted. In this context, the C is neutralized; the same output would result whether or
not this C was present in the input.

5.3.2 Insertion
A segment can only be set to –presence in a context in which it does not have an output
correspondent (and is contrastive in that context). If the same morpheme appears in a dif-
ferent context and that (–presence) segment does have a potential output correspondent,
then the learner has direct evidence of neutralization in the form of segment insertion.
The learner can conclude that the segment in question has been inserted in the second
context, because it knows that there is no input correspondent for the segment as a result
of the first context. Identifying a concrete instance of insertion allows the learner to
obtain ranking information that forces the learner’s ranking to insert the output segment
in the latter context, with the effect of also forcing insertion of analogous other segments
in analogous other contexts.

To foreshadow the illustration in section 8.3.6, suppose the learner has already set the
underlying form for a morpheme r2 to /(+,V)(+,C)(–,V)/. The second V is set to –presence:
the learner is certain there is not a second V there in the underlying form. That presence
feature was set on the basis of a word containing the morpheme r2 in which that segment
was contrastively absent from the output. However, the output of the word containing
only the morpheme r2 is [V.CV], and the corresponding candidate is /V1C2/ → [V1.C2V].
This candidate is necessarily grammatical, and the second V of the output is inserted.
In this context, the second V is neutralized; the same output would result whether or not
the output V had an actual correspondent in the input.

6 The unbounded deletion problem
6.1 The problem
Allowing insertion and deletion expands the range of possible inputs for a learner to
consider for a given output. Different candidates for an output can vary in the number of
insertions and deletions they include. Since the output form has a fixed, finite number of
segments, the number of segments that could be inserted is at most the number of output
segments. This allows for exponential growth in the number of possible inputs as a func-
tion of the size of the output.

Deletion adds a greater degree of complexity. There is no fixed bound on the number of
input segments that can be deleted within a candidate, regardless of the size of the output
form. On its own, this results in a space of possible inputs that is infinite in size. Matters are
made more complex by the fact that the infinite space cannot be bounded simply through
inconsistency. In fact, in some circumstances the correct ranking will map each of an
infinite subset of the possible inputs to the same output: with respect to the ranking itself,
there are an infinite number of inputs that are equally good. Grammatical consistency
alone will not bound the size or number of inputs to be considered.

Consider a grammar in which codas are banned, and this restriction is enforced via
consonant deletion; the upcoming example in section 8.2 is such a case. Such a grammar
would have a ranking in which NoCoda and DepV both dominate Max. If such a gram-
mar admits a candidate like (9)a as grammatical, then it will also admit candidate (9)
b, where the input C is deleted (rather than putting the C in the coda of the preceding

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 13 of 41

syllable, or inserting a vowel after the C to create another syllable with C in the onset).
That grammar will necessarily apply the same deletion to multiple consonants that are
stacked at the end of the input (for identical reasons), so candidates like (9)c and (9)d will
also be admitted. There is no bound on the number of C’s that can be lined up at the end
of the input (following a solitary V), and all such inputs will map to the same output, [V].

(9) Unbounded deletion allows an infinite number of inputs to have the same output.
a. /V1/ → [V1]
b. /V1C/ → [V1]
c. /V1CC/ → [V1]
d. /V1CCC/ → [V1]

Figure 2 illustrates how the relative similarity relation for /V/ becomes unboundedly
large as deletion disparities increase. The top node, (9)a, has no disparities. In the second
row, each node contains a single deletion disparity; (9)b is illustrated as the third node
from the left. The third row of nodes illustrates how rapidly the amount of candidates
expands as deletion disparities increase; (9)c is illustrated as the fourth node from the
right. Because there is no limit to the amount of deletion disparities an output can have,
the final row illustrates unboundedness with ellipses.

6.2 Deletion and output-drivenness
As discussed in section 3, the structure of output-driven maps ensures that, if one candi-
date is in the map, then any other candidate formed solely by removing disparities must
also be in the map. Such a relationship holds among the candidates in (9): removing a dele-
tion disparity from candidate (9)c results in (9)b, and removing a deletion disparity from
(9)b results in (9)a, the candidate with zero deletion disparities. For any single output, for
any grammatical candidate with deletion disparities, there will be a candidate for the same
output (but different input) having no deletion disparities that is also grammatical.

More generally, output-drivenness gives us the result in Lemma 1.

Lemma 1: Suppose that a grammar defines an output-driven map, where input-output
correspondence is purely segment to segment, and individual input segments lacking out-
put correspondents constitute deletion disparities. Then for any grammatical candidate,
if the input contains a segment seg lacking an output correspondent, then the candidate
formed by removing seg from the input is also grammatical.
Proof: Follows directly from output-drivenness. The input segment lacking an output
correspondent constitutes a deletion disparity. Removing that segment from the input
removes one disparity, introduces no other ones, and has the same output. By output-
drivenness, that candidate is optimal.
End of Proof

Figure 2: The relative similarity order for unbounded deletion case.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 14 of 41

Under the conditions of Lemma 1, if a single output is considered in isolation, there will
be a grammatical candidate for that output with no deletion disparities, that is, no input
segments lacking output correspondents. That candidate could be described as “deletion-
ally minimal”, in that it minimizes the number of deletions in the candidate.

Lemma 1 can be generalized in a non-trivial way to underlying forms for morphemes.
To do so, we need to be sufficiently precise about what “success” is. The learner is engaged
in identifying a ranking of the constraints and a lexicon of underlying forms that “works”
for the language. A grammar works if, for any word of the language, the input constructed
by composing the underlying forms for the morphemes of the word is mapped (by the
constraint ranking) to the correct output for that word. Focusing on a single morpheme
target_morph, while leaving all other morphemes and the constraint ranking correct, an
underlying form uform_1 for target_morph “works” if, when included in the input for a tar-
get_morph-containing word, results in the correct output for that word.

For each word containing target_morph, the output segments affiliated with target_morph
constitute the surface realization of target_morph in that word. A candidate with the cor-
rect (observed) output and uform_1 as the underlying form for target_morph has an IO cor-
respondence between the segments of uform_1 and the surface realization of target_morph.
For a given word containing target_morph, any given segment of uform_1 either does or does
not have an output correspondent in the word, as determined by the IO correspondence.

For any given segment of uform_1, it either has an output correspondent in at least one
surface realization of target_morph, or it does not. Thus, it is coherent to identify a poten-
tial property of a segment of uform_1 as not having an output correspondent in any surface
realization. We will label that as the property of having no correspondent anywhere, and
commonly use seg_nca to denote a segment with that property.

Theorem 1: Suppose that a grammar defines an output-driven map, where input-out-
put correspondence is purely segment to segment, and individual input segments lacking
 output correspondents constitute deletion disparities. Suppose that a morpheme tar-
get_morph has underlying form uform_1, and that a segment seg_nca of uform_1 has no
 correspondent anywhere. Let the underlying form uform_2 be constructed by removing
seg_nca from uform_1. Changing the underlying form for target_morph to uform_2 will result
in each word containing target_morph having the same output as before.
Proof: The theorem follows from applying Lemma 1 to each word containing target_morph.
For any word word_tm containing target_morph, if uform_2 is substituted for uform_1 as
the underlying form for target_morph, then the fact that seg_nca has no correspondent
 anywhere entails that it has no correspondent in word_tm. Lemma 1 ensures that the input
with uform_2 substituted for uform_1 will have the same output.
End of Proof

Corollary 1: Under the conditions of Theorem 1, for any morpheme target_morph, there
exists an underlying form uform_corr that works, and has the property that each segment
present in uform_corr has an output correspondent in at least one of the surface realiza-
tions of target_morph.
Proof: By hypothesis, there exists at least one working underlying form uform for tar-
get_morph. If every segment of uform has an output correspondent, then adopt uform as the
value of uform_corr, and we are done. Otherwise, construct uform_corr by removing from
uform all segments that have no correspondent anywhere, as justified by Theorem 1.
End of Proof

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 15 of 41

A couple of clarifications are in order. Corollary 1 ensures that each segment of uform_corr
has an output correspondent in at least one surface realization of target_morph. It does not
ensure that there is a single surface realization that contains output correspondents for all
of the segments of uform_corr.

Corollary 1 also does not ensure that there is a unique uform_corr, or that any given
possible uform_corr necessarily has the fewest segments of any working underlying form.
For instance, consider a language where /V1/ → [CV1], that is, consonants are inserted
when necessary to ensure that syllables have onsets. For a monomorphemic word with
output [CV], both /CV/ and /V/ are working underlying forms, where /C1V2/ → [C1V2].
The underlying form /CV/ is clearly longer than /V/, but each input segment of /CV/ does
have an output correspondent in the word.

6.3 Limiting the range of underlying forms in learning
Corollary 1 guarantees that the learner can limit the range of possible underlying forms
to be considered. A crude argument to this effect is as follows. Given that the learner
observes only a finite amount of data, they can only observe a finite number of surface
realizations of any given morpheme. As each surface realization has a finite number of
segments, there are only a finite number of distinct segments across all of the observed
surface realizations of the morpheme. Because the learner only need consider segments
in the underlying form that might possibly correspond to a segment in one of the surface
realizations, the learner need only consider a finite number of possible segments in the
underlying form.3

The learner proposed in this paper exploits Corollary 1, and the structure of output-
drivenness behind it, to solve the unbounded deletion problem. It does so by adding a poten-
tial segment to an underlying form only if that segment could potentially have an output
correspondent for one of the surface realizations of its morpheme. The first time the learner
processes a word containing a given morpheme, it creates a lexical entry for that morpheme.
For each segment of the surface realization, the learner adds a corresponding potential
segment to the underlying form in the lexical entry. The learner does not commit to the
presence of any of the potential segments in the underlying form at this point (that was
discussed in section 5), but it does represent the possibility of having each such segment.

Subsequently, whenever the learner processes a different word containing the same
morpheme, it constructs the IO correspondence between the underlying form for the mor-
pheme and the surface realization of the morpheme in that word. If there is a new segment
in the surface realization that does not have an existing potential input correspondent in
the underlying form, then a new input segment is added to the underlying form as the
potential input correspondent for the new output segment.

Here is an illustration, taken from the learning example that will be presented in detail
in section 8.2. Specifically, this comes from the part of the example shown in section
8.2.3. A morpheme, r1, had been observed as a monomorphemic word, surfacing as [V].
The learner constructed an underlying form for r1, /(?,V)/, with a single segment in the input
that potentially corresponded to the V in the output. At that point, it was immediately able to
determine that the underlying segment must be present, and set the presence feature accord-
ingly, yielding the underlying form /(+,V)/ for r1. This state of affairs is shown in (10).

 3 This simple reasoning relies on the idealization that there is no coalescence. If multiple input segments can
correspond to the same output segment, then the number of distinct output segments does not necessar-
ily bound the number of input segments that need to be considered in such a simple way. Issues involving
coalescence and splitting are left for future research.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 16 of 41

(10) Morpheme r1: /(+,V)/
Word r1: /(+,V1)/ → [V1]

The learner then observes a different word, r1s1, which contains morpheme r1. The out-
put of r1s1 is [V.CV]. The morphemic affiliation information for the word indicates that
the first two segments of the output are affiliated with morpheme r1, and that the first
segment, V, is the same segment as the V in the output of the word r1. Thus, for the
surface realization [V1C2] of r1 in the word r1s1, V1 has an input correspondent (both
potential and actual) in the underlying form, but C2 does not currently have a potential
input correspondent. The learner at this point adds one to the underlying form, yielding
the underlying form /(+,V)(?,C)/. The result is depicted in (11).

(11) Morpheme r1: /(+,V)(?,C)/
Word r1s1: /(+,V1)(?,C2); (?,V3)/ → [V1.C2V3]

The learner has not yet committed to whether the C is present in the underlying form, but
if it is present, then it will correspond to the output C in the surface realization of r1 in
the word r1s1. That is what the subscript “2” indicates in (11): the C in the output has a
potential input correspondent, but it is not yet known if it is present, and thus an actual
input correspondent or not.

Once the additional potential segment is added to the underlying form, it is relevant
everywhere, including the previously processed word r1. The correspondence situation
for the word r1 no longer looks as it did in (10). Instead, it is now as shown in (12).

(12) Morpheme r1: /(+,V)(?,C)/
Word r1: /(+,V1)(?,C)/ → [V1]

In (12), the learner still isn’t certain if the C is present in the underlying form of r1 or not.
However, if the C is present underlyingly, then it is deleted in the word r1, because that
segment has no potential output correspondent in word r1.

The fact that the correspondence situation has changed for word r1 does not invalidate
the information obtained by the learner when r1 was previously examined by the learner.
This is because of output-drivenness. If the potential C in the underlying form of r1 ulti-
mately proves to be absent (set to –presence), then the learner is effectively in exactly
the same situation as it was earlier, with (10). If, on the other hand, the C ultimately
proves to be present (set to +presence), then it constitutes a deletion disparity in the
word r1. By output-drivenness, if /VC/ → [V], it automatically follows that /V/ → [V],
as a deletion disparity has been removed, and no other disparity has been added. Thus,
the mapping /V/ → [V] entertained earlier is still valid. This will always be true of a
potential underlying segment added in response to a later word; because the added seg-
ment has no potential output correspondent in earlier words (otherwise it would have
been included in the underlying form at the time), it will register as a potential deletion
disparity for the earlier words, and by output-drivenness any grammatical information
previously obtained for those words is still valid.

By attending to the structure of output-driven maps, the learner is able to solve the
unbounded deletion problem: it only need consider underlying form segments that poten-
tially have a correspondent in at least one observed surface realization of the morpheme.

6.4 Explicit vs. implicit non-presence
The learner uses a hybrid scheme for representing hypothetical segments which are not
present in an underlying form. Some such segments are represented explicitly, each as
a potential input segment with a presence feature set to the value –presence. Others are

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 17 of 41

only implicitly represented, through lack of any symbolic representational structure at all.
The split is not arbitrary. The non-present hypothetical segments that end up explicitly
represented have important differences from the non-present hypothetical segments that
end up implicitly represented.

In order for a potential input segment to be set to the value –presence, the segment must
have been posited in the input in the first place. The learner only posits a potential seg-
ment in the input on the basis of an output where there is an output segment that does
not yet have a potential input correspondent. A potential input segment set to –presence
entails the existence of an inserted output segment in at least one surface realization
of the morpheme: the output segment that was the basis for constructing the potential
input segment in the first place. Direct evidence of disparities, such as inserted segments,
have the potential to provide non-phonotactic ranking information: the constraint ranking
must be such that it forces the evidenced disparity.

A segment that is not explicitly represented in an underlying form has no potential
output correspondent in any of the words observed by the learner. Such a segment’s lack
of presence cannot provide evidence for non-phonotactic ranking information: it cannot
constitute a deletion disparity (it is not present in the input), and it cannot indicate an
insertion disparity (it has no potential output correspondent that is inserted).

In cases where unbounded deletion is possible, the overwhelming majority of possi-
bly deleted segments are completely uninformative, and the learner does not waste any
resources contemplating them. The possibly deleted segments that might be informative
are represented by the learner with potential input segments, and the set of such segments
is clearly bounded, both for an individual word and for a morpheme that appears in a
variety of words.

7 Overview of the learner
7.1 Overview of the learner
The learner presented here is based on the Output-Driven Learner (Tesar 2014), with
some modifications made to incorporate the proposals for contending with insertion
and deletion.

The learner’s first phase is phonotactic learning (Hayes 2004; Prince & Tesar 2004
and references therein). The learner observes entire output forms without knowledge
of the morphological constituency of the words. For each word, the learner constructs
a candidate with no disparities (the input is segmentally the same as the output) and,
in keeping with the structure of output-driven maps, concludes that the candidate must
be grammatical. The learner then determines what (if any) new ranking information is
needed to ensure that grammaticality of that candidate, and adds that information to the
learner’s support (its store of ranking information).

When processing a word, the learner tests each unset feature of the underlying forms of
the word, to see if any can be set. If a feature can be set, the learner (a) sets the feature
in its lexicon; (b) checks for non-phonotactic ranking information. The pursuit of non-
phonotactic ranking information consists of searching its memory of observed words,
looking for any words in which the morpheme containing the just-set feature alternates
with respect to that feature, that is, in which the just-set feature is neutralized to the value
opposite its underlying value. If such a word is found, then the learner checks it for fur-
ther ranking information, using essentially the same procedure as phonotactic learning,
but with the set features in the lexicon providing at least one disparity in the candidate
(any features unset in the lexicon are temporarily assigned values matching the surface
realization of the word being tested). The pursuit of settable underlying features and
non-phonotactic ranking information continues until the learner determines that it has a
grammar that successfully produces all of the observed words.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 18 of 41

7.2 Top-level outline of the Output-Driven Learner
A top-level outline of the Output-Driven Learner, upon which the present proposal is
based, is given in Figure 3. The learning examples presented in this paper only require
single form learning, so the use of contrast pairs (steps 4 and 5) will not be elaborated on
further in this paper. This outline also does not include reference to fewest set features,
which is proposed and discussed in Tesar (2014) but not referenced in the examples here;
see Tesar (2014) for extensive additional discussion of these topics.

The following subsections provide more detailed outlines of key parts of the Output-
Driven Learner, modified to explicitly reflect the handling of the presence feature.

7.3 Single form learning
Once phonotactic learning has completed, the learner gets knowledge of the morphemic
constituency of each word, including the morphemic affiliation of each segment of each
output form. The learner then starts processing morphologically analyzed words one at
a time, using a procedure labeled single form learning. An outline of single form learning is
given in Figure 4.

Whenever the learner encounters a new morpheme, it creates an entry in its lexicon for
that morpheme, with one underlying segment for each segment of the (just-observed) sur-
face realization of that morpheme. All presence features of all segments of the underlying
form are initially unset.

For present purposes, it is simply assumed that the learner is able to construct the correct
IO correspondence in step 3, based largely on the supplied information about morphemic
affiliation. Whenever the learner observes a morpheme in a new context, it constructs a
new IO correspondence and checks to see if there is an affiliated surface segment that did
not appear in any previously observed surface realization. If such a segment is identified,
then the learner adds a potentially corresponding input segment to the underlying form of
the morpheme. This implements the approach described in section 6.3. An example of this

Figure 3: Outline of the Output-Driven Learner.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 19 of 41

kind of segment addition to an existing underlying form occurs in the upcoming illustra-
tion of learning deletion in section 8.2.3.

7.4 Initial word evaluation
An outline of the procedure of initial word evaluation is given in Figure 5. This proce-
dure determines if the learner’s current grammar accounts for the word. To make this
determination, the procedure must contend with two kinds of uncertainty in the learner’s
grammatical information: uncertainty about the input, and uncertainty about the ranking.

The learner deals with uncertainty about the ranking by generating its “best guess”
ranking given the learner’s support of ranking information, which is computed by run-
ning Biased Constraint Demotion with a faithfulness-low bias (Prince & Tesar 2004).
This occurs in step 4 of Figure 5.

The learner contends with uncertainty about the input by taking advantage of output-
drivenness. In earlier work on the Output-Driven Learner, the space of possible inputs for
a word formed a finite lattice, such as the one shown in Figure 1. The viable inputs for
a word (those that did not contradict set features in the learner’s lexicon) always formed
a finite sublattice. The learner would construct the input corresponding to the bottom of
the finite sublattice. This input is sometimes referred to as the maximal mismatch input,
because every unset feature is temporarily assigned the value opposite its surface realiza-
tion in the word.

The learner then checks to see if the observed word is the sole optimum for the maximal
mismatch input with respect to the constructed ranking. If it is, then the grammar is cur-
rently accounting for the word, and is said to pass initial word evaluation; otherwise, it
fails initial word evaluation. This occurs in steps 5 and 6 of Figure 5. This approach works
because, by the logic of output-drivenness, if the ranking maps the maximal mismatch

Figure 4: Outline of single form learning.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 20 of 41

input to the correct word, then it must map every other viable input to the correct word
(because all of the other viable inputs are higher in the lattice, and thus have greater rela-
tive similarity). Because the learner’s current best guess ranking maps all of the viable
inputs to the correct word output, there is nothing further to be learned from that word
at that point.

That procedure, as described, requires modification when deletion is an option.
The reason is that the similarity relation is not bounded from below (as illustrated in
Figure 2), so there is no bottom element. However, if the learner (justifiably) restricts
their space of viable inputs to just those involving the potential input segments that they
have constructed in the underlying forms making up the input for the word, then a finite
space of viable inputs is quickly recovered. In the cases of BST considered here, the finite
space of viable inputs forms a lattice with a bottom element, the maximal mismatch
input. The construction of that is depicted in steps 2 and 3 of Figure 5.

7.5 Ranking information
The procedure outlined in Figure 6 is the standard one for pursuing ranking information
in the Output-Driven Learner, applied to the presence feature. Given a similarity relation
of viable inputs for the word, the learner selects the one at the top of the relation, the
input with greatest similarity to the output, what could be called the maximal match input.
For an unset presence feature of a segment, this involves assigning the value reflecting
the presence/absence of the segment’s potential output correspondent, as is depicted in
steps 2 and 3 of Figure 6.

The procedure check for ranking information is given a single word, and attempts to get
ranking information from it. The procedure non-phonotactic ranking information, shown in
Figure 7, searches the learner’s stored words for words which meet certain criteria, and
then calls check for ranking information on each of those words.

Figure 5: Outline of initial word evaluation.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 21 of 41

Step 5 of Figure 6 searches for an informative loser. The learner takes the input of the
winner and parses it with their constraint ranking. If the optimal candidate is not the win-
ner, then it is an informative loser; otherwise, the learner decides that it cannot find one.4

When a feature has been newly set, non-phonotactic ranking information is called spe-
cifically on the newly set feature. It looks specifically for words in which the newly set
feature is not realized, that is, words where a disparity is necessarily introduced with
respect to the newly set feature. For the presence feature specifically, if a potential input
segment is set to +presence, this procedure looks for words in which that segment does
not have an output correspondent (a deletion disparity). If a potential input segment is
set to –presence, then the learner looks for words in which the hypothetical segment’s

 4 See (Tesar 2014 and references therein) for details about the selection of informative losers and the
 computational properties of winner-loser pairs.

Figure 6: Outline of check for ranking information.

Figure 7: Outline of non-phonotactic ranking information.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 22 of 41

potential (but not actual) output correspondent does occur in the output (an insertion
disparity). In general, obtaining non-phonotactic ranking information requires grammat-
ical mappings with disparities.

8 Learning deletion and insertion
We will now see how the learner solves the problem of insertion and deletion with the
data they are given during learning. Section 8.1 outlines phonotactic learning and what
the learner can determine prior to consideration of morphemic identity. Section 8.2 is an
illustration of learning about deletion for a particular segment, while 8.3 is an illustration
of learning insertion for a particular segment. These examples will also demonstrate how
learning the value of the presence feature for these particular segments makes it possible
for the learner to obtain additional, non-phonotactic ranking information. In particular,
the non-phonotactic ranking information results in a grammar that more generally applies
deletion or insertion in the relevant contexts.

8.1 Phonotactic learning
The learning examples, in upcoming sections 8.2 and 8.3, involve different grammars
within BST. While the two grammars require different constraint rankings, one thing they
have in common is basic phonotactics: the languages for both grammars include syllables
with onsets and syllables without onsets, and syllable codas are not permitted. The raw
phonotactic outputs (that is, lacking any indication of morphemic affiliation) for both
languages include the basic word forms in (13).

(13) [V], [CV], [V.CV], [V.V]

The learner constructs a set of phonotactic ranking information from these outputs.
Because this learning is strictly phonotactic from the start, the learner assumes that the
input for [V] is identical to [V]. The learner then accumulates a list of winner ~ loser
pairs. A winner ~ loser pair consists of the targeted, grammatical output (the winner) and
an output that competes with that winner based on current grammatical knowledge (the
loser). The winner-loser pairs constructed from the observed form [V] are given in (14).

(14) Phonotactic ranking information

Word Input W~L Onset NoCoda Max DepC DepV
r1 V V ~ CV L e e W e
r1 V V ~ ∅ L e W e e

The symbol W marks constraints preferring the winner of the pair, the symbol L marks
constraints preferring the loser of the pair, and the symbol e indicates that the constraint
assigns an equal number of violations to the winner and loser. The W~L column indicates
the output forms for the winner (left of the tilde) and the loser (right of the tilde). The
symbol ∅ denotes a form (either input or output) with no segments. In (14), the first
winner-loser pair indicates that the candidate which surfaces faithfully as [.V.] must beat
the candidate in which a consonant is inserted into a syllable onset [.CV.], while the sec-
ond winner-loser pair indicates that the candidate which surfaces faithfully as [.V.] must
beat the candidate in which the input vowel is simply deleted, leaving nothing [∅]. Notice
that this grammar prefers the violation of Onset rather than the violation of both DepC
and Max. From this ranking information, the learner can use Biased Constraint Demotion
(BCD) to determine the most restrictive ranking consistent with the information (Prince &
Tesar 2004). The resulting constraint ranking is shown in (15).

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 23 of 41

(15) NoCoda ≫ {Max, DepC} ≫ Onset ≫ DepV

In the examples given in sections 8.2 and 8.3, phonotactic learning has resulted in the
ranking information shown in (14), and the examples continue from that point.

8.2 Learning example 1: Deletion
8.2.1 Learning data for example 1
The target language in example 1 allows syllables with and without onsets, but forbids
syllable codas. The ban on codas is enforced via consonant deletion. The grammar will
delete a consonant rather than allow a coda or insert a vowel to create a new syllable.

This example focuses on two morphologically-related words: the root r1 in isolation,
and root r1 combined with suffix s1. The words, with their outputs and morphemic affili-
ations, are shown in (16).

(16) Learning data for example 1

Word Output Morphemic Affiliation
r1 [V] r1: V
r1s1 [V.CV] r1: VC s1: V

The morphemic affiliation given for word r1s1 indicates that the first two segments of
the output, VC, are affiliated with r1; they constitute the surface realization of r1 in this
context. The final segment of the output, V, is affiliated with the suffix s1.

The data include one key morphemic alternation: r1 surfaces as V in one context, and
VC in another. Learning the grammar requires addressing two closely related matters:
determining if the underlying form for r1 includes the C that appears in r1s1, and deter-
mining if the constraint ranking results in consonant deletion in the bare root context or
results in consonant insertion in the suffixed context.

8.2.2 Processing word r1
Morpheme r1 is processed for the first time in word r1, surfacing as [V], so a new lexical
entry is created, with an underlying form containing a segmental representation for the
solitary segment [V] in the surface realization. The constructed underlying segmental rep-
resentation, /(?,V)/, has its presence feature unset. The other content of the segment, /V/,
matches the surface realization, [V], because in BST an underlying C cannot correspond
to a surface V.

(17) Example 1 lexicon after creation of an entry for morpheme r1
Morpheme Underlying Form

r1 /(?,V)/

The input for word r1 is the same as the underlying form for morpheme r1, and it has
exactly one unset feature. The learner proceeds to test the unset feature, to see if it can
be set. Because the segment is present on the surface in word r1, the structure of output-
driven maps ensures that adopting an underlying value of +presence for the feature will
be consistent: that would result in the input being identical to the output. The learner
tests the value of the feature that is opposite its surface realization: –presence. Because the
 segment in question is the only segmental representation in the input, assigning a value
of –presence to the feature is equivalent to using an input with no segments. The candidate
to be tested for consistency is shown in (18). The underlying segmental representation
that is the target of testing is emphasized in bold.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 24 of 41

(18) /(–,V)/ = ∅ → [V]

Figure 8 shows part of the relative similarity order for the word r1. In section 6.3, we
discussed how the learner considers candidates that have a potentially corresponding out-
put segment. Because the only surfacing segment for r1 observed so far is a single V, the
relevant similarity sublattice for [V] consists of the fully faithful input /V/ and the input
/∅/ with a single insertion disparity, as is illustrated by the solid line between /∅/ and
/V/ in Figure 8. The other nodes in the second row illustrate the candidates with single
deletion disparities for V, which are not currently relevant candidates for r1, and which
the learner does not consider. Therefore, the learner only tests /∅/ → [V] for consistency.

To test the candidate in (18), the learner selects, as an informative loser, ∅ → ∅, and
forms the winner-loser pair shown in the bottom row of (19).

(19) The candidate ∅ → [V] is inconsistent.

Input W ~ L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
∅ V ~ ∅ L e e e L

The result is inconsistency. While (19) shows the tested winner-loser pair (below the
thick black line) along with the learner’s support, in this instance the tested winner-loser
pair is inconsistent all on its own:5 while there are two constraints that prefer the loser,
there are no constraints that prefer the winner, so the highest-ranked constraint with a
preference will select the loser over the winner no matter how the constraints are ranked.
The hypothesized winner cannot possibly win.

The inconsistent candidate resulted from assigning the value –presence to the underly-
ing presence feature, and the inconsistency justifies setting the feature to +presence in
the lexicon, resulting in the lexicon shown in (20).

(20) Example 1 lexicon after feature setting for r1

Morpheme Underlying Form
r1 /(+,V)/

 5 It is equivalent to a trivially false elementary ranking condition (Prince 2002).

Figure 8: A partial similarity order for r1, surfacing as [V]. The dashed lines are to candidates
with single unmotivated deletion disparities. The learner need not bother with these (nor with
candidates having multiple unmotivated deletion disparities), and only tests the insertion
 disparity candidate, with input /∅/, connected by the solid line.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 25 of 41

Morpheme r1 does not alternate with respect to the presence feature (it surfaces with a
solitary V in every observed environment), so no non-phonotactic ranking information
can be obtained via this feature.

The data considered thus far (the word r1) do not warrant positing any other segments,
so feature setting for morpheme r1 is complete for now.

8.2.3 Processing word r1s1
Word r1s1 has output [V.CV], with morphemic affiliations of r1 = [VC] and s1 = [V].

The learner matches the lexical entry for r1 to the surface realization of r1 in r1s1. The V
of the underlying form for r1 is matched to the V of the surface realization, and then a
new segment entry is added to the underlying form of r1 for the C following the V in the
surface realization of r1. The added segmental representation is (?,C), with its presence
feature initially unset.

Morpheme s1 is observed for the first time in word r1s1, surfacing as [V], so a new lexi-
cal entry is created, with /(?,V)/. The result is the lexicon shown in (21).

(21) Example 1 lexicon after creation of an entry for morpheme s1

Morpheme Underlying Form
r1 /(+,V)(?,C)/
s1 /(?,V)/

The input for word r1s1 is the combination of the underlying forms for morphemes r1
and s1, /(+,V)(?,C); (?,V)/, where the semi-colon indicates the boundary between the
morphemes. The learner proceeds to test each of the unset features in turn.

First, the learner tests the presence feature for the second underlying segment of root r1.
Because the segment is present on the surface in word r1s1, the test value of the feature
is –presence. The other unset feature (the vowel of s1) is temporarily assigned the value
matching its surface realization, +presence. The candidate to be tested for consistency is
shown in (22), and the viable similarity relation is in Figure 9.

(22) r1s1: /(+,V)(–,C); (+,V)/ = /VV/ → [V.CV]

Because the presence feature of /V/ in r1s1 has been set to +presence, it remains a
 constant throughout the sublattice. In the top node, /V/ is accompanied by the other

Figure 9: Viable similarity relation for r1s1.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 26 of 41

segments that surface in r1s1. In the second row, each node contains a single insertion
disparity. The bottom node contains two deletion disparities, leaving the single set
 segment /V/.

The learner selects, as an informative loser, /VV/ → [V.V], and forms the winner-loser
pair shown in the bottom row of (23).

(23) The candidate /VV/ → [V.CV] is inconsistent with the learner’s support

Input W ~ L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
VV V.CV ~ V.V W e e L e

The result is inconsistency. The ranking requirements of the tested winner-loser pair con-
tradict the learner’s existing ranking information, as highlighted by the shaded cells in
(23). As a consequence, the learner sets the underlying value of the target feature to the
surface-matching value +presence in the lexicon, resulting in the lexicon in (24).

(24) Example 1 lexicon after first feature setting for r1s1

Morpheme Underlying Form
r1 /(+,V)(+,C)/
s1 /(?,V)/

Morpheme r1 does alternate with respect to the presence feature of its second segment.
This creates an opportunity for the learner to pursue non-phonotactic ranking information.

8.2.4 Non-phonotactic ranking information
Word r1s1 was the basis for creating a segmental representation of C in r1, and for set-
ting that segment’s presence feature to +presence. The learner now returns to word r1,
where the morpheme r1 surfaces without a corresponding C. The lexicon now requires
an input of /VC/, and the output for word r1 is [V]. Therefore, the candidate /VC/ →
[V] must be grammatical. The learner determines that /VC/ → [VC] is an informative
loser, forms a winner-loser pair, and adds it to the learner’s permanent support (ranking
information). This is not information generated for purposes of inconsistency detection.
The learner knows that this ranking information must be true, and adds it to the perma-
nent support.

The learner then determines that there is another informative loser, /VC/ → [V.CV],
and it forms another winner-loser pair, resulting in the support depicted in (25).
The non-phonotactic ranking information is given in the bottom two rows (the winner is
not identical to the loser in these pairs).

(25) Example 1 the learner’s support after obtaining non-phonotactic ranking
 information

Word Input W ~ L Onset NoCoda Max DepC DepV
r1 V V ~ CV L e e W e
r1 V V ~ ∅ L e W e e
r1 VC V ~ VC e W L e e
r1 VC V ~ V.CV e e L e W

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 27 of 41

The top node of Figure 10 is no longer a viable candidate for r1 because /C/ has been set to
+presence underlying. Because both /V/ and /C/ have now been set to +presence underly-
ingly, the other nodes for r1 are non-viable candidates. So, node /VC/ becomes the top node
of the viable sublattice by default, while the others are now diamond shaped and shaded.

(26) NoCoda ≫ {DepC, DepV} ≫ Max ≫ Onset

The first of the new winner-loser pairs, /VC/ V ~ VC, indicates that the grammar will
delete a consonant rather than allow it in a syllable coda, providing the explanation for the
lack of syllable codas in the language. The second of the new winner-loser pairs, /VC/ V
~ V.CV, indicates that the grammar will delete a consonant rather than insert a vowel to
allow the consonant into the onset of a following syllable. These two pairs together deter-
mine a general pattern of deletion. While learned on the basis of words r1 and r1s1, the
resulting grammar will apply this pattern of deletion generally in the language. The most
restrictive constraint ranking consistent with the learner’s support is given in (26).

At this point, there are no more informative losers available for the candidate /VC/ →
[V]. The learner then returns to the processing of unset features in word r1s1.

8.2.5 Resume processing of r1s1
At this point, the input for word r1s1 is /(+,V)(+,C); (?,V)/. The learner now tests the
unset presence feature for suffix s1. Because the segment is present on the surface in word
r1s1, the test value of the feature is –presence. The candidate to be tested for consistency
is shown in (27).

Figure 11 shows the same similarity relation for r1s1 as Figure 9, updated to reflect
the setting of the presence feature for the underlying C in r1, as was justified in (23).
The nodes that are now diamond shaped and shaded are such because they are now non-
viable. This is because they conflict with the learner’s current lexicon, which includes /C/
as +presence for r1.

(27) /(+,V)(+,C); (–,V)/ = /VC/ → [V.CV]

The learner selects, as an informative loser, /VC/ → [V], and forms the winner-loser pair
shown in the bottom row of (28).

Figure 10: Similarity relation for the ranking information of r1.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 28 of 41

(28) The candidate /VC/ → [V.CV] is inconsistent with the learner’s support.

Input W~L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
VC V ~ VC e W L e e
VC V ~ V.CV e e L e W
VC V.CV ~ V e e W e L

The result is inconsistency. In particular, the tested winner-loser pair directly contra-
dicts the second piece of the non-phonotactic ranking information, as highlighted by the
shaded cells. The non-phonotactic ranking information has made it possible to set the
underlying presence feature for suffix s1. As a consequence, the learner sets the underly-
ing value of the presence feature to the surface-matching value +presence in the lexicon,
resulting in the lexicon in (29).

(29) Example 1 final lexicon

Morpheme Underlying Form
r1 /(+,V)(+,C)/
s1 /(+,V)/

Morpheme s1 does not alternate, so no new non-phonotactic ranking information can be
obtained.

At this point, the learner has succeeded. The lexicon in (29) is sufficient, and in fact
every feature has been correctly set. The support in (25), and its corresponding constraint
ranking in (26), correctly map the inputs for both words to the correct outputs.

In particular, the learner has successfully determined that r1 has an underlying conso-
nant, even though it is deleted in word r1. Learning this required combining information
from the related words r1 and r1s1, and the persistent linking representation between the
two was the presence feature on the consonant for r1. Setting the C in the underlying form
of r1 to +presence enables to learner, upon reexamination of word r1, to see the that C
is deleted in word r1, and to obtain non-phonotactic ranking information indicating that
C’s must delete to avoid codas generally in the language.

Figure 11: Similarity relation for r1s1.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 29 of 41

8.3 Learning example 2: Insertion
8.3.1 Learning data for example 2
The target language in example 2 allows syllables with and without onsets, but forbids sylla-
ble codas. The ban on codas is enforced via vowel insertion. The grammar will insert a vowel
after a consonant to create a new syllable rather than allow a coda or delete a consonant.

This example focuses on four morphologically-related words: the root r1 in isolation, the
root r2 in isolation, and each of the roots combined with suffix s1. The words, with their
outputs and morphemic affiliations, are shown in (30).

(30) Learning Data for Example 2

Word Output Morphemic Affiliation
r1 [V] r1: V
r1s1 [V.V] r1: V s1: V
r2 [V.CV] r2: VCV
r2s1 [V.CV] r2: VC s1: V

The data include one key morphemic alternation: r2 surfaces as VCV in one context, and
VC in another. Learning the grammar requires addressing two closely related matters:
determining if the underlying form for r2 includes the final V that appears in r2, and
determining if the constraint ranking results in vowel deletion in the suffixed context or
results in vowel insertion in the bare root context.

8.3.2 Processing word r1
Morpheme r1 is processed for the first time in word r1, surfacing as [V], so a new lexical
entry is created, with an underlying form containing a segmental representation for the
solitary segment [V] in the surface realization.

(31) Example 2 lexicon after creation of an entry for morpheme r1

Morpheme Underlying Form
r1 /(?,V)/

The learner proceeds to test the unset feature of r1, to see if it can be set. The candidate
to be tested for consistency is shown in (32).

(32) /(–,V)/ = ∅ → [V]

The learner selects, as an informative loser, ∅ → ∅, and forms the winner-loser pair shown
in the bottom row of (33).

(33) The candidate ∅ → [V] is inconsistent.

Input W~L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
∅ V ~ ∅ L e e e L

The result is inconsistency. This is a repeat of the evaluation at the beginning of Example
1. The same winner-loser pair is inconsistent, for the same reason, with the same result:
the underlying presence feature for r1 is set to +presence, resulting in the lexicon shown
in (34).

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 30 of 41

(34) Example 2 lexicon after feature setting for r1

Morpheme Underlying Form
r1 /(+,V)/

Morpheme r1 does not alternate with respect to the presence feature (it surfaces with a
solitary V in every observed environment), so no non-phonotactic ranking information
can be obtained via this feature.

8.3.3 Processing word r1s1
Word r1s1 has output [V.V], with morphemic affiliations of r1 = [V] and s1 = [V].

The learner matches the lexical entry for r1 to the surface realization of r1 in r1s1.
Every segment of the surface realization has a matching possible segment in the
underlying form, so the learner adds no new segmental representations to the underlying
form.

Morpheme s1 is observed for the first time in word r1s1, surfacing as [V], so a new
 lexical entry is created, with /(?,V)/. The result is the lexicon shown in (35).

(35) Example 2 lexicon after creation of an entry for morpheme s1

Morpheme Underlying Form
r1 /(+,V)/
s1 /(?,V)/

The input for word r1s1 is /(+,V); (?,V)/. The learner tests the presence feature
for s1. Because the segment is present on the surface in word r1s1, the test value
of the feature is –presence. The candidate to be tested for consistency is shown
in (36).

(36) /(+,V); (–,V)/ = /V/ → [V.V]

The learner selects, as an informative loser, /V/ → [V], and forms the winner-loser pair
shown in the bottom row of (37).

(37) The candidate /V/ → [V.V] is inconsistent.

Input W ~ L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
V V.V ~ V L e e e L

The result is inconsistency. In BST, there is no grammatical mechanism to motivate
inserting an entire syllable, with no segments of the syllable having input corre-
spondents. As a consequence, the learner sets the underlying value of the target fea-
ture to the surface-matching value +presence in the lexicon, resulting in the lexicon
in (38).

(38) Example 2 lexicon after feature setting for s1

Morpheme Underlying Form
r1 /(+,V)/
s1 /(+,V)/

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 31 of 41

Morpheme s1 does not alternate with respect to its presence feature, so no non-phonotactic
ranking information can be obtained via this feature.

8.3.4 Processing word r2
Morpheme r2 is observed for the first time in word r2, surfacing as [V.CV], so a new
 lexical entry is created, with an underlying form containing a segmental representation
for each segment of the surface realization.

(39) Example 2 lexicon after creation of an entry for morpheme r2

Morpheme Underlying Form
r1 /(+,V)/
r2 /(?,V)(?,C)(?,V)/
s1 /(+,V)/

The learner proceeds to test the first unset feature of r2, to see if it can be set. The candi-
date to be tested for consistency is shown in (40).

(40) /(–,V)(+,C)(+,V)/ = /CV/ → [V.CV]

The learner selects, as an informative loser, /CV/ → [CV], and forms the winner-loser pair
shown in the bottom row of (41).

(41) The candidate /CV/ → [V.CV] is inconsistent.

Input W~L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
CV V.CV ~ CV L e e e L

The result is inconsistency. There is no grammatical motivation for inserting the initial
vowel. As a consequence, the learner sets the underlying value of the target feature to
the surface-matching value +presence in the lexicon, resulting in the lexicon in (42).

(42) Example 2 lexicon after setting the first feature of r2

Morpheme Underlying Form
r1 /(+,V)/
r2 /(+,V)(?,C)(?,V)/
s1 /(+,V)/

The first segment of morpheme r2 does not alternate with respect to its presence feature,
so no non-phonotactic ranking information is obtained at this time.

Next, the learner tests the second feature of r2, to see if it can be set. The candidate to
be tested for consistency is shown in (43).

(43) /(+,V)(–,C)(+,V)/ = /VV/ → [V.CV]

The learner selects, as an informative loser, /VV/ → [V.V], and forms the winner-loser
pair shown in the bottom row of (44).

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 32 of 41

(44) The candidate /VV/ → [V.CV] is inconsistent.

Input W~L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
VV V.CV ~ V.V W e e L e

The result is inconsistency. In particular, the tested winner-loser pair directly contradicts
the first piece of the non-phonotactic ranking information, as highlighted by the shaded
cells. As a consequence, the learner sets the underlying value of the target feature to the
surface-matching value +presence in the lexicon, resulting in the lexicon in (45).

(45) Example 2 lexicon after setting the second feature of r2

Morpheme Underlying Form
r1 /(+,V)/
r2 /(+,V)(+,C)(?,V)/
s1 /(+,V)/

The second segment of morpheme r2 does not alternate with respect to its presence
 feature, so no non-phonotactic ranking information is obtained at this time.

Next, the learner tests the second feature of r2, to see if it can be set. The candidate to
be tested for consistency is shown in (46).

(46) /(+,V)(+,C)(–,V)/ = /VC/ → [V.CV]

The learner selects, as an informative loser, /VC/ → [V], and forms the winner-loser pair
shown in the bottom row of (47).

(47) The candidate /VC/ → [V.CV] is consistent.

Input W~L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
VC V.CV ~ V e e W e L

The result is consistent. All three winner-loser pairs in (47) are consistent with the
constraint ranking shown in (48). Furthermore, under that ranking, the candidate in
(46), /VC/ → [V.CV], is optimal: it is more harmonic than all of its competitors, not just
the loser /VC/ → [V]. The learner is not guaranteed that the final winner-loser pair in
(47) is correct, or that the ranking in (48) is correct. The learner only knows at this point
that they are possibilities at this stage, because they are consistent with the learner’s cur-
rent knowledge of the target grammar.

(48) {NoCoda, Max, DepC} ≫ {Onset, DepV}

Because setting the presence feature of the final V to –presence, i.e., omitting the final V
from the input, is consistent, the learner cannot be sure if that final V is part of the input
or not, so the presence feature is not set. However, the segment, with its unset presence
feature, remains part of the underlying form for r2; it is the potential input correspond-
ent for the final vowel of the surface realization of r2 as a word, and other evidence may

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 33 of 41

help determine the value of its presence feature. Thus, the learner’s lexicon remains as
depicted in (45).

8.3.5 Processing word r2s1
Word r2s1 has output [V.CV], with morphemic affiliations of r2 = [VC] and s1 = [V].

The learner matches the lexical entries for r2 and s1 to the surface realization. One
aspect of the matching isn’t fully obvious: does the final V of the output get matched to
the necessarily underlying V of s1, or the potential V at the end of r2? A full discussion of
this would involve how morphemic segmentation is computed and learned, which is out-
side the scope of this paper. Here, we will simply take it that the learner has determined
that the suffix is in fact realized on the surface here. None of the output segments lacks
a potential input correspondent, so none of the lexical entries are immediately modified,
and the lexicon is still as was depicted in (45).

The input for word r2s1 is currently /(+,V)(+,C)(?,V); (+,V)/. The relative similarity
relation for r2s1 is shown in Figure 12. The learner tests the sole unset presence feature
in the input: the final segment of the underlying form of r2. Because the segment
does not have a surface correspondent in this word, the test value of the feature is
+presence. The candidate to be tested for consistency is shown in (49).

(49) /(+,V)(+,C)(+,V); (+,V)/ = /VCVV/ → [V.CV]

All underlying forms that have output correspondents for r2s1 have segments that have
been set to +presence. Because /?V/ in morpheme r2 has surfaced in another context, the
learner posits it as a deletion disparity here by testing it as /+V/.

The learner selects, as an informative loser, /VCVV/ → [V.CV.V], and forms the winner-
loser pair shown in the bottom row of (50).

(50) The candidate /VCVV/ → [V.CV] is inconsistent.

Input W~L Onset NoCoda Max DepC DepV
V V ~ CV L e e W e
V V ~ ∅ L e W e e
VCVV V.CV ~ V.CV.V W e L e e

The result is inconsistency. In particular, the tested winner-loser pair directly contra-
dicts the second piece of the non-phonotactic ranking information, as highlighted by
the shaded cells. As a consequence, the learner sets the underlying value of the target
feature to the surface-matching value –presence in the lexicon, resulting in the lexicon
in (51).

Figure 12: Relative similarity relation for r2s1.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 34 of 41

(51) Example 2 lexicon after setting the third feature of r2

Morpheme Underlying Form
r1 /(+,V)/
r2 /(+,V)(+,C)(–,V)/
s1 /(+,V)/

8.3.6 Non-phonotactic ranking information
Word r2s1 set the presence feature of the second V (the final underlying potential segment)
of r2 to –presence. Morpheme r2 alternates with respect to the presence of a second V, as
the morpheme surfaces with a second V in the word r2. For that reason, the learner now
returns to word r2. The lexicon now requires an input of /VC/, and the output for word
r2 is [V.CV]. This is illustrated in Figure 13, which shows the similarity relation for word
r2. Now that the final input /V/ has been set to –presence, the top node of the similarity
relation for r2 is no longer viable. The viable relation solely consists of the bottom node,
with input /VC/. That candidate is the top (and only) candidate of the viable similarity
relation. Therefore, the candidate /V1C2/ → [V1.C2V] must be grammatical. This reveals
an instance where an insertion disparity is forced.

The learner then tests the candidate /V1C2/ → [V1.C2V] to see if any additional ranking
information can be obtained. The learner determines that /V1C2/ → [V1C2] is an inform-
ative loser, forms a winner-loser pair, and adds it to the learner’s permanent support
(ranking information), shown in (52).

(52) Example 2 the learner’s support after obtaining non-phonotactic ranking
 information

Word Input W~L Onset NoCoda Max DepC DepV
r1 V V ~ CV L e e W e
r1 V V ~ ∅ L e W e e
r2 VC V.CV ~ VC e W e e L

The new winner-loser pair indicates that the grammar will insert a vowel after an conso-
nant rather than allow that consonant into a syllable coda. The most restrictive constraint
ranking consistent with the learner’s support is given in (53).

(53) NoCoda ≫ {Max, DepC} ≫ Onset ≫ DepV

At this point, the learner has succeeded. The lexicon in (51) is sufficient, and in fact every
feature has been correctly set. The support in (52), and its corresponding constraint rank-

Figure 13: The similarity relation for r2; the only viable candidate has input /VC/, and therefore
an insertion disparity of the final vowel.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 35 of 41

ing in (53), correctly map the inputs for both words to the correct outputs. In particular,
the learner has successfully determined that the second V in word r2 [V.CV] is inserted,
not present underlyingly. Learning this required combining information from the related
words r2 and r2s1, and the persistent linking representation between the two was the
presence feature on the second vowel for r2. Setting the second V in the underlying
form of r2 to –presence enables to learner, upon reexamination of word r2, to see that
the second V in the output of word r2 is inserted, and to obtain non-phonotactic ranking
information indicating that V’s must be inserted to avoid codas generally in the language.

9 Discussion
9.1 The role of output-drivenness
Prior work on learning with output-driven maps focused on systems with identity dis-
parities, where the space of possible inputs for a given output is strictly finite but grows
exponentially in the size of the output. The structure of output-driven maps was used to
compute efficiently over the space of inputs, needing to only construct and evaluate a
small number out of the many possible candidates. The present work focuses on deletion
and insertion disparities. Allowing for unbounded insertion and deletion results in a space
of inputs for an output that is countably infinite. As shown in section 6, the very same
structure of output-driven maps, with a straightforward interpretation of insertion and
deletion in relative similarity, permits this space of inputs to be reasoned over, by guar-
anteeing that the instances of deletion that need be considered can be limited to segments
corresponding to at least one observed surface realization of a morpheme.

Reifying the learner’s knowledge about segmental presence/absence in the form of the
presence feature allows the existing learning algorithm for setting underlying features
to be extended straightforwardly to determining the presence/absence of particular seg-
ments via inconsistency detection. As with other segmental features, the presence feature
allows the learner to combine information across different surface realizations of the same
morpheme (morphemic alternations), combining the information into a single location
(the lexical entry for the morpheme). When a segment is present in one surface realization
but not in another, the learner can determine if the segment is necessarily underlyingly
present in one of the environments where it surfaces, or if it is necessarily underlyingly
absent in one of the environments where it does not surface. Either way, determined
necessity allows the presence feature to be set, which then generalizes to the other surface
realizations, providing direct evidence of deletion if the segment is underlyingly present,
and direct evidence of insertion if the segment is underlyingly absent. Such evidence gives
rise straight away to further ranking information, which then generalizes to other words
with other morphemes.

9.2 Limitations and uncertainties
The learner proposed here builds on the existing Output-Driven Learner, and inherits
many of its demonstrated results, known limitations, and uncertainties. The original Out-
put-Driven Learner was shown, via simulations, to learn all 24 languages of a particular
typology for stress and vowel length. The formal limits on the range of linguistic systems
the algorithm can learn are not yet well understood, however. That uncertainty remains
when the present proposal for insertion and deletion is added. Simulations specifically
with Basic CV Syllable Theory will likely be informative. This will require further elabo-
ration on the representation of correspondence across surface forms, to be addressed in
future work.

One known difficulty for inconsistency-based approaches is perfect correlation of two
features when either is capable of being contrastive. If feature A and feature B are always
both +, or both –, in all environments of the language, the grammar is ordinarily expected

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 36 of 41

to enforce that phonotactic pattern. If the enforcement mechanism is symmetric (such as
with a traditional Agree constraint), then a normal solution would be for one of the
features to be “contrastive”, and the other to be modified as necessary to agree. But if
either feature could serve as the contrastive one, then the nature of inconsistency detec-
tion prevents the learner from committing to either. Inconsistency detection only sets a
feature to a value when the opposite value cannot work. It won’t set feature A to match
the surface form, because it could be that feature A doesn’t match and is harmonized to
feature B, and vice-versa. There is no mechanism for “simply picking one” of the features
to set. The linguistic plausibility of such a situation has yet to be investigated in depth.

9.3 Simultaneously learning the presence feature and other segmental features
While the system used in the present study, Basic CV Syllable Theory, abstracts away from
other segmental features, reintroducing such features will put the presence feature along-
side the other features of an underlying segment, and the learner will be able to work on
setting all of them via the same method based on output-drivenness and inconsistency
detection. There are, however, some issues regarding the combination that aren’t imme-
diately obvious.

9.3.1 Unset features and candidate evaluation
The original Output-Driven Learner only evaluated candidates that were fully specified,
in the sense that any feature values unset underlyingly are assigned temporary values
for the purpose of evaluation. That stance is maintained here in the handling of pres-
ence features. When a candidate is evaluated for consistency, for example, each presence
feature is assigned a value. The treatment of the presence feature perfectly parallels the
earlier treatment of other features, but it has some subtle consequences that are different.
Because deletion was not considered in the earlier work, any segment that existed in an
underlying form for a morpheme had an output correspondent in any word containing
that morpheme. Every segment, and thus every feature of every segment, was necessar-
ily present, and each feature could be reasoned about independently. But if a presence
feature is given the value –presence, either permanently set or temporarily assigned, then
the entire segment is absent from the input (and from the entire candidate). This impacts
the other features of the segment: they are not “present” in the candidate, and are not
considered in the evaluation of the candidate. An underlying segment assigned the
value –presence vacuously satisfies Max; it does not constitute a deletion disparity.
An underlying segment assigned the value –presence also has no output correspondent,
and therefore vacuously satisfies Ident constraints, regardless of what feature values
have been assigned to the other features of the segment. Other features of an underly-
ing segment, as represented in the lexicon, are only part of a candidate if the presence
feature for that segment has the value +presence. In this sense, the other features are
dependent on the presence feature.

Evaluating candidates with features that have no value can sometimes introduce compli-
cations, as has been shown by Magri (2018). In particular, Magri defines a partial feature
to be one which can be evaluated by constraints without having an assigned value; these
are distinguished from total features, which always have an assigned value when evalu-
ated by constraints. Magri shows that an Ident constraint can lead to maps which are not
output-driven if it does not assign a violation to some candidates where a feature with no
assigned value has an IO corresponding feature with an assigned value. Those complica-
tions do not arise here; the circumstance of evaluating a candidate in which an underlying
feature has no value does not arise. In the terms of Magri, the proposal described in this
paper restricts itself to total features.

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 37 of 41

9.3.2 Possibly deleted segments with unset features
Learning via inconsistency detection can set the value of an underlying feature by deter-
mining that none of the alternative values for that feature are consistent. Thus, the learner
sets a presence feature to –presence if it can show that the value +presence is inconsist-
ent. An example of this was shown in (49) of section 8.3.5. The third underlying segment
of morpheme r2, a V with an unset presence feature, was posited because it corresponded
to a V in the surface form of r2 in isolation. The surface form of r2s1, however, has no
vowel corresponding to this underlying segment. The learner tests the possibility of this V
being not present (–presence) by evaluating the candidate where the V is present underly-
ingly (+presence). The inconsistency of the +presence case allows the learner to set the
feature for that vowel to –presence.

In the earlier learning work examining only identity disparities, if a (binary) feature
could be set at all, it could be set via evaluation of a single alternative candidate, where
the tested feature was assigned the value opposite its surface value, while any other
unset features were assigned values matching their surface values. The logic supporting
that approach changes when a segment that has no surface correspondent is considered.
This is because there is in general no unique assignment of values to unset features that
has greatest similarity: the learner cannot assign values that match the output realization,
because the segment has no output realization (output correspondent) in the word.
A deletion disparity is individuated on an entire segment, not feature by feature as with
identity disparities. The deletion of an [n], for instance, is not the same type of disparity
as the deletion of an [t], and relative similarity requires that corresponding disparities be
identical; for extended discussion of this point, see (Tesar 2014: 55–57).

For the learner to rule out the possibility that a segment is present underlyingly but
deleted on the surface, it needs to separately check all of the possible segments that
could be the underlying segment, and show that none of them could be deleted, consist-
ent with the rest of the grammar. In the example of (49) of section 8.3.5, there was only
one option to check: the potential third underlying segment of r2 is a V, because the
“V vs. C” contrast is not subject to identity violation, so the learner evaluates with the
underlying segment (+,V). Suppose, instead, that the linguistic theory in use admitted
the feature +/–tense for vowels (–tense being equivalent to lax). Each vowel would have
two features, presence and tense. If the tense feature for the tested vowel in (49) had not
yet been set, then the learner would have to separately evaluate (+presence, +tense, V)
and (+presence, –tense, V), and could only set the vowel to –presence if both of those
cases proved inconsistent. Given multiple such unset features, the learner would have to
separately evaluate all combinations of values for the unset features. The soundness of the
learner is unchanged, but the computational effort required could escalate.

There are counterpoints to this potential computational escalation, however. The vowel
with the unset presence feature is only represented in the underlying form of r2 because
in a different word, bare r2, it potentially corresponds to an output vowel. If that output
vowel is –tense, and phonotactic learning has already determined that there is a contrast
between +tense and –tense vowels in the language, then at the time the underlying vowel
is posited, it will set the underlying feature to –tense, even if it cannot set the presence
feature at that point. The learner is, in effect, representing that if the surface –tense vowel
has an input correspondent, then that input must be set to –tense (if it were set to +tense,
then the output vowel would necessarily have been +tense). Thus, it is plausible that
some features of a segment may be set when it is initially posited even if the presence
feature cannot be set. More set features for a segment means fewer unset features which
means fewer combinations to test to determine if the segment is possibly not present
underlyingly at all.

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 38 of 41

Another counterpoint would be a case where a vowel surfaces as +tense in one environ-
ment, and does not surface in another environment. If the learner’s linguistic information
to that point were such that it guaranteed that epenthetic vowels must be –tense, then any
attempt to set the vowel to underlyingly –presence would fail: the grammar might insert a
vowel, but not a +tense vowel. This would allow the learner to set the presence feature to
+presence as a consequence of other segmental features, avoiding the need to test the pres-
ence feature in an environment in which the input segment has no output correspondent.

An analogous computational escalation is possible with the learning of non-phonotactic
ranking information. In the example described in section 8.2.4, the learner has set the
presence feature of the consonant in morpheme r1 to +presence, based on how the mor-
pheme surfaces for word r1s1. However, the consonant does not surface when r1 has
no suffix. The learner is able to obtain non-phonotactic ranking information because it
knows that the C is underlyingly present, and can gain the ranking information neces-
sary to ensure that it deletes in that context. The ranking information is based on the
knowledge that the viable input with greatest similarity to the output must map to that
output. Once again, when a deletion disparity appears, there is not guaranteed to be
a unique input with greatest similarity if the deleted segment has unset features. Each
possible assignment of values to the unset features of the deleted segment constitutes
a separate input for the same output, and none of them will be related to another with
respect to similarity. It is still possible for the learner to obtain ranking information at this
point, by computing the additional ranking information resulting from each of the differ-
ent possible inputs (assignments of values to the unset features of the deleted segment),
and taking the join of those sets of ranking information, as defined by Merchant (2008).
Again, however, this is more computational effort that having a single candidate from
which to obtain ranking information. The common situation between this case and the
feature-setting case described earlier is the effect of having an underlying segment with
the presence feature assigned the value +presence and at least one feature (other than
presence) unset, appearing in an environment where that segment is deleted.

Future research will need to examine what interesting interactions can occur between
setting the presence feature and setting other features.

9.4 Global ambiguity of underlying forms
A general issue in the learning of underlying forms is the prevalence of global ambiguity,
in which multiple underlying forms are equally adequate for a given morpheme. This is a
natural consequence of neutralization and richness of the base: when a grammar enforces
patterns by neutralizing multiple inputs to the same output, any of the neutralized inputs
is empirically adequate. Inconsistency detection will not distinguish between multiple
empirically adequate underlying forms. The consideration of insertion and deletion can
amplify this issue, as it is possible to have an infinite set of neutralizing, empirically
adequate underlying forms.

The current proposal combines two strategies to deal with different aspects of this global
ambiguity. It inherits from prior work the strategy of using unset features to represent a
space of possible inputs in a compact form, along with an approach that does not set an
underlying feature to one value unless the other value(s) is shown to be inconsistent.
Tolerance of unset features allows the learner to avoid forcing an arbitrary (and perhaps
premature) setting of values to features. The other strategy, newly proposed here, is to
only represent possible underlying segments that could possibly correspond to an actual
output segment. This strategy deliberately prefers underlying forms that do not contain
any unnecessary segments, relying on output-drivenness to justify their lack of necessity.

In the case of an infinite number of empirically adequate underlying forms for the same
morpheme, the learner succeeds in eliminating from consideration all possible underlying

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 39 of 41

forms that would extend beyond the (necessarily finite) range of segments that actually
surface for the morpheme. As demonstrated in the illustrations in section 8, the learner
can adopt this approach without needing to wait until after they have observed all pos-
sible surface realizations: the learner can safely add hypothesized underlying segments
during the course of learning in response to new surface realizations of a morpheme.

Successful learning can produce a potential underlying segment with an unset presence
feature. This can happen when the feature is completely non-contrastive: the same output
will result no matter which value is assigned to the feature, such as with the underlying C
when /CV/→[CV] and /V/→[CV]. For each word containing the related morpheme, the
learner will stop trying to set the feature once the word begins passing initial word evalu-
ation (section 7.4). See (Tesar 2014: 385–390) for further discussion.

9.5 Insertion and morphemic identity
The learning algorithm used here operates under the idealization that the learner is pro-
vided with information about the morphemic structure of the observed words. In particu-
lar, each segment of a word is marked as being affiliated with a particular morpheme.
This makes it possible for the learner to identify when the same morpheme is surfacing in
different environments.

In earlier work that didn’t involve insertion and deletion, the morphemic affiliation of
each segment was unambiguous. The present work creates a slight complication: what
is the morphemic affiliation of an inserted segment? Intuitively, it would seem that the
correct answer would be that an inserted segment has no morphological affiliation: to be
affiliated with a morpheme is to be in correspondence with some element of the underly-
ing form of the morpheme. However, in the example in section 8.3, the inserted segment
is marked as affiliated with a particular morpheme (specifically, the root r2). This was
quite deliberate. Not marking a segment as being affiliated with any morpheme would
be an overt indication that the segment was inserted, obviating the need for the learner
to reason toward that conclusion based on the distributional evidence. As it stands, the
learner is faced with data in which a segment marked as affiliated with a morpheme sur-
faces in one environment and not in another, and has to determine whether the segment is
present underlyingly and deleted in one environment, or is not present underlyingly and
is inserted in the other environment.

While marking epenthetic segments as affiliated with a particular morpheme seems
 reasonable for studies like the current one, it does indicate an issue that will be more
fully addressed only by learning algorithms that engage in the learning of morphemic
affiliation. Direct confrontation with learning morphemic affiliation in this linguistic
 framework is left for future research. It seems likely that such work will involve simulta-
neous learning of constraint ranking, morphemic affiliation, and morphemic underlying
forms. In such an approach, the presence feature proposed in this paper could play a valu-
able role in the learning of morphemic affiliation when insertion and deletion are engaged
in the language. Past computational research, completely apart from work in Optimality
Theory, has suggested that knowing the phonotactic patterns of a language could be useful
in computing morpheme segmentation in words (Brent & Cartwright 1997). The present
work hints at an approach in which a learner, in possession of the results of phonotactic
learning, learns non-phonotactic grammatical information in tandem with morphemic
affiliation in words.

9.6 What has been accomplished
We have proposed that a learner represent information about the possible presence/absence
of a segment in an underlying form via a presence feature. Along with the presence feature,
we have proposed an extension of the Output-Driven Learner that uses the combination of

Nyman and Tesar: Determining underlying presence with insertion and deletionArt. 37, page 40 of 41

output-driven map structure and inconsistency detection to learn underlying forms when
the presence/absence of underlying segments is not known in advance. Output-driven
map structure allows the learner to only hypothesize underlying segments that would pos-
sibly correspond to an output segment in at least one surface realization of the morpheme,
greatly limiting the number of possible underlying forms that are actively considered by
the learner. The presence feature can be set using the same inconsistency detection method
that has previously been used to set other segmental features, an approach that makes
it possible to combine information across paradigmatically related words. Representing
knowledge about the presence/absence of an underlying segment enables the learner
to obtain non-phonotactic ranking information that enforces the inferred insertion and
deletion disparities. The resulting learner is able to learn grammatical regularities about
segmental insertion and deletion, based on paradigmatic evidence.

Abbreviations
BST = Basic CV Syllable Theory, C = consonant, V = vowel, BCD = biased constraint
demotion

Acknowledgements
The authors wish to thank Alan Prince, the audience at the 2015 NECPhon conference,
the audience at the 2015 GLEEFUL conference, and three Glossa reviewers for useful com-
ments. All errors are exclusively the responsibility of the authors.

Funding Information
Thank you to the Aresty Research Center at Rutgers University, New Brunswick for con-
ference funding and support.

Competing Interests
The authors have no competing interests to declare.

References
Apoussidou, Diana. 2007. The learnability of metrical phonology. Amsterdam: University of

Amsterdam dissertation.
Brent, Michael R. & Timothy A. Cartwright. 1997. Distributional regularity and phono-

tactic constraints are useful for segmentation. In Michael R. Brent (ed.), Computational
approaches to language acquisition, 93–125. Cambridge, MA: MIT Press.

Clements, George N. & Samuel Jay Keyser. 1983. CV phonology. Cambridge, MA:
MIT Press.

Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: The early stages. In
René Kager, Joe Pater & Wim Zonneveld (eds.), Constraints in phonological acquisition,
158–203. Cambridge: Cambridge University Press.

Jakobson, Roman. 1962. Selected writings 1: Phonological studies. The Hague: Mouton.
Jarosz, Gaja. 2006. Rich lexicons and restrictive grammars – maximum likelihood learn-

ing in Optimality Theory. Baltimore, MD: The Johns Hopkins University dissertation.
 ROA-884.

Magri, Giorgio. 2018. Output-drivenness and partial phonological features. Linguistic
Inquiry 49(3). 577–598. DOI: https://doi.org/10.1162/ling_a_00283

McCarthy, John J. & Alan Prince. 1995. Faithfulness and reduplicative identity. In Jill
Beckman, Laura Walsh Dickey & Suzanne Urbancyzk (eds.), University of Massachusetts
Occasional Papers 18: Papers in Optimality Theory, 249–384. Amherst, MA: GLSA,
 University of Massachusetts.

https://doi.org/10.1162/ling_a_00283

Nyman and Tesar: Determining underlying presence with insertion and deletion Art. 37, page 41 of 41

Merchant, Nazarré. 2008. Discovering underlying forms: Contrast pairs and ranking. New
Brunswick, NJ: Rutgers University dissertation. ROA-964.

Merchant, Nazarré & Bruce Tesar. 2008. Learning underlying forms by searching restricted
lexical subspaces. Proceedings of the Forty-First Conference of the Chicago Linguistics
 Society (2005), vol. II: The Panels, 33–47. ROA-811.

Prince, Alan. 2002. Entailed ranking arguments. Ms. Rutgers University. ROA-500.
Prince, Alan & Bruce Tesar. 2004. Learning phonotactic distributions. In René Kager,

Joe Pater & Wim Zonneveld (eds.), Constraints in phonological acquisition, 245–291.
 Cambridge: Cambridge University Press.

Prince, Alan & Paul Smolensky. 2004. Optimality Theory: Constraint interaction in genera-
tive grammar. Malden, MA: Blackwell. DOI: https://doi.org/10.1002/9780470759400

Tesar, Bruce. 1995. Computational Optimality Theory. Boulder, CO: University of Colorado
dissertation. ROA-90.

Tesar, Bruce. 2006. Learning from paradigmatic information. In Christopher Davis, Amy
Rose Deal & Youri Zabbal (eds.), Proceedings of the 36th Meeting of the North East Lin-
guistics Society, 619–638. Amherst, MA: GLSA, University of Massachusetts. ROA-795.

Tesar, Bruce. 2014. Output-driven phonology [Cambridge Studies in Linguistics]. Cambridge:
Cambridge University Press.

Tesar, Bruce & Paul Smolensky. 1994. The learnability of Optimality Theory. In Raul
Aranovich, William Byrne, Susanne Preuss & Martha Senturia (eds.), Proceedings of the
Thirteenth West Coast Conference on Formal Linguistics, 122–137. CSLI.

How to cite this article: Nyman, Alexandra and Bruce Tesar. 2019. Determining underlying presence in the learning
of grammars that allow insertion and deletion. Glossa: a journal of general linguistics 4(1): 37. 1–41. DOI: https://doi.
org/10.5334/gjgl.603

Submitted: 02 January 2018 Accepted: 27 November 2018 Published: 15 March 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 OPEN ACCESS
Glossa: a journal of general linguistics is a peer-reviewed open access journal
published by Ubiquity Press.

https://doi.org/10.1002/9780470759400
https://doi.org/10.5334/gjgl.603
https://doi.org/10.5334/gjgl.603
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Basic CV Syllable Theory
	3 Output-driven maps
	3.1 Output-drivenness
	3.2 Insertion and deletion disparities
	3.3 Learning with output-driven maps
	3.4 Contrast, alternation, and learning

	4 The idealization of the learning situation
	5 The presence feature
	5.1 Representing presence and absence
	5.2 Setting presence features
	5.3 Learning deletion and insertion
	5.3.1 Deletion
	5.3.2 Insertion

	6 The unbounded deletion problem
	6.1 The problem
	6.2 Deletion and output-drivenness
	6.3 Limiting the range of underlying forms in learning
	6.4 Explicit vs. implicit non-presence

	7 Overview of the learner
	7.1 Overview of the learner
	7.2 Top-level outline of the Output-Driven Learner
	7.3 Single form learning
	7.4 Initial word evaluation
	7.5 Ranking information

	8 Learning deletion and insertion
	8.1 Phonotactic learning
	8.2 Learning example 1: Deletion
	8.2.1 Learning data for example 1
	8.2.2 Processing word r1
	8.2.3 Processing word r1s1
	8.2.4 Non-phonotactic ranking information
	8.2.5 Resume processing of r1s1

	8.3 Learning example 2: Insertion
	8.3.1 Learning data for example 2
	8.3.2 Processing word r1
	8.3.3 Processing word r1s1
	8.3.4 Processing word r2
	8.3.5 Processing word r2s1
	8.3.6 Non-phonotactic ranking information

	9 Discussion
	9.1 The role of output-drivenness
	9.2 Limitations and uncertainties
	9.3 Simultaneously learning the presence feature and other segmental features
	9.3.1 Unset features and candidate evaluation
	9.3.2 Possibly deleted segments with unset features

	9.4 Global ambiguity of underlying forms
	9.5 Insertion and morphemic identity
	9.6 What has been accomplished

	Abbreviations
	Acknowledgements
	Funding Information
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Table 1
	Table 2

