
Glossa
a journal of general linguistics

RESEARCH

ABSTRACT
A common view in the theoretical literature is that quantifier raising (QR) is a clause-
bounded operation. But in a paper published in Glossa, Wurmbrand (2018) argues that
(i) QR is not clause-bounded, and the apparent clause-boundedness of QR is due to the
human parser’s difficulty in processing extraclausal QR; and (ii) the relative difficulty
of extraclausal QR depends on the size of the embedded clause from which QR takes
place. She then proposes a theory of scope processing in which parsing Logical Form
(LF) movement is costly for the human parser, which in conjunction with independently
motivated assumptions about A′-movement generates the desired results. In this
paper, we accept Wurmbrand’s descriptive observations and proposed syntax but
offer an alternative, rigorously defined metric of scope processing difficulty that makes
precise quantitative predictions. Our proposal is formalized with Minimalist Grammars
(Stabler 1997) and expands recent work by Kobele et al. (2013), among others, that
uses this formalism to account for numerous processing phenomena. Our metric
correctly handles Wurmbrand’s observations as well as cases that are problematic for
her account, and points the way toward an explanatory theory of scope processing.

ROBERT PASTERNAK

THOMAS GRAF

*Author affiliations can be found in the back matter of this article

Cyclic scope and processing
difficulty in a Minimalist
parser

CORRESPONDING AUTHOR:
Robert Pasternak

Leibniz-Center for
General Linguistics (ZAS),
Schützenstraße 18 10117
Berlin, Germany

mail@robertpasternak.com

KEYWORDS:
quantification; scope; scope
processing; formal parsing;
Minimalist Grammars

TO CITE THIS ARTICLE:
Pasternak, Robert and
Thomas Graf. 2021. Cyclic
scope and processing difficulty
in a Minimalist parser. Glossa:
a journal of general linguistics
6(1): 8. 1–34. DOI: https://doi.
org/10.5334/gjgl.1209

https://orcid.org/0000-0002-3024-1900
mailto:mail@robertpasternak.com
https://doi.org/10.5334/gjgl.1209
https://doi.org/10.5334/gjgl.1209

2Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

1 INTRODUCTION
When presented with a sentence that seems ungrammatical or lacks an otherwise expected
reading, linguists face the question of whether this is due to competence or performance
(Chomsky 1965). Perhaps the most famous case where the answer seems to be the latter is
center-embedding (Chomsky & Miller 1963). Compared to the right-embedding structure in
(1a), the semantically identical center-embedding structure in (1b) is commonly considered
unacceptable.

(1) a. The cheese attracted the mouse that was eaten by the cat that was bitten by
the dog that was owned by the barber.

b. The cheese attracted the mouse that the cat that the dog that the barber
owned bit ate.

Yet for various reasons the broad consensus is that the grammar of English does not litigate
against center-embedding; rather, the human parser is overwhelmed by the difficulty of the
processing task.

A growing body of work asks the same question about quantifier raising (QR): is the purported
clause-boundedness of QR due to competence or performance? Many quantifiers seem unable to
take scope outside of the clause in which they are merged. Consider (2), due to Fox (2000: p. 62):

(2) a. Someone said [CP that every man is married to Sue].
b. Someone said [CP that Sue is married to every man].

Each sentence in (2) only allows for a reading in which some person claims that Sue is
polygamous (∃ > ∀), and not one in which different people have made opposing claims about
who Sue is married to (∀ > ∃). The absence of this second reading suggests that every man
cannot undergo QR to a position outside its embedded CP, where it can scope over someone
in the matrix clause. This inability of QR to cross clause boundaries is surprising because other
instances of A′-movement, e.g. wh-movement, are not so constrained (Whoi did someone say
that Sue is married to ti?).

But in a paper published in Glossa, Wurmbrand (2018) argues that (i) QR is not clause-bounded
after all; (ii) extraclausal QR is, however, more difficult to process than within-clause QR (cf.
Syrett & Lidz 2011; Syrett 2015a; b); and (iii) the relative difficulty of processing extraclausal QR
correlates with the size of the embedded clause from which QR takes place. To account for (iii),
Wurmbrand proposes that each movement step that impacts Logical Form (LF) comes with a
processing cost, and scoping out of larger embedded clauses is more costly because it involves
more iterations of LF-movement.

While Wurmbrand’s proposal is notable for making concrete, formally defined, empirically
testable claims that build on independently motivated principles of syntactic theory, it struggles
to account for some data points. Due to the exclusive focus on the number of movement
steps that affect LF, Wurmbrand’s notion of scope processing difficulty does not consider how
Phonetic Form (PF) is affected by movement. But there is evidence that the latter matters, too. As
Wurmbrand herself notes, overt cyclic wh-movement is much more easily processed than cyclic
QR even though in both cases operators are semantically interpreted at great distances from
their merge positions. This contrast between wh-movement and QR indicates that movement
that impacts LF is noticeably easier to parse when it also impacts PF: overt scopal movement
is more readily processed than covert movement. In addition, experimental results from Lee
(2009) suggest that when a quantificational DP undergoes overt movement, it is more easily
interpreted in its post-movement position (surface scope) than in its pre-movement position
(inverse scope), even though the latter would involve fewer movement steps that affect LF. It
thus appears that the comparative difficulty of computing a given scope configuration does not
depend exclusively on the relative complexity of the LF side of the derivation or representation,
as in Wurmbrand’s analysis. Instead, processing difficulty increases due to mismatches between
PF and LF, and consequently movement is processed more easily when it affects both PF and LF
than when it affects only LF (QR) or only PF (reconstruction).

Wurmbrand herself makes this observation at the end of her paper, but she does not formalize
this idea to the degree that is needed for strong empirical predictions—our paper closes this

https://doi.org/10.5334/gjgl.1209

3Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

gap. We offer a novel theory of scope processing difficulty that is very much in the spirit of
Wurmbrand’s insight about LF-PF mismatches. This theory builds directly on Minimalist
Grammars (MGs, Stabler 1997), a computational formalization of Minimalism (Chomsky 1995).
More precisely, we adopt a framework pioneered by Kobele et al. (2013) that derives processing
predictions from the memory usage of the top-down MG parser introduced by Stabler (2013).
This rigorous computational foundation not only allows us to precisely quantify processing
difficulty and derive strong processing predictions, but also illuminates why LF-PF mismatches
are costly for the human parser and situates this insight within a broader theory of how the
human parser’s memory usage affects sentence processing.

The framework of Kobele et al. (2013) has previously been used to account for a variety of
syntactic processing phenomena attested in the psycholinguistic literature, including: center- vs.
right-embedding (Kobele et al. 2013; Gerth 2015); crossing dependencies vs. nested dependencies
(Kobele et al. 2013); subject vs. object relative clauses in English and East Asian languages (Graf et
al. 2015; 2017); stacked relative clauses in English and Chinese (Zhang 2017); Heavy NP Shift (Liu
2018); dative DP attachment ambiguities in Korean (Lee 2019); a variety of word order and relative
clause processing facts in Italian (De Santo 2019); and the emergence of gradience in syntax and
the role of syntactic priming (De Santo 2020). As can be gleaned from this list, all previous work has
focused on cases where the sentences being compared differ in their overt structure. Our paper
marks the first attempt to extend this productive research program to cases where the detectable
differences lie only in the comparative (un)availability of certain semantic interpretations.

The paper is laid out as follows. We start with a cursory overview of Wurmbrand 2018 and
the data that motivate her proposal (Section 2.1). We also discuss two phenomena that are
problematic for her approach (Section 2.2) but could be accounted for if a sentence’s processing
difficulty depends on how much its PF and LF differ from each other. In order to hash out
this intuitive notion, we introduce the MG processing model in Section 3. We subsequently
extend it with LF-movement (Section 4.1) and define Location Differential (LD) as a means of
quantifying PF-LF mismatches (Section 4.2). Once the machinery is in place, it is straightforward
to show that it accounts for all the scope phenomena discussed in Section 2 (Sections 4.3–4.6).

2 CYCLIC QR AND WURMBRAND’S (2018) ANALYSIS
Our paper is a direct follow-up to Wurmbrand’s (2018), and we adopt many of her assumptions
and data points. We first briefly discuss data suggesting that QR is less limited than commonly
believed, as well as how Wurmbrand relates the acceptability differences between various types
of QR to the complexity of the involved syntactic structures (Section 2.1). We then point out two
particular problems with her account that suggest that the relevant factor is actually how much
LF and PF differ from each other (Section 2.2), an intuitive idea that will be fully developed in
Sections 3 and 4.

2.1 WURMBRAND’S PROPOSAL

Wurmbrand (2018) cites a wealth of evidence from the theoretical and experimental literature
in favor of her claims about the unboundedness and relative processing difficulty of QR. We will
not go through the details of this evidence here, and will only discuss the highlights; readers
interested in more in-depth discussion of this evidence are referred to Wurmbrand 2018 and
sources therein.

As for the claim that QR is in principle unbounded, a variety of evidence has been offered
suggesting that quantifiers can scope out of both non-finite and finite embedded clauses,
including over matrix-clause subjects. Larson & May (1990) and Kennedy (1997) provide
examples with non-finite clauses, such as (3) from Kennedy (1997: p. 674):

(3) a. At least two American tour groups expect [to visit every European country this
year].

b. Some agency intends [to send aid to every Bosnian city this year].
c. At least four recreational vehicles tried [to stop at most AAA approved campsites

this year].
d. Some congressional aide asked [to see every report].

https://doi.org/10.5334/gjgl.1209

4Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Each of these examples has a reading in which the embedded quantifier scopes over the matrix
subject: in (3a), for example, tour groups can covary with countries. The ready availability of
extra-clausal QR from non-finite clauses has also been supported by experimental work from
Moulton (2007), Syrett & Lidz (2011), and Hackl et al. (2012), among others.

Similarly, while examples like (2) have led many researchers to conclude that QR from finite
clauses is ungrammatical, a growing body of work suggests that this is not the case. An example
from the theoretical literature, due to Farkas & Giannakidou (1996: p. 36), can be seen in (4):

(4) A student made sure [that every invited speaker had a ride].

(4) permits a reading in which different students find rides for different speakers (∀ > ∃).
While Farkas & Giannakidou argue that scoping out of finite embedded clauses is constrained
by the choice of embedding predicate, experimental evidence from Syrett & Lidz (2011),
Syrett (2015a; b), and Tanaka (2015a; b) suggests that inverse scope readings are available
with a wide variety of finite-clause-embedding verbs, and are not as restricted as Farkas &
Giannakidou suggest.

However, scoping out of embedded clauses seems to impose an extra cost, as many of the same
experiments showing the possibility of embedded quantifiers scoping over matrix subjects also
show that this is more difficult to process than objects scoping over subjects within the same
clause (e.g. in A technician inspected every plane). Wurmbrand (2018) attempts to explain this
observation by positing that a sentence’s processing difficulty increases with each movement step
that affects LF, i.e. each movement step that alters the position from which a phrase takes scope.
More precisely, she adopts the copy theory of movement (Chomsky 1995) in conjunction with
Fox’s (2002, 2003) operation of trace conversion, in which lower copies of quantifiers are altered at
LF in order to generate trace-like bound variable interpretations. Syntactic trace conversion is not
universally adopted by semanticists—see e.g. Ruys 2015, Pasternak 2020 for alternatives—but
Wurmbrand’s basic idea could be rehashed in many different ways and isn’t inextricably tied to
this mechanism. But trace conversion provides an intuitively pleasing picture: if trace conversion
is a costly operation, then every movement step that impacts LF increases processing cost by
adding another instance of trace conversion. In essence, there is a “tax” on LF traces.

If each LF trace imposes a processing cost, then in conjunction with common assumptions
about A′-movement, the additional cost of extraclausal QR falls out immediately. Suppose that
in a monoclausal example like A technician inspected every plane, some n-many QR steps are
required in order for every plane to scope over a technician. In a sentence like (4), meanwhile,
it is generally thought that any mover that escapes the embedded clause must first stop at its
edge—CP is a movement domain—before undergoing the n (or more) instances of movement
required to generate inverse scope. Thus, generating inverse scope for (4) will require more
scope-taking movement steps—and thus, more costly LF traces—than in the monoclausal case.

In fact, experimental evidence tentatively suggests the existence of finer-grained distinctions
in inverse scope processing difficulty. In previous work, Wurmbrand (2001; 2014a; b; 2015)
argues that verbs taking non-finite clausal complements can be divided into three classes that
take increasingly large functional complexes as their arguments. First, try-type infinitives have
a very reduced structure that stops at the vP-level.

(5) Becca tried [vP to go to Boston].

The next larger class consists of “future-shifting” verbs like decide, whose complements must
be headed by some functional head related to tense, aspect, or modality (TAM). Wurmbrand
argues that this involves at least some future-shifting modal head woll.

(6) Becca decided [
wollP woll [vP to go to Boston]].

Finally, claim-type infinitives display the full CP structure:

(7) Becca claimed [CP C … [TP T … [vP to be in Boston]]].

This distinction is relevant because evidence from Moulton (2007) suggests that inverse scope
is harder with decide-type infinitives than try-type infinitives. In other words, inverse scope is
easier for monoclausal (8a) than for try-type (8b), which is easier than for decide-type (8c).

https://doi.org/10.5334/gjgl.1209

5Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(8) a. A technician inspected every plane.
b. A technician tried to inspect every plane.
c. A technician decided to inspect every plane.

In addition to these between-sentence observations, there are the more obvious within-
sentence observations: for each sentence in (8), inverse scope is harder to process than
surface scope. This is shown for the embedded clause cases in many of the studies discussed
previously, and for monoclausal cases by Kurtzman & MacDonald (1993), Tunstall (1998),
Anderson (2004), and others. It is worth noting that the between-sentence observations
about embedded quantifiers are limited, both in the strength of their evidence—Moulton’s
experimental evidence is compelling but does not quite reach statistical significance—and in
their breadth: where finite clauses and claim-type infinitives fit into the picture in relation to
each other and to decide-type infinitives is not established. With this latter point in mind, we will
follow Wurmbrand in mostly sticking to (8), though it is worth noting that both Wurmbrand’s
account and ours predict QR out of finite clauses to be at least as hard as QR out of both
claim-type and decide-type infinitives—an intuitively plausible prediction, but one that to our
knowledge remains to be verified experimentally.

Wurmbrand notes that the between-sentence observations in (8) can be accounted for on her
theory of scope processing difficulty, given certain reasonable assumptions about movement
domains. More specifically, suppose that the set of movement domains includes not only vP—a
commonly held view since the development of phase theory by Chomsky (2000; 2001)—but
also wollP, at least when it is the complement of the embedding verb. In this case, if in (8a)
n-many steps of QR are required to generate inverse scope, then in (8b) at least n + 1-many
steps are required, since every plane must also move to the edge of the embedded vP. In (8c),
meanwhile, this increases to n + 2: the embedded object must move not only to the edge of
the embedded vP, but also to the edge of embedded wollP before moving to scope over the
subject.

In summary, Wurmbrand (2018) concludes that (i) QR is in principle unbounded, (ii) extraclausal
QR is costlier than within-clause QR, and (iii) extraclausal QR is costlier for decide-type than
for try-type infinitives; we follow her in adopting these conclusions. She then proposes that
there is a “tax” on LF traces: the more LF-impacting movements are required, the costlier an
interpretation is. This conjoined with independently motivated syntactic assumptions makes
the right predictions for (8). Next we turn to data that are problematic for Wurmbrand’s analysis.

2.2 THE PROBLEMATIC IMPACT OF OVERT MOVEMENT

Since Wurmbrand’s analysis connects processing difficulty to the number of LF traces, the
best counterevidence comes from cases where LF-relevant movement does not appear to be
a particularly costly operation, or even better, cases where a parse involving more LF traces
is easier than a parse involving fewer. We present two cases here: wh-movement (already
mentioned by Wurmbrand), and the scope of subjects and objects with respect to negation
in English and Korean (Lee 2009, not previously discussed in connection with Wurmbrand’s
proposal).

Wh-movement poses an obvious challenge, one that is acknowledged by Wurmbrand herself.
Consider, for example, the sentences in (9):

(9) Wurmbrand 2018: p. 25, based on her (29)
a. What did a technician say that John inspected?
b. A technician said that John inspected every plane.

In (9a), what moves cyclically from the complement of inspect to some specifier in the left
periphery of the matrix clause. Assuming that wh-phrases that overtly move to the left
periphery also take scope there (Karttunen 1977 and much work since), we can infer that each
of these movement operations also leaves a trace at LF. (9a) therefore requires at least as
many iterations of scope-taking movement as an inverse scope interpretation of (9b)—possibly
more, since the latter may not require every plane to move all the way to the left periphery.
Thus, Wurmbrand predicts (9a) to be at least as difficult to process, if not more so, than an
inverse scope interpretation of (9b). While we are not aware of any experimental studies

https://doi.org/10.5334/gjgl.1209

6Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

directly addressing this question, at least on an intuitive level things appear to be quite the
opposite: (9a) is noticeably easier to process than the inverse scope of (9b). Of course, relying
on intuitions to make judgments of processing difficulty is questionable to say the least, but
pending much-needed experimental investigation comparing and contrasting such cases, we
maintain that a model that predicts (9a) to be easier than the inverse scope of (9b) is prima
facie more likely to be correct than one that predicts the opposite.

Another issue for Wurmbrand’s theory—one that has gone undiscussed so far, and that has
much stronger experimental evidence to back it up—pertains to the relative scope of sentential
negation and universal quantifiers, as explored in detail by Lee (2009). Lee tests such scope
preferences in both English and Korean for universal quantifiers in both subject and object
positions.1 Some relevant examples in both languages can be seen in (10) and (11).

(10) Every in subject position
a. According to the story, every kid didn’t feed the doves in the park. (Lee 2009: p. 93)

b. Korean (Lee 2009: p. 79)
hwacangsil-eyse motun haksayng-i son-ul an ssis-ess-ta-ko
in the restroom every student-nom hand-acc neg wash-Pst-decl-comP

iyaki-un malhaycwunta
story-toP tell
‘The story tells that every student did not wash her hands in the restroom.’

(11) Every in object position
a. According to the story, Cindy didn’t light every candle last night. (Lee 2009: p. 124)

b. Korean (Lee 2009: p. 112)
ecey pam-ey Sehee-ka motun chospwul-ul an khye-(e)ss-ta-ko iyaki-nun
last night Sehee-nom every candle-acc neg light-Pst-decl-comP story-toP
malhaycwunta
tell
‘The story tells that Sehee did not light every candle last night.’

The Korean examples above utilize what is known as the short-form negation. Korean also has
a long-form negation, and Lee’s findings for this form mirror those for short form: subjects
and objects both tend to scope over negation. In English, subjects also tend to scope over
negation, but the scope of objects remains under negation. This curiously lines up with major
word order differences between the two languages: whereas the default order for English
is subject-negation-object, it is subject-object-negation in Korean. Hence Lee’s basic finding
is a preference in both English and Korean for surface scope over inverse scope in these
constructions.

Lee’s data are unexpected under Wurmbrand’s account. Let us consider the case of subjects
first. If subjects are base-merged in Spec,vP, which presumably is structurally lower than
negation, then there should be a preference for subjects to scope under negation. It is true
that the subject moves to a position above negation later on (Spec,TP), but this step is costly
because it requires trace conversion at LF. A less costly option would be to treat the subject
movement as only affecting PF, keeping the subject in Spec,vP at LF and thereby avoiding the
need for trace conversion. The very same argument applies to Korean objects: even though
the object moves to a position above negation, it would be less costly if this movement only
affected PF. Only English objects behave the way that is predicted by Wurmbrand, but this
is because they presumably do not overtly move at all. Once movement occurs, pure PF-
movement should be preferred, assuming that this is an available option. In any system where
it is possible for movement to affect PF but not LF, Wurmbrand’s account incorrectly predicts
a preference for inverse scope in Lee’s examples because pure PF-movement avoids the need
for trace conversion at LF.

One could resolve Lee’s contradictory findings by stipulating that pure PF-movement is simply
unavailable in these constructions, but this would still leave the issue of wh-movement.

1 Lee also tests native Korean-speaking L2 speakers of English. We will not account for these results in this
paper as it is not sufficiently clear what a Korean L2 grammar (let alone parser) of English looks like. However,
the approach we advocate for could certainly be extended in this direction.

https://doi.org/10.5334/gjgl.1209

7Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

A unified solution is actually available in the form of a different scope processing metric that
is briefly mentioned by Wurmbrand (2018: fns. 20, 25): processing difficulty doesn’t depend
(only) on the number of trace conversion steps, but on how much LF and PF differ from
each other. Under this metric, wh-movement is easy to process because it affects both LF
and PF in the same way. The scope data in Lee (2009) is expected because it is cheaper for
movement to affect both LF and PF rather than just the latter, so that subjects (and Korean
objects) also end up in positions above negation at LF, not just at PF. The data discussed
earlier in Sec. 2.1 would still be accounted for as it involves pure LF-movement, which alters
LF without affecting PF and thus also increases their dissimilarity. Hence it apparently isn’t
just any kind of movement that affects LF, but only movement that affects LF without also
affecting PF.

This, in a nutshell, is the approach we will adopt in the rest of this paper. Such an approach
requires answering two questions. First, how do we formally define a scalar notion of PF-LF
mismatch with a sufficient degree of predictive power? And second, what is it about the nature
of the human parser that entails that this particular property of syntactic representations (or
derivations) should lead to processing difficulty? In order to bring us closer to an explanatory
theory of scope processing difficulty, we will approach these questions from a formal parsing
perspective: we will provide a formal grammar that generates both PF and LF representations,
along with a formal parser for that grammar, and we will show that scope processing difficulty
correlates with a particular type of information storage arising during the course of a successful
parse. The formal grammar utilized will be a version of Stabler’s (1997) Minimalist Grammars
(MGs); as discussed in the introduction, MG parsing has been used to account for a variety
of syntactic processing phenomena, and our theory serves as a significant extension of this
already productive research program.

3 MINIMALIST GRAMMARS AND TOP-DOWN PARSING
MGs were developed by Stabler (1997) in order to study Minimalist syntax from a computational
perspective. Over the years, numerous aspects of the formalism have been explored in great
depth (see Stabler 2011a), including parsing. The work on MG parsing will allow us to put the
“LF-PF mismatch” proposal on a more rigorous foundation, and in doing so we will also be
able to account for the problematic cases of wh-movement and the surface scope preference
discussed in Section 2.2. Specifically, we adopt a program initiated by Kobele et al. (2013),
which directly relates the processing difficulty of any given sentence to how much memory
is consumed by an MG top-down parser (Stabler 2013) that has to build the correct syntactic
structure for said sentence. Our main innovation, presented later on in Section 4, is the addition
of LF-movement to this approach. With the addition of LF-movement, the MG parsing model
of sentence processing naturally extends to all the constructions that were discussed in the
preceding section.

We will start with the basics of MGs, focusing in particular on the role of derivation trees
(Section 3.1). Awareness of the differences between derivation trees and phrase structures is
indispensable for understanding how the MG parser in Stabler 2013 can build structures in a
top-down fashion (Section 3.2). Once the top-down parser is in place, it is fairly easy to measure
how memory is used during the construction of a parse and to relate these measurements to
processing difficulty (Section 3.3). Following earlier work on MG processing, our presentation is
deliberately framed at a high level of abstraction that omits many of the formal details that
have no effect on the specific processing predictions. For the sake of completeness, though, we
include a fully worked out formal system in the appendices.

3.1 STANDARD MGs: FEATURES, OPERATIONS, AND DERIVATION TREES

MGs build on two central tenets of Minimalist syntax: syntactic structure is built via operations
(Merge/Move), and operations are triggered by features on lexical items.

Suppose we want to build the (simplified) phrase structure tree below for which car hit a wall,
where which car first undergoes subject movement to Spec,TP and then wh-movement to
Spec,CP:

https://doi.org/10.5334/gjgl.1209

8Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(12) CP

DP

which car

C′

C TP

t T′

T VP

t V′

hit DP

a wall

This will involve a number of Merge and Move steps, all of which must be triggered by
features.

Let us first consider a single Merge step. Just like in Minimalist syntax, the DP a wall is built
by merging the lexical items a and wall. In MGs, this specific operation must be triggered by
matching features on the two lexical items: wall carries a category feature N, and a carries the
corresponding selector feature =N. Since a carried the selector feature, it acts as the head of the
resulting phrase a wall. It also carries the category feature D, indicating that this phrase is a DP.
Once N and =N have triggered Merge, they are considered checked and no longer participate in
any syntactic operations.

The MG literature uses a specialized notation to express the preceding paragraph more
succinctly. The phonetic exponent of a lexical item like wall is separated from its features by a
double colon.

(13) a. wall∷ N
b. a∷ =N D

Note that the selector feature =N on a occurs before the category feature D because a cannot
act as the head of a DP until it has selected an NP argument via Merge. Rather than unordered
feature bundles, then, MGs use feature strings. The features of every lexical item are linearly
ordered, and a feature cannot trigger any syntactic operations until all features before it have
been checked.

Once a wall has been built, the same system of feature-driven Merge allows us to assemble
the VP and part of the TP. First, the verb hit carries a selector feature =D which is matched by
the category feature D on the determiner a. Since a is the head of a wall, the whole DP a wall
is merged with the verb hit. We build the DP which car in exactly the same way a wall was
assembled, and then merge it with hit. Note that this requires hit to carry a second selector
feature =D as the first one was already checked when hit merged with a wall—in MGs, each
feature is a resource that is used up once it has triggered an operation. Finally, the category
feature V on hit allows it (or rather, the phrase it heads) to be merged with the T-head, which
carries the matching selector feature =V. At this point, then, the following syntactic operations
have taken place:

(14) a. Merge a and wall, checking =N on a and N on wall
b. Merge hit and a wall, checking =D on hit and D on a
c. Merge which and car, checking =N on which and N on car
d. Merge hit a wall and which car, checking =D on hit and D on which
e. Merge T and which car hit a wall, checking =V on T and V on hit

This can be represented in the more readable format of a derivation tree.

https://doi.org/10.5334/gjgl.1209

9Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(15) Merge

T :: =V T Merge

Merge

which :: =N D car :: N

Merge

hit :: =D =D V Merge

a :: =N D wall :: N

In a derivation tree, all leaf nodes are lexical items, and all interior nodes are labeled with
syntactic operations. In this case, all interior nodes are labeled Merge, and each Merge operation
applies to the two subtrees immediately underneath it. Note that if we remove all features and
relabel each interior node with an X′-label matching the category feature of the selector, we
get the phrase structure tree that would have been built up to this point:

(16) TP

T VP

DP

which car

V′

hit DP

a wall

This shows that derivation trees encode all the information of phrase structure trees—the latter
can be fully recovered from the former. For this reason, derivation trees have played a central
role in MG research ever since Kobele et al. 2007, effectively replacing phrase structure trees as
the primary syntactic representation format. As we will soon see in Section 3.2, derivation trees
are also an integral component of the MG parsing approach we adopt.

Now that the VP has been selected by the T-head, the next step to take place is movement of
the subject which car from Spec,VP to Spec,TP. This requires some modifications to what we
have done so far. Displacement of subtrees is handled by the operation Move, and just like
Merge, Move must be triggered by two matching features. Whereas Merge requires matching
category and selector features, Move requires matching licensee and licensor features. In the
case at hand, the T-head must carry a licensor feature, which we may call +nom; the feature
name is arbitrary, and we do not claim that subject movement is in any way related to checking
of nominative case. The head of the mover must carry a matching licensee feature -nom. In
the case at hand, this head is which, the feature string of which we assumed to be =N D. This
assumption is now revealed to be wrong: which must have a feature string that also includes
the licensee feature -nom. The placement of the licensor and licensee features is relatively fixed:
licensor features occur between the selector features and the category feature, and licensee
features occur after the category feature.2

Based on these observations, we have to make minor adjustments to the feature strings for
T and which. The T-head now has the feature string =V +nom T, while the feature string of
which is =N D -nom. Rather than the pre-movement derivation tree in (15), then, we actually

2 The reasoning behind this feature order is as follows. Licensee features must occur after the category
feature because a phrase cannot move anywhere before it has been selected and thus made part of a larger
structure that furnishes potential landing sites. The licensor features on a head H must occur after the first
selector feature of H as it is impossible for anything to move to H if H hasn’t selected a single argument yet.
At the same time, all licensor features must occur before the category feature of H—otherwise, a phrase
would move to Spec,HP after HP has already been selected by some other head. This would be an instance of
countercyclic movement, which is usually considered illicit. Usually this ban against countercyclic movement is
generalized so that a head must not select any arguments once it has been targeted by movement. Under this
assumption, licensor features must always appear after all selector features.

https://doi.org/10.5334/gjgl.1209

10Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

have the one in (17), where appropriate licensor and licensee features have been added for
subject movement.

(17) Merge

T :: =V +nom T Merge

Merge

which :: =N D -nom car :: N

Merge

hit :: =D =D V Merge

a :: =N D wall :: N

At this point, the head of the whole assembled structure is T, with feature string =V +nom T. But the
selector feature =V has already been checked when the T-head merged with the whole VP, leaving
the licensor feature +nom as the first unchecked feature on the T-head. This feature can only be
checked by Move, so the whole structure is searched for a lexical item whose first unchecked
feature is the matching licensee feature -nom. As we already know, this is the case for which,
whose remaining unchecked feature is -nom. The two matching features thus trigger Move. In the
phrase structure tree, this results in displacement of the whole phrase headed by which to Spec,TP.
In the derivation tree, we merely record that the operation Move was triggered at this point.

(18) Move

Merge

T :: =V +nom T Merge

Merge

which :: =N D -nom car :: N

Merge

hit :: =D =D V Merge

a :: =N D wall :: N

Due to derivation trees only recording that Move is taking place, the geometry of the derivation
tree no longer mirrors exactly the structure of the phrase structure tree. However, it is still the
case that all the information of the phrase structure tree is encoded in the derivation tree. To
see this, we may once again remove all features from all lexical items and relabel interior nodes
in an X′-fashion. In addition, we also add feature-annotated movement arrows that connect
the moving phrase to the corresponding Move nodes. The result is just a notational variant of
standard phrase structure trees where the mover is depicted in its starting position rather than
its final landing site.

(19) TP

T′

T VP

DP

which car

V′

hit DP

a wall

nom

https://doi.org/10.5334/gjgl.1209

11Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Even with the presence of Move, then, derivation trees are a viable syntactic encoding that
furnishes all the information provided by phrase structure trees. The tree in (19) is still a
derivation tree, albeit enriched with notational bells and whistles that should make it easier to
read for most linguists. For the rest of the paper, we will use this format of derivation trees with
movement arrows and X′-labels as notational aids.

We still have to finish our example derivation, though. Once movement has taken place, the
T-head’s only unchecked feature is the category feature T. This allows it to be merged with
the C-head, which carries the matching selector feature =T. It also carries a licensor feature
+wh, indicating that it needs to act as a landing site for wh-movement. In order to satisfy this
requirement, we once again have to revise our analysis and posit that which actually carries
two licensee features, first -nom, then -wh. With this change, the phrase headed by which will
undergo wh-movement after it has undergone subject movement. The final derivation tree is
depicted in (20) below in the conventional derivation tree format, whereas (21) shows it in the
enriched format inspired by phrase structure trees.

(20) Move

Merge

C :: =T +wh C Move

Merge

T :: =V +nom T Merge

Merge

which :: =N D -nom -wh car :: N

Merge

hit :: =D =D V Merge

a :: =N D wall :: N

(21) CP

C′

C TP

T′

T VP

DP

which car

V′

hit DP

a wall

nom

wh

This concludes our simple example, which has established all the required properties of
MGs. Structures are built via the operations Merge and Move in a fashion that closely mirrors
Minimalist syntax. The major change is that the feature calculus is more explicit, requiring
each lexical item to be annotated with a finite list of features (category and selector features
for Merge, licensee and licensor features for Move). The order of features on a lexical item
determines the sequence of Merge and Move operations that this item participates in. Crucially,

https://doi.org/10.5334/gjgl.1209

12Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

a single word may correspond to several lexical entries that differ only in their feature make-
up. For example, the determiner a corresponds to at least two lexical entries, depending on
whether or not it heads the subject (and thus moves to Spec,TP via -nom).

(22) a. a∷ =N D
b. a∷ =N D -nom

Thus, in the spirit of the Borer-Chomsky conjecture, MGs are a fully lexicalized formalism where
all syntactic variation is expressed purely in terms of feature annotations on lexical items.

We have only focused on the most basic version of MGs here as it is sufficient for this paper.
There is a vast body of literature that extends MGs in various ways, including head movement
(Stabler 2003), sidewards movement (Stabler 2006; Graf 2012), across-the-board movement
(Kobele 2008; Torr & Stabler 2016), clustering movement (Gärtner & Michaelis 2010), phases
(Stabler 2011a), adjunction (Frey & Gärtner 2002; Fowlie 2013; Graf 2014; Hunter 2015), island
constraints (Gärtner & Michaelis 2007), transderivational constraints (Graf 2013), and much
more. These extensions make MGs more similar to current strands of Minimalist syntax, but
computationally they do not stray far from the basic version presented here. The remainder
of this paper applies equally to this simple version of MGs and those with numerous additional
operations and constraints.

3.2 TOP-DOWN PARSING OF MGS

MGs provide us with a computational foundation for syntax, but in order to develop a rigorous
account of the link between scope and sentence processing, we need to combine MGs with an
equally rigorous theory of parsing. Fortunately, there has been plenty of work on MG parsing
(Harkema 2001; Stabler 2011b; Stanojević & Stabler 2018; Torr et al. 2019). In the wake of
Kobele et al. 2013 there has been a flurry of work using MG parsing as a model of human
sentence processing, covering a wide range of constructions and phenomena (see the list
in the introduction). They all share the common insight that processing predictions can be
derived directly from the structure of MG derivation trees. Our proposal in Section 4 builds on
this tradition and requires only minor modifications that are compatible with all prior work.

While there are many different parsing algorithms for MGs, work on sentence processing has
largely focused on the MG top-down parser of Stabler (2013). Like every parser, this one takes
as its input a string of lexical items, and it returns one or more trees that can be assigned to the
input according to some predefined grammar. Stabler’s top-down parser is actually a recursive
descent parser. This means that (i) the parser starts at the root of the tree and works toward
the leaves, (ii) the parser always builds a full branch of the tree before working on a new branch,
and (iii) when given a choice between exploring branch A or branch B, the parser first works on
whichever branch contains pronounced material that occurs farther left in the input string. The
main innovation of Stabler’s parser is that it builds MG derivation trees instead of phrase structure
trees, and that it takes movement into account when choosing which branch to work on.

We omit a formal definition of the parser and instead provide an illustrative example. Suppose
that we are given the input string A car hit John, which should receive the derivation tree below
(depicted once again in the X′-inspired notation).

(23) CP

C TP

T′

T VP

DP

a car

V′

hit John

nom

https://doi.org/10.5334/gjgl.1209

13Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Let us go through each step that the MG top-down parser takes in building this structure. We
recommend that the reader reference Figure 1 at the same time.

1. Since the parser operates in a top-down fashion, it has to start at the root node. By
assumption, the input is a sentence, so the parser starts by positing a finite CP.

2. The parser now has to consider what kind of finite CP this may be. This depends on the
grammar, but for English there are at least three options: a CP without any movement, a
CP targeted by wh-movement, or a CP targeted by topicalization. Suppose that the parser
somehow makes the right choice and posits a CP without movement (we will return to
this issue at the end of this subsection). Then the parser may assume that this CP is built
from a C-head and a TP, so it adds these two nodes to the tree, as daughters of CP.

3. Now that we have the partial structure [CP C TP], the parser has to decide which one of
the two branches it has to work on first. Since the C-head will be linearized to the left of
TP, it picks this one first. C is a lexical item, so there is nothing further to expand. Since
C is an unpronounced head, we cannot verify its presence in the input string either, and
the parser simply marks it as done.

4. The parser now starts working on TP. Again there are many ways a TP could be built,
but the parser will assume that it is a TP that is targeted by subject movement. In this
case, the derivation tree will only have a single T′-daughter, which is added below TP.
In addition, the parser records that this is a T′ that must contain a subject mover in
some lower position (i.e. a phrase carrying -nom).

Figure 1 Stepwise construction
of the derivation tree for A car
hit John, with the final step
of scanning John omitted;
boldface indicates that the
parser has completed all work
on the node.

Step 1 Step 2 Step 3 Step 4

CP CP

C TP

CP

C TP

CP

C TP

T′

Step 5 Step 6 Step 7 Step 8

CP

C TP

T′

T VP

CP

C TP

T′

T VP

DP V′

CP

C TP

T′

T VP

DP

a car

V′

CP

C TP

T′

T VP

DP

a car

V′

Step 9 Step 10 Step 11 Step 12

CP

C TP

T′

T VP

DP

a car

V′

CP

C TP

T′

T VP

DP

a car

V′

CP

C TP

T′

T VP

DP

a car

V′

hit John

CP

C TP

T′

T VP

DP

a car

V′

hit John

https://doi.org/10.5334/gjgl.1209

14Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

5. Since there is only one branch to work on, the parser considers TP done and instead
starts to expand T′. It assumes that T′ can be split into a T-head and a VP. It also has
to guess which branch will lead to the subject mover, which is still missing from the
structure. Since the T-head cannot be a subject mover, the choice is easy, and the
parser records VP as the subtree containing the subject mover.

Once again the parser has to decide which branch it should work on first. Earlier on, it
preferred the C-head over the TP because C is linearized to the left of the TP. This time,
the choice is different. While it is true that the T-head must be linearized to the left
of its VP-complement, the VP is assumed to contain a subject mover that will end up
to the left of the T-head. So the VP-branch contains material that will eventually be
to the left of T. For this reason, the parser postpones further work on the T-head and
instead keeps expanding the VP. Essentially, the parser took movement into account
when calculating which branch is “leftmost” in the sense that it contains a piece that
is to the left of all material in the other branch. This additional reasoning step is what
separates the MG parser from standard recursive descent parsers.

6. With work on the T-head currently on hold, the parser instead expands the VP. As
before, a reasonable MG for English will furnish many possible expansions, but we
will assume that the parser picks the correct expansion: a DP subject and V′. Since
the DP is the subject, it should undergo subject movement, and therefore the parser
assumes that this DP will provide the required licensee feature -nom. This takes care of
the movement dependency that was started earlier on when TP was expanded into T′.
The parser also has to decide whether it wants to work on DP or V′ first. Based on the
parser’s guesses so far, no lexical material in V′ can appear to the left of the subject DP.
Hence the parser decides to prioritize the subject DP and leave V′ for later.

7. The parser hypothesizes that the DP is built from the two lexical items a and car—to
reiterate, there are thousands of alternative expansions, we are only focusing on the
one here that will yield the correct tree structure.

8. Since the D-head a must be linearized to the left of its complement car, the parser
chooses to work on a before car. This is the first pronounced lexical item the parser
has encountered, so if the structure built so far is correct, the first symbol in the input
string should be a. The parser performs a scan step to match the leaf node against the
first input symbol. The two match, and the parser marks a in the input as successfully
scanned. It also marks the D-head in the tree as completed and moves on to the
complement.

9. Since the complement is the lexical item car, the parser performs another scan step.
The first unscanned symbol in the input string is now car. Again we have a match, so
the parser marks the input symbol car as scanned and also marks the leaf node car as
completed.

10. Now that the whole subject DP is completed, the parser has to decide what to work
on next. There are two unfinished pieces of structure: the T-head, and V′. Since by
the parser’s previous assumptions V′ does not contain any material that moves
to the left of the T-head, the parser works on the T-head first. But as this is an
unpronounced node that cannot be checked against the input, the parser simply
marks it as done.

11. This only leaves us with V′. One final time the parser has to make a guess as to how
this structure should be expanded, and it picks hit and John.

12. The parser prioritizes hit over John because the V-head must be to the left of the
complement unless John were to move to some higher position, which it doesn’t. It
performs a successful scan step, matching the leaf node against the input.

13. This only leaves John. The parser performs another successful scan step. Since the
derivation tree has been fully built, and there are no remaining input symbols, the
parse is considered successful.

The parse steps above can be represented more compactly using the index/outdex notation of
Kobele et al. (2013) (the term “outdex” is first used by Graf et al. 2015). Each node is annotated

https://doi.org/10.5334/gjgl.1209

15Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

with a superscript (its index) and a subscript (its outdex). A node’s index denotes the step at
which the parser first adds the node to the structure. Its outdex denotes the step at which
the parser finishes all work on the node (although the parser may still be working on material
underneath the node). This is shown in (24).

(24) 1CP2

2C3
2TP4

4T′
5

5T10
5VP6

6DP7

7a8
7car9

6V′
11

11hit12
11John13

nom

We encourage the reader to verify that each node’s index and outdex in the example above
does indeed match the steps where it is first introduced and finally completed, respectively. For
the rest of the paper, we will make heavy use of this notation to represent the parser’s behavior
for specific sentences.

One more example may help solidify the reader’s intuitions. Suppose that our input sentence
involves topicalization of John, yielding John, a car hit. In this case the derivation tree is almost
exactly the same, except for the addition of a Move node at the very top. But the index/outdex
annotation is very different, reflecting a major change in how the parser constructs this
derivation tree.

(25) 1CP2

2C′
3

3C9
3TP4

4T′
5

5T13
5VP6

6DP10

10a11
10car12

6V′
7

7hit14
7John8

nom

top

The topicalization of John completely changes the left-to-right order between elements. For
instance, the parser has to delay working on C because TP contains an element that will appear
to the left of C, namely John. For the same reason, the T-head, the subject, and the verb hit all
have to be held in memory and cannot be completed right away. Instead, the parser has to
make a beeline directly to John, and only once the parser has found John may it work on the
rest of the tree. Quite generally, the parser always expands the tree in such a way that it can
take the shortest route towards whatever lexical item it believes to appear next in the input
string.

Finally, it is instructive to consider what happens in the case of intermediate movement, as in
Which car hit John. Again the index/outdex-annotation differs quite a bit from (24) because the
subject now moves to a position to the left of C, so that the latter cannot be worked on until
the subject has been fully built.

https://doi.org/10.5334/gjgl.1209

16Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(26) 1CP2

2C′
3

3C10
3TP4

4T′
5

5T11
5VP6

6DP7

7which8
7car9

6V′
12

12hit13
12John14

nom

wh

But the intermediate subject movement step has no effect on anything else. In particular, note
how the T-head can be worked on as soon as the C-head is completed. This is because the
parser has already made the assumption that the subject mover is also the wh-mover, which
must be to the left of the C-head. Hence there is no material in the input string between C and
T — the intermediate landing site does not affect the linear order of lexical items and thus has
no major effect on how the parser builds the tree.

In sum, the MG top-down parser of Stabler (2013) builds derivation trees in a top-down
fashion, making educated guesses about how interior nodes should be expanded into one or
two daughters, and which subtrees contain specific movers. If there are multiple places where
the current tree could be expanded, the parser always prioritizes the node that it believes will
ultimately yield a structure that contains the next symbol in the input string. When the parser
reaches a lexical item, it uses a scan step to verify that this lexical item matches the current
input symbol. This simple strategy allows the parser to be incremental and predictive, two
essential properties of human sentence processing.

The discussion above abstracts away from many technical aspects of the parser, in particular
its formal definition in terms of a parsing schema (Pereira & Warren 1983; Sikkel 1997), the
representation of MGs in terms of prefix trees for more efficient search, and how incomplete
parts of the tree are organized with a priority queue. While those are key aspects of the parser,
they have no bearing on the subsequent discussion. Similarly, we say nothing about how the
parser chooses between different ways to expand a given node, nor how it recovers from
incorrect guesses. There are many different solutions to these issues, from backtracking or
exhaustive parallel search to probabilistic search beams. In the parsing literature, these issues
are considered part of the control structure, and Stabler’s top-down parser is compatible
with many different control structures. The recent work on MG models of human sentence
processing completely sidesteps the issue of control structures and focuses just on how the
shape of the derivation tree itself affects processing.

3.3 MGS FOR SENTENCE PROCESSING

There are many factors that go into human sentence processing and affect how hard a
given sentence may be to process: structural ambiguity, the size of the search space, lexical
frequency, context, memory retrieval, attention, and more. Kobele et al. (2013) argue that even
if one puts aside all these factors and considers only how a specific derivation is assembled in a
top-down manner, it is still possible to account for well-known processing contrasts. Even if one
assumes that the parser always makes the right guesses, it can still be a demanding task to
build the derivation tree because incomplete nodes must be held in memory. This reductionist
approach has proved surprisingly fertile, providing novel, syntactically grounded explanations
for processing phenomena. As was mentioned in the introduction, this includes center- vs.
right-embedding, crossing vs. nested dependencies, subject vs. object relative clauses, stacked
relative clauses, Heavy NP shift, dative DP attachment ambiguities, gradience in syntax, and
priming effects. To the best of our knowledge, no other approach has been able to account

https://doi.org/10.5334/gjgl.1209

17Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

for such a diverse range of phenomena purely in terms of syntactic structure, and no other
account is as sensitive to seemingly minor differences in syntactic structure.

For a simple illustration of this approach, consider once more the example of how the MG top-
down parser builds the derivation tree for A car hit John. The index/outdex-annotated derivation
tree in (24) shows how each node is introduced at a particular step and then completed at a
later step. The difference between the index and the outdex is the amount of time that the node
is stored in working memory, also known as its tenure (see also Joshi 1990 and Rambow & Joshi
1994 for an earlier application of this idea). High tenure is costly because it means that some
parts of the structure have to be held in working memory for a long time. However, while the cost
of tenure is a centerpiece of the MG processing work mentioned above, tenure will not play a role
in this paper, and instead we focus on metrics that directly measure movement dependencies.

Movement dependencies are costly because the parser has to keep track of all the movers it still
needs to find. The longer the movement dependency, the longer this information needs to be
held in working memory. This kind of memory load is called Size by Graf et al. (2015) (a misleading
term as it has nothing to do with the size of the mover). While we do not directly invoke Size in this
paper, the metric we propose is closely modeled after it.

Size-based metrics can be used to explain, among other things, why object relative clauses
are harder to process than subject relative clauses. Example (27) shows the derivation for a
subject relative clause on the left and an object relative clause on the right; in order to keep the
examples small, we omit all structure outside the relative clauses.

(27) 1CP2

2C′
3

3C8
3TP4

4T′
5

5T9
5VP6

6who7
6V′

10

10likes11
10DP12

12the13
12dog14

1CP2

2C′
3

3C9
3TP4

4T′
5

5T13
5VP6

6DP10

10the11
10dog12

6V′
7

7likes14
7who8

nom

wh

nom

wh

The object relative clause contains a longer movement path because the object starts from a
lower position compared to the subject. Following Graf et al. (2015), we can quantify this as
the difference between when a mover’s existence is first conjectured and when that mover
is finally encountered, as in (28). This formulation is not identical to Graf et al.’s (2015), but is
equivalent to it; the different notation will help illustrate the eventual similarity between Size
and the to-be-introduced Location Differential (LD).

(28) a. Size
Given a node n of derivation tree t, we write o(n) for the outdex of n. We write
mn for the mother of n (the node immediately dominating n). We write fn for the
final landing site of n in t, where mn qualifies as a landing site. Then the Size of
n is size(n) = o(mn) – o(fn); for the root node r (which has no mother), size(r) = 0.

b. SumSize
Given a derivation tree t, SumSize is the sum of size(n) for all nodes n of t.

Let us apply these definitions to the trees in (27). The subject relative clause contains only one
mover, who, whose mother’s outdex is 6: who is encountered in step 6. The final landing site of
who is CP, whose outdex is 2: the mover’s existence was conjectured when we expanded the

https://doi.org/10.5334/gjgl.1209

18Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

CP in step 2. Hence the Size of who is 6–2 = 4, and that’s also the SumSize value of the whole
tree because all other nodes have a Size of 0. The object relative clause, on the other hand,
contains two movers, who and the subject DP. The outdex of who’s mother is now 7, and the
outdex of its final landing site CP is 2, already giving us a slightly increased Size of 7–2 = 5. In
addition, the subject DP’s mother has an outdex of 6 and TP’s (its final landing site) is 4, yielding
a Size of 6–4 = 2. Hence the object relative clause has a SumSize value of 5 + 2 = 7, which is
higher than the subject relative’s value of 4. Since SumSize measures memory load and hence
should be kept low, we correctly predict that subject relative clauses are easier to process than
similar object relative clauses.

It must be pointed out that while the MG processing approach provides concrete numerical
values for any given derivation, these numbers are not directly comparable. A derivation
with a score of, say, 30 may still be easier to process than an entirely different derivation
with a score of 5. The numbers only yield useful results when comparing minimal pairs. In
addition, the scores only provide an ordinal scale—when comparing three minimally distinct
trees a, b, and c with scores 5, 6, and 20, respectively, it need not be the case that c is much
harder to process than b whereas b is only slightly harder than a. The claim is only that a is
easier than b, which in turn is easier than c. These are major caveats, and a lot more work
is needed to address these issues and strengthen the import of the computed scores. We
will simply follow the established methodology of the MG processing approach, despite its
current limitations.

4 A NEW METRIC FOR SCOPE PROCESSING DIFFICULTY
The discussion of MGs and sentence processing in Section 3 focused only on the PF-effects of
movement: when a phrase moves, the linear order of terminals is altered. We said nothing
about the semantic interpretation of derivation trees, let alone how movement interacts with
scope. In order to address the scope data of Section 2, we have to disentangle the notions
of PF-movement and LF-movement in MGs. We do so by adding LF-movement (Section 4.1)
in a manner that still allows us the same index/outdex-format for representing the parser’s
behavior. We then define Location Differential (LD) as a formal method for quantifying how
much a sentence’s LF and PF differ from each other (Section 4.2). LD correctly handles all the
scope data discussed in this paper (Sections 4.3–4.6).

4.1 ADDING LF-MOVEMENT

The original formulation of MGs in Stabler 1997 already allows for pure LF-movement,
commonly referred to as covert movement. Stabler treats covert movement like any other
instance of movement, except that the mover is not actually displaced. That is to say, covert
movement is purely a feature checking operation. But keep in mind that in a derivation tree,
movers are never displaced to begin with: they always remain in the position where they are
merged. From the perspective of derivation trees, then, there is no relevant difference between
overt and covert movement. The difference between the two only affects the resulting phrase
structure tree.

The concept of a single resulting phrase structure tree, though, needs rethinking for our
purposes. Taking inspiration from the inverted T-model, we assume that there are two distinct
representations that are built from the same MG derivation tree: an LF-representation, and a PF-
representation (cf. Kobele 2006). Movement then comes in three distinct varieties. One triggers
displacement at both LF and PF (standard movement), one only at LF (covert movement), and
one only at PF (movement followed by reconstruction). With respect to the MG feature calculus,
the three kinds of movement behave exactly the same in that they involve the checking of a
licensor feature and a matching licensee feature. Derivation trees then serve as a uniform data
structure where various movement types can be interleaved as needed to produce distinct LF-
and PF-structures.

Consider, for example, the toy derivation tree in (29), where the phrase M undergoes two
distinct movement steps triggered by the licensee features -s and -l. We show the canonical
derivation tree format on the left and the X′-style format on the right.

https://doi.org/10.5334/gjgl.1209

19Pasternak and Graf

Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(29) Move

Merge

G :: =F +l G Move

Merge

F :: =M +s F M :: M -s -l

GP

G′

G FP

F′

F M

s

l

Each application of Move is licensed as it is triggered by matching licensor and licensee features.
Now suppose that only s-features trigger standard movement that affects both PF and LF,
whereas l-features trigger pure LF-movement. This does not alter the feature calculus at all,
and the derivation tree above still describes a well-formed syntactic operation. But it affects
what the output structure looks like that is built from this derivation tree. The PF-tree, depicted
in (30a), sees M move to Spec,FP via the s-feature, but it does not move any farther because
the final movement step is pure LF-movement, which has no effect on the PF-structure. The LF-
tree in (30b) also has M move to Spec,FP, but then it subsequently moves to Spec,GP because
l-features license movement at LF. Meanwhile, if the l-feature were replaced with a PF-only
p-feature, this last movement would be PF-only instead of LF-only, meaning the PF-tree would
look like (30b), and the LF-tree would look like (30a).

(30) a. GP

G FP

M F′

F t

b. GP

M G′

G FP

t F′

F t

Thus, MGs allow us to produce distinct PF- and LF-structures from the same derivation tree.

There are many different ways the proposed split between movement types can be
implemented. Graf (2012) develops a fully parameterized system of Movement-generalized
MGs where each movement feature is itself a complex bundle of parameters that fully define
what kind of movement is triggered by this feature. In addition, the paper also provides a
general methodology for defining constraints on how these movement types may interact (for
instance, whether LF-movement across a closer PF-mover constitutes a superiority violation).
To keep things as simple as possible, though, we will assume that movement features come in
three different types indicated by subscripts.

(31) a. f triggers standard movement, which counts as both LF-movement and
PF-movement

b. fL triggers LF-movement
c. fP triggers PF-movement

https://doi.org/10.5334/gjgl.1209

20Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Movement arrows in the X′-style representations will be modified to reflect the type of
movement. As before, gray dot-dashed arrows indicate standard movement, whereas blue
dashed arrows are used for LF-movement and red dotted arrows for PF-movement. This
convention was already used in (30). Another example is provided in Figure 2, where the subject
a technican undergoes standard movement to Spec,TP while the object every plane undergoes
QR (i.e. LF-movement) to Spec,vP to avoid a type mismatch (Heim & Kratzer 1998). Since there
is no general consensus as to what kind of feature may trigger QR, here we use the nondescript
feature name scL (for scope).

The reader may be wondering why the parser does not prioritize working on every plane in
Figure 2 once the subject and the T-head have been taken care of. In previous examples,
movement of the object to a higher position always resulted in the parser prioritizing the mover
over other material. But this was only because the movement had a PF-reflex. Recall that the
parser chooses between alternative branches based on linearization. The object in Figure 2
only undergoes LF-movement, which does not affect linearization. Since the object will still be
linearized to the right of the verb, the parser won’t work on it until the verb has been finished
— the parser treats a phrase that only undergoes LF-movement like a phrase that does not
move at all.

We would like to reiterate that it isn’t terribly important how exactly one implements the three-
way split between standard movement, LF-movement, and PF-movement. We provide the
subscript solution as a demonstration that the split is easy to encode, not as an argument that
this is the best way of doing it. Along the same lines, there are also many different kinds of LF- and
PF-representations that can be used with this system. The implementation in the appendices, for
example, yields LF phrase structure trees akin to those of Heim & Kratzer (1998), where movement
operations leave traces that are coindexed with lambda-abstractors inserted below landing sites.
Alternatively, the semantic interpretation could be done directly over derivation trees without
any phrase structure intermediary, as in Kobele 2006. Importantly, our core insights are entirely
independent of such considerations as they only hinge on MGs’ ability to make a distinction
between these three movement types in a manner that can be read off derivation trees.

4.2 EXTENDING MG PROCESSING TO LF: THE SLD PRINCIPLE

While our version of MGs now features three distinct movement types, the metrics developed in
the MG processing literature were designed exclusively for standard movement. Per the above
discussion, the MG processing literature has identified SumSize as one of the most useful

Figure 2 Annotated derivation
tree for surface scope reading
of A technician inspected every
plane.

1CP2

2TP4

4T′
5

5vP6

6vP7

7v′12

12VP14

14DP16

16plane18
16every17

14inspected15

12v13

7DP8

8technician10
8a9

5T11

2C3

nom

scL

https://doi.org/10.5334/gjgl.1209

21Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

metrics for predicting overall processing difficulty. This metric operates on the intuition that the
parser has to keep track of movers that it hasn’t added to the (derivation tree) structure yet,
which incurs additional memory load. Formally, Size is expressed as the difference between
the step where the mover is first conjectured (the outdex of the final landing site) and the step
where the mover is finally added to the structure (the outdex of its mother).

Building on this idea, we propose that when a mover’s final PF landing site is distinct from its
final LF landing site, processing cost increases the farther apart these two landing sites are.

(32) Location Differential (LD)
Given a node n in derivation tree t, let o(n) be n’s outdex. Furthermore, let mn denote
n’s mother, and let ln and pn denote n’s final LF and PF landing sites in t, respectively
(where mn qualifies as both an LF and PF landing site). The Location Differential (LD)
of n is ld(n) = |o(pn) – o(ln)|. For root node r, ld(r) = 0.

o(pn) is the step in the parse at which n’s existence as a mover has been hypothesized at
PF, and o(ln) the step at which it has been hypothesized at LF. Since ld(n) is the absolute
value of the difference between these two, it serves to measure the number of parse steps
in which n has been hypothesized at one of PF or LF, but not the other. If n never undergoes
movement or only undergoes standard movement, ld(n) will be 0: by fiat for the root, and
because pn = ln in the other cases. But if n ever undergoes PF-only or LF-only movement, ld(n)
will be non-zero.

As an example, consider once more the derivation tree for a technician inspected every plane
as depicted in Figure 2. Since the subject only undergoes standard movement to TP, that is
its final landing site for PF as well as LF. So if the subject is n, then o(pn) = o(ln) = 4, meaning
ld(n) = 0. By contrast, the object DP every plane has an LD of 8. This is because its final LF
landing site is the highest vP node, which has an outdex of 6. Since no PF movement takes
place, by the above definition the final PF landing site for this DP is its mother, which has
an outdex of 14. Thus, by the definition in (32) this DP has an LD of |14–6| = 8. In general, it
suffices to identify, for every mover n, the two final landing sites of n and subtract the higher
site’s outdex from the lower one’s.

LD is a natural generalization of Size in the sense that the latter can be regarded as measuring
the difference between the PF tree and the derivation tree, rather than the PF tree and the LF
tree. The reader may nonetheless be wondering about the cognitive motivation for LD. We
contend that processing in a system with both PF and LF representations is more complex than
the picture drawn in the computational parsing literature. Humans do not merely face the
task of mapping an input to some syntactic representation. They have to relate the input to a
semantic interpretation, with the syntactic structure as the intermediary. Hence we shouldn’t
just measure the cost of constructing a derivation tree, but also the cost of interpreting this
derivation tree. Now suppose that a mover’s final PF-landing site is higher than its final LF-
landing site. Then the parser not only has to memorize that it is still looking for a mover, it also
has to store that this mover will have to be integrated into the LF representation at a lower,
as-yet-to-be-determined point in the structure. In the reverse case where the mover’s final
LF-landing site is higher than its final PF-landing site, the parser instead has to store that this
mover cannot yet be linearly ordered with respect to the rest of the structure because its final
PF position still remains to be found. The system we present in the appendices makes this
increased workload explicit: when a mover has been predicted at PF but not LF (for example), it
has to be assigned a “dummy” LF address until it has also been predicted at LF. The dissociation
of PF and LF introduces additional bookkeeping that can only be minimized by keeping each
mover’s LF and PF positions as close together as possible.

LD, like Size, does not on its own allow us to compare distinct sentences because it is a property
of nodes, not trees. Again we follow the example of SumSize and sum the location differentials
of all nodes.

(33) Summed Location Differential (SLD)
Given a derivation tree t, SLD is the sum of ld(n) for all nodes n of t.

Higher SLD scores then indicate higher processing difficulty.

https://doi.org/10.5334/gjgl.1209

22Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(34) SLD Principle
Parse A incurs a greater processing cost than Parse B if A’s SLD is greater than B’s SLD.

Recall from Section 3.3 that MG processing metrics—including the SLD Principle—should not
be applied indiscriminately. Comparisons have to be limited to minimally distinct derivations,
and the numerical values only provide us with an ordinal scale for ranking parses in terms of
processing cost. Thus, while the SLD metric assigns a number to any given sentence, and while
the comparison of SLD values serves as our metric for processing difficulty, the relative size
of the difference between two SLDs should not be construed as an indication of the relative
difference in processing difficulty of the two parses. There may indeed be a correlation in
this regard, but this is an empirical question over and above the one we are attempting to
address in this paper, and one that ought to be addressed via experimentation before a proper
computational account can be provided.

Now that the SLD Principle has been clearly defined, we will show how it garners the right results
for all of the cases discussed in Section 2. We will only show those details about derivations
and parses that are necessary to illustrate how the SLD Principle derives the correct results; full
details on the derivations and parses used can be found in the appendices.

4.3 CASE 1: SUBJECT > OBJECT

The first scope preference observation we will account for via the SLD Principle is the preference
for subjects to scope over direct objects in simple transitives (Kurtzman & MacDonald 1993;
Tunstall 1998; Anderson 2004). Our example sentence for this is (8a), A technician inspected
every plane. We already encountered a surface scope analysis of this sentence in Figure 2, in which
the quantified object DP underwent LF-movement to a higher position to avoid a type conflict
(see Heim & Kratzer 1998). We saw that the SLD for this parse was 8, due to the object’s LD of 8.

Now compare this to the inverse scope derivation in Figure 3. The object undergoes exactly
the same kind of LF-movement as in the surface scope derivation, and consequently its LD is
still 8. The subject, on the other hand, now undergoes PF-only movement instead of standard
movement. As a result, its final PF landing site is TP with outdex 4 while its final LF landing site
is the immediately dominating vP with outdex 7. This means that the subject’s LD is 7–4 = 3.
Overall, then, the SLD of the inverse scope derivation is 8 + 3 = 11, exceeding the SLD of 8 for the
surface scope parse. Since the SLD Principle states that whichever parse has the lowest SLD is
the easiest to process, we correctly predict that surface scope is less costly than inverse scope.

Figure 3 Annotated derivation
tree for inverse scope reading
of A technician inspected every
plane.

1CP2

2C3
2TP4

4T′
5

5T11
5vP6

6vP7

7DP8

8a9
8technician10

7v′12

12v13
12VP14

14inspected15
14DP16

16every17
16plane18

scL

nomP

https://doi.org/10.5334/gjgl.1209

23Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Before moving on, note that there is another way we could have derived inverse scope.
Rather than the subject scoping in its merge position with the object’s obligatory movement
leapfrogging it, the subject could have scoped in its landing site (Spec,TP), with the object
undergoing additional QR to a position above this landing site. The same could be done for
the cyclic QR cases that will be discussed in Section 4.5. For brevity’s sake we will not go over
these possible derivations in this paper, but they are included in the appendices; the resulting
predictions are the same across the board.

4.4 CASE 2: SUBJECT/OBJECT VS. NEGATION

Next we discuss the relative scope configurations of subject and object universal quantifiers
and sentential negation, as tested by Lee (2009). We only offer an explicit analysis of the
English case, but at the end of this subsection we will sketch how the SLD Principle could cover
Korean as well.

As discussed in Section 2.2, Lee (2009) provides evidence for a surface scope preference with
respect to negation, a preference that is unexpected under Wurmbrand’s account. In negated
sentences with every in subject position, as in (10a) repeated below, there is a preference for
surface scope, i.e. for every to scope above negation. That is, the preferred reading is that no kid
fed the doves, rather than the weaker reading that at least one kid withheld their food.

(10a) According to the story, every kid didn’t feed the doves in the park. (Lee 2009: p. 93)

As an illustration of why the SLD Principle makes the right predictions, we will use the simpler
(35) as our example sentence.

(35) Every student did not pass the test.

Consider Figure 4, which is the annotated derivation tree for the inverse scope interpretation of
(35). We assume that the subject undergoes PF-movement rather than standard movement.
Consequently, its LF position is still under negation, yielding the intended inverse scope reading.
The SLD of this parse is easy to calculate as there are no other movers besides the subject. Its
final PF landing site has outdex 4, and its final LF site has outdex 7. This results in an LD of 3,
which is also the SLD of the whole parse for the inverse scope reading.

Figure 4 Annotated derivation
tree for Every student did not
pass the test (inverse scope).

1CP2

2C3
2TP4

4T′
5

5T11
did

5NegP6

6not12
6vP7

7DP8

8every9
8student10

7v′13

13v14
13VP15

15pass16
15DP17

17the18
17test19

nomP

https://doi.org/10.5334/gjgl.1209

24Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

The surface scope reading uses almost exactly the same derivation except that the subject
now undergoes standard movement, which ensures that both its final PF position and its final
LF position are above the negation. The subject now has an LD of 0—standard movement
never results in a dissociation of LF and PF. As there are no other movement steps, 0 is also the
SLD of the whole parse. Overall, then, we have an SLD of 0 for the surface scope reading and
an SLD of 3 for the inverse scope reading. The SLD Principle once again predicts correctly that
surface scope should be less costly than inverse scope.

Lee (2009) also observed a surface scope preference for objects and negation. Universally-
quantified direct objects—such as every candle in (11a), repeated below—tend to scope under
negation (not > every).

(11a) According to the story, Cindy didn’t light every candle last night. (Lee 2009: p. 124)

Much like we did with subjects, we will use the structurally simpler (36) as our test case.

(36) Mary did not feed every patient.

Let us consider inverse scope first, with the corresponding parse shown in Figure 5. Here the
subject Mary undergoes standard movement to Spec,TP. As always, a single step of standard
movement does not induce any dissociation between LF and PF, so the subject’s LD is 0.
As for the object, we assume that it undergoes two steps of LF-movement: first it moves
to Spec, vP, then it moves to a higher position above negation. (Allowing the object to QR
straight past negation instead of first stopping in Spec,vP has no meaningful impact.) The
final LF landing site has an outdex of 6 while the final PF landing site has an outdex of 15. The
LD of the object, then, is 15–6 = 9, meaning the overall SLD for the inverse scope derivation
is 0 + 9 = 9.

Figure 5 Annotated derivation
tree for Mary did not feed
every patient (inverse scope).

1CP2

2C3
2TP4

4T′
5

5did11
5NegP6

6NegP7

7not12
7vP8

8vP9

9Mary10
9v′13

13v14
13VP15

15feed16
15DP17

17every18
17patient19

nom

scL

scL

https://doi.org/10.5334/gjgl.1209

25Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

The surface scope reading, shown in Figure 6, only differs in the absence of the second LF-
movement step for the object. Its final LF position is now inside vP. Consequently, the object’s
LD reduces from 9 to 14–7 = 7. The SLD for a surface scope reading thus is 0 + 7 = 7. Once
again the surface scope reading has the parse with the lowest SLD value and is thus correctly
predicted to be preferred.

This leaves us with Korean, where speakers prefer for both subjects and objects to scope over
negation. That, too, follows immediately if one assumes that direct objects in Korean move to
some higher functional position, as is indicated by their being linearized to the left of negation
and the finite verb. The movement of the direct object could be standard movement or pure
PF-movement. But the latter would induce a PF-LF mismatch, which is penalized by the SLD
Principle. As a result, standard movement—and hence surface scope—is the less costly option.
We see, then, that the SLD Principle in combination with an object movement analysis of
Korean once again derives a surface scope preference as desired. The scope facts of English and
Korean are both reflections of the same unifying principle that minimizes PF-LF mismatches,
and the observed semantic differences are a consequence of the syntactic differences between
these two languages.

4.5 CASE 3: CYCLIC QR

Next we account for the cyclic QR observations analyzed by Wurmbrand (2018). There are
two types of observation that we wish to account for. The first are the within-sentence
observations: for each sentence in (8), surface scope is easier than inverse scope. The second
are the across-sentence observations: inverse scope for (8a) is easier than for (8b), which is
easier than for (8c).

(8) a. A technician inspected every plane.
b. A technician tried to inspect every plane.
c. A technician decided to inspect every plane.

Figure 6 Annotated derivation
tree for Mary did not feed
every patient (surface scope).

1CP2

2C3
2TP4

4T′
5

5did10
5NegP6

6not11
6vP7

7vP8

8Mary9
8v′12

12v13
12VP14

14feed15
14DP16

16every17
16patient18

nom

scL

https://doi.org/10.5334/gjgl.1209

26Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Recall from Section 2.1 that Wurmbrand accounts for these facts by means of an analysis in
which clausal complements vary in their size, with try-complements being vPs, and decide-
complements including an additional future-shifting head woll. Since vP is a movement domain,
the object every plane must undergo an extra QR above embedded vP to generate inverse
scope in (8b). In (8c), yet another iteration of QR is required as every plane must also make
a stop in Spec,wollP. Thus, on Wurmbrand’s “costly trace” analysis we generate the correct
across-sentence predictions, in addition to the within-sentence ones.

To illustrate the efficacy of the SLD Principle, we will adopt the same syntactic analysis as
Wurmbrand, leading to the same predictions with respect to processing difficulty. However, as
will be discussed later, we do not need every component of her syntactic analysis in order to
capture the scope processing facts: the SLD Principle is flexible enough that even with major
changes to the syntactic analysis, the correct results are still derived.

In order to determine whether the SLD Principle garners the right results, we first need to find
the SLDs of the surface scope and inverse scope interpretations for each sentence in (8). We
already did this for (8a) in Section 4.2; our results were SLDs of 8 for surface scope and 11 for
inverse scope, correctly predicting a preference for surface over inverse scope. The relevant
derivation trees for (8b) and (8c) are shown in Figures 7–9 (we omit the surface scope derivation
tree for (8c) because the only difference from Figure 7 is the presence of a wollP above the
embedded vP). Based on these structures, we obtain the values in Table 1. We believe that the
reader is able to verify these values on their own by now. The table shows clearly that the SLD
Principle makes the correct predictions both within-sentence and across-sentence. For each
sentence we predict surface scope to be easier than inverse scope, and we also predict inverse
scope for (8a) to be easier than inverse scope for (8b), which in turn is easier than inverse scope
for (8c).

A few clarifying comments are in order regarding (i) the proposed derivation trees, (ii) the
SLD values for surface scope, and (iii) which aspects of Wurmbrand’s analysis can be altered
without affecting our results.

1CP2

2C3
2TP4

4T′
5

5T10
5vP6

6DP7

7a8
7technician9

6v′11

11v12
11VP13

13try14
13vP15

15vP16

16PRO17
16v′18

18to19
18VP20

20inspect21
20DP22

22every23
22plane24

nom

scL

Figure 7 Annotated derivation
tree for A technician tried to
inspect every plane (surface
scope).

https://doi.org/10.5334/gjgl.1209

27Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Figure 9 Annotated derivation
tree for A technician decided
to inspect every plane (inverse
scope).

Figure 8 Annotated derivation
tree for A technician tried to
inspect every plane (inverse
scope).

1CP2

2C3
2TP4

4T′
5

5T11
5vP6

6vP7

7DP8

8a9
8technician10

7v′12

12v13
12VP14

14try15
14vP16

16vP17

17PRO18
17v′19

19to20
19VP21

21inspect22
21DP23

23every24
23plane25

scL

scL

nomP

1CP2

2C3
2TP4

4T′
5

5T11
5vP6

6vP7

7DP8

8a9
8technician10

7v′12

12v13
12VP14

14decide15
14WOLLP16

16WOLL’17

17WOLL18
17vP19

19vP20

20PRO21
20v′22

22to23
22VP24

24inspect25
24DP26

26every27
26plane28

scL

scL

scL

nomP

https://doi.org/10.5334/gjgl.1209

28Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

We start with the proposed derivation trees. As before, we assume that objects must
undergo QR to avoid type mismatches (Heim & Kratzer 1998). We also assume that
infinitives contain a silent PRO as their subject. One could just as well use a movement-
based analysis of control (Hornstein 1999) where the subject starts out in the embedded
clause and first undergoes standard movement to Spec,vP in the matrix clause. Since
standard movement never increases the mover’s LD, this has no effect on the predictions
made by the SLD Principle. For the surface scope readings, for (8b) and (8c) it also does not
matter whether movement to Spec,TP in the matrix clause is standard movement or PF-
movement—we assume the former so that we always compare the SLDs of the least costly
parses for surface scope and inverse scope. For the inverse scope readings, movement
of the matrix subject to Spec,TP is always pure PF-movement to make it easier for the
embedded object to scope over the matrix subject. However, the appendices show that if
this movement is instead standard movement, with the object undergoing additional QR
to outscope TP, the same across-sentence results obtain. Finally, we adopt Wurmbrand’s
analysis where try takes a vP as a complement, whereas decide takes a wollP, which in turn
contains a vP.

Next, we turn to the surprising prediction that surface scope in the monoclausal (8a) should
be harder to process than in (8b) and (8c) because the latter have an SLD of 5 while the
former has an SLD of 8. This unexpected prediction stems from a difference in the size of the
relevant subjects. In the monoclausal construction, the parser has to fully build the subject DP
a technician before it can work on the already conjectured object every plane. In the infinitival
constructions, the parser only has to build a PRO, which takes fewer steps. There are two ways
to address this: one could adopt the movement-theory of control, or one could allow the object
to scope directly from the position where it is base merged (leading to a surface scope SLD
of 0 across the board; see the appendices). After all, QR of the object in the surface scope
parse is only driven by the need to avoid type mismatches, but many semantic formalisms do
not require type-driven object movement (see, e.g., Keenan 2016; Pasternak 2020). Hence the
precise predictions of the SLD Principle vary based on one’s analysis; in line with previous work
on MG processing, we consider this a feature rather than a bug as it provides another means of
comparing competing analyses.

That being said, the parser and the memory load metrics that build on it aren’t necessarily
sensitive to all aspects of a given proposal. To wit, the predictions made in this section would
stay exactly the same if all intermediate movement steps were omitted. Whereas Wurmbrand’s
account crucially relies on the number of QR steps and thus necessitates that the object stop
in Spec,vP and Spec,wollP in (8c), the SLD Principle is agnostic about this. Since each node’s LD
depends only on the index and outdex of its final landing sites, not any of the intermediate
ones, the deciding factor is what LF and PF positions a mover occupies, not how it got there.
If it turned out that, say, movers can escape wollP without stopping in its specifier, then
Wurmbrand would lose the distinction between try-infinitives and decide-infinitives, while the
predictions of the SLD Principle would remain the same. We see, then, that the SLD Principle
allows us to put Wurmbrand’s insights on a rigorous quantitative foundation while at the same
time reducing the number of syntactic assumptions that are needed to capture the observed
processing effects.

4.6 CASE 4: WH-MOVEMENT VS. CYCLIC QR

Finally, let us look at the case of overt wh-movement. As mentioned in Section 2.2 this is
problematic for Wurmbrand’s analysis since, at least intuitively, (overt) cyclic wh-movement is
considerably easier than (covert) cyclic QR. Or, more concretely, (9a) seems easier to process
than an inverse scope interpretation of (9b).

Table 1 SLDs for surface and
inverse scope parses for the
sentences in (8).

EXAMPLE TYPE SURFACE SCOPE INVERSE SCOPE

(8a) monoclausal 8 11

(8b) try + inf 5 18

(8c) decide + inf 5 21

https://doi.org/10.5334/gjgl.1209

29Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(9) Wurmbrand 2018: p. 25, based on her (29)
a. What did a technician say that John inspected?
b. A technician said that John inspected every plane.

However, the SLD Principle gets the prima facie correct results without any further stipulation,
at least if we follow Karttunen (1977) in treating moved wh-phrases as “scoping where they sit”
in Spec,CP. To show that this is the case, we will use (37) as our test example:

(37) What did a technician try to inspect?

The annotated derivation tree for (37) can be seen in Figure 10 (we assume that each
intermediate landing site checks a different wh-feature on the mover, but one may also use
a single persistent wh-feature as in Stabler 2011a or posit that successive cyclic movement
is not feature-triggered at all, as in Kobele 2006 and Graf et al. 2016). Once again we
start out with the subject a technician scoping in Spec,TP instead of its merge position,
adopting the aforementioned principle that what is relevant is the least costly parse for
each interpretation. Since all of the movements in this derivation are standard movements
that affect both LF and PF, the SLD for this parse is 0. We therefore rightly predict that overt
scope-taking operations are easier to process than their covert counterparts because they
keep LF and PF in sync.

An interesting follow-up question—and one that we must unfortunately leave for future
work—is what happens when we turn from overt wh-movement to cases in which some
or all wh-phrases stay in situ at PF. This includes languages like Japanese, where true overt
wh-movement does not exist, as well as English, where only one wh- phrase undergoes overt
wh-movement to the left edge of a given clause, with the others appearing in situ:

Figure 10 Annotated
derivation tree, What did a
technician try to inspect?

1CP2

2C′
3

3C15
3TP4

4T′
5

5did19
5vP6

6vP7

7DP16

16a17
16technician18

7v′8

8v20
8VP9

9try21
9vP10

10vP11

11PRO22
11v′12

12v23
(to)

12VP13

13inspect24
13what14

wh

wh

wh

nom

https://doi.org/10.5334/gjgl.1209

30Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

(38) a. Which technician inspected which plane?
b. *Which technician [which plane]1 inspected t1?

We cannot yet offer an account of these cases based on the available empirical and
theoretical findings. As far as we know, the empirical facts on the processing of moved wh-
phrases vs. those that stay in situ have yet to be clearly established. There also seems to
be no consensus in the theoretical literature as to what happens to in situ wh-phrases at
LF. According to the classic analysis of Huang (1982), PF-in situ wh-phrases essentially do
at LF what moved wh-phrases do at both PF and LF: namely, they move to a clause-initial
position. In this case, for wh-in situ languages the SLD Principle would predict a sentence
like (37) to be at least as difficult to process as (8b) because the wh-phrases would have
to undergo QR-like LF-only movement. However, Kotek (2016) argues for a view in which in
situ wh-phrases need not LF-move all the way to Spec,CP. Instead, they LF-move only as far
as is needed for interpretive reasons—perhaps not at all in many cases (see Kotek & Hackl
2013 for experimental evidence in favor of this view). If this is correct, then the SLD Principle
would not predict in situ wh-phrases to have a significant impact on processing difficulty,
except when additional LF-movement is involved. Thus, in order to determine whether the
SLD Principle generates the right results with respect to the processing of in situ wh-phrases,
more work needs to be done to establish what the actual results are, as well as what the
derived PF and LF structures for the relevant sentences are.

Finally, it is worth noting that the fact that cyclic wh-movement adds nothing to a parse’s SLD
does not mean that we necessarily predict that all (grammatical) wh-movement should be an
absolute breeze to process. The MG processing literature already operates with several metrics,
and our paper adds SLD into the mix in order to to capture a wide range of scope processing
preferences. How exactly these metrics should be weighted is an open problem that goes far
beyond the scope of this paper. Our goal was to demonstrate that Wurmbrand’s idea of PF-LF
mismatches as a source of processing difficulty is a natural fit for the independently supported
MG approach to human sentence processing. In combining the two, we can account for data
that is problematic for Wurmbrand’s original proposal, and we also extend the boundaries of
the MG processing framework from syntax into semantics.

5 CONCLUSION
In this paper we have followed Wurmbrand (2018) in adopting the view that extraclausal QR,
though fully grammatical, is nonetheless difficult to process—often prohibitively so. We have
additionally followed Wurmbrand in postulating that the processing difficulty of extraclausal
QR depends on the size of the embedded clause, with the complements of try-type verbs being
more conducive to extraclausal QR than the complements of decide-type verbs.

While we have argued against the particular theory of scope processing difficulty that
Wurmbrand offers to account for these observations, we have proposed an alternative metric
that is in keeping with a proposed revision that she suggests, in which processing difficulty is in
part dependent on the severity of the mismatch between PF and LF representations. This theory
was couched in a top-down parser for Minimalist Grammars, thereby embedding it within a
framework that has already been used to successfully account for a variety of observations
on syntactic processing from the experimental literature. The metric was then shown to make
the right predictions for all of the data discussed by Wurmbrand, as well as those that were
problematic for her original account.

By using a top-down MG parser to formulate our analysis of scope processing difficulty, we
have added to a growing body of work dedicated to using such parsers to account for a variety
of syntactic processing effects. The Summed Location Differential Principle that we propose
assigns a precisely defined numerical score to any Minimalist Grammar derivation tree. As a
result, it makes concrete processing predictions for a variety of constructions, many of which
remain to be experimentally verified. Our hope is that the introduction of a robust and thus far
successful scope processing metric will encourage more empirical work testing the predictions
of the SLD Principle, so that it may be either further refined or replaced with an equally predictive
and more empirically adequate alternative.

https://doi.org/10.5334/gjgl.1209

31Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

ABBREVIATIONS
acc = accusative, comP = complementizer, decl = declarative, neg = negation, nom = nominative,
Pst = past tense, toP = topic marker

ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Appendices A–C. Cyclic scope and processing difficulty in a Minimalist parser. DOI: https://

doi.org/10.5334/gjgl.1209.s1

ACKNOWLEDGEMENTS
For helpful discussion, many thanks to John Drury, Richard Larson, and members of the ZAS
Domains Reading Group. Comments from Johan Rooryck and two anonymous reviewers were
extremely valuable.

FUNDING INFORMATION
Pasternak’s research is funded by DFG Grant #387623969 (DP-Border, PIs: Artemis Alexiadou
& Uli Sauerland).

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Robert Pasternak orcid.org/0000-0002-3024-1900
Leibniz-Center for General Linguistics (ZAS), Schützenstraße 18 10117 Berlin, Germany

Thomas Graf
Department of Linguistics and Institute for Advanced Computational Science, Stony Brook University,
Stony Brook, NY 11794, USA

REFERENCES
Anderson, Catherine. 2004. The structure and real-time comprehension of quantifier scope ambiguity.

Evanston, IL: Northwestern University dissertation.

Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press. DOI: https://doi.
org/10.21236/AD0616323

Chomsky, Noam. 1995. The minimalist program. Cambridge, MA: MIT Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Roger Martin, David Michaels & Juan

Uriagareka (eds.), Step by step: Essays on Minimalist syntax in honor of Howard Lasnik, 89–155.

Cambridge, MA: MIT Press.

Chomsky, Noam. 2001. Derivation by phase. In Michael Kenstowicz (ed.), Ken Hale: A life in language,

1–52. Cambridge, MA: MIT Press.

Chomsky, Noam & George A. Miller. 1963. Introduction to the formal analysis of natural languages. In R.

Duncan Luce, Robert R. Bush & Eugene Galanter (eds.), Handbook of mathematical psychology, vol. ii,

269–321. New York, NY: Wiley.

De Santo, Aniello. 2019. Testing a Minimalist grammar parser on Italian relative clause asymmetries. In

Proceedings of the ACL workshop on cognitive modeling and computational linguistics (cmcl) 2019.

June 6 2019, Minneapolis, Minnesota. DOI: https://doi.org/10.18653/v1/W19-2911
De Santo, Aniello. 2020. Structure and memory: A computational model of storage, gradience, and priming.

Stony Brook, NY: Stony Brook University dissertation.

Farkas, Donka & Anastasia Giannakidou. 1996. How clause-bounded is the scope of universals? In

Teresa Galloway & Justin Spence (eds.), Semantics and linguistic theory (SALT) 6. 35–52. DOI:

https://doi.org/10.3765/salt.v6i0.2764
Fowlie, Meaghan. 2013. Order and optionality: Minimalist grammars with adjunction. In András Kornai &

Marco Kuhlmann (eds.), Proceedings of the 13th meeting on the mathematics of language (MoL 13),

12–20.

https://doi.org/10.5334/gjgl.1209
https://doi.org/10.5334/gjgl.1209.s1
https://doi.org/10.5334/gjgl.1209.s1
https://orcid.org/0000-0002-3024-1900
https://doi.org/10.21236/AD0616323
https://doi.org/10.21236/AD0616323
https://doi.org/10.18653/v1/W19-2911
https://doi.org/10.3765/salt.v6i0.2764

32Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, MA: MIT Press.

Fox, Danny. 2002. Antecedent-contained deletion and the copy theory of movement. Linguistic Inquiry

33(1). 63–96. DOI: https://doi.org/10.1162/002438902317382189
Fox, Danny. 2003. On logical form. In Randall Hendrick (ed.), Minimalist syntax, 82–123. Oxford: Blackwell

Publishers. DOI: https://doi.org/10.1002/9780470758342.ch2
Frey, Werner & Hans-Martin Gärtner. 2002. On the treatment of scrambling and adjunction in Minimalist

grammars. In Gerhard Jäger, Paola Monachesi, Gerald Penn & Shuly Wintner (eds.), Proceedings of

the conference on Formal Grammar, 41–52.

Gärtner, Hans-Martin & Jens Michaelis. 2007. Some remarks on locality conditions and Minimalist

Grammars. In Uli Sauerland & Hans-Martin Gärtner (eds.), Interfaces + recursion = language?

Chomsky’s Minimalism and the view from syntax-semantics, 161–196. Berlin: Mouton de Gruyter.

Gärtner, Hans-Martin & Jens Michaelis. 2010. On the treatment of multiple-wh-interrogatives in

Minimalist grammars. In Thomas Hanneforth & Gisbert Fanselow (eds.), Language and logos, 339–

366. Berlin: Akademie Verlag.

Gerth, Sabrina. 2015. Memory limits in sentence comprehension: A structural-based complexity metric of

processing difficulty. Potsdam: Universität Potsdam dissertation.

Graf, Thomas. 2012. Movement-generalized Minimalist grammars. In Denis Béchet & Alexander J.

Dikovsky (eds.), LACL 2012, vol. 7351 (Lecture Notes in Computer Science), 58–73. DOI: https://doi.
org/10.1007/978-3-642-31262-5_4

Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics. Los Angeles, CA:

UCLA dissertation. http://thomasgraf.net/doc/papers/Graf13Thesis.pdf.
Graf, Thomas. 2014. Models of adjunction in Minimalist grammars. In Glynn Morrill, Reinhard Muskens,

Rainer Osswald & Frank Richter (eds.), Formal Grammar 2014, vol. 8612 (Lecture Notes in Computer

Science), 52–68. Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-662-44121-3_4
Graf, Thomas, Alëna Aksënova & Aniello De Santo. 2016. A single movement normal form for Minimalist

grammars. In Annie Foret, Glyn Morrill, Reinhard Muskens, Rainer Osswald & Sylvain Pogodalla (eds.),

Formal Grammar: 20th and 21st international conferences, FG 2015, Barcelona, Spain, August 2015,

revised selected papers. FG 2016, Bozen, Italy, August 2016, 200–215. Berlin, Heidelberg: Springer.

DOI: https://doi.org/10.1007/978-3-662-53042-9_12
Graf, Thomas, Brigitta Fodor, James Monette, Gianpaul Rachiele, Aunika Warren & Chong Zhang. 2015.

A refined notion of memory usage for Minimalist parsing. In Proceedings of the 14th meeting on the

mathematics of language (MoL 2015), 1–14. Chicago, IL: Association for Computational Linguistics.

DOI: https://doi.org/10.3115/v1/W15-2301
Graf, Thomas, James Monette & Chong Zhang. 2017. Relative clauses as a benchmark for Minimalist

parsing. Journal of Language Modelling 5(1). 57–106. DOI: https://doi.org/10.15398/jlm.v5i1.157
Hackl, Martin, Jorie Koster-Hale & Jason Varvoutis. 2012. Quantification and ACD: Evidence from real-time

sentence processing. Journal of Semantics 29(2). 145–206. DOI: https://doi.org/10.1093/jos/ffr009
Harkema, Henk. 2001. A characterization of Minimalist languages. In Philippe de Groote, Glyn Morrill &

Christian Retoré (eds.), Logical aspects of computational linguistics (LACL’01), vol. 2099 (Lecture Notes

in Artificial Intelligence), 193–211. Berlin: Springer. DOI: https://doi.org/10.1007/3-540-48199-0_12
Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Hornstein, Norbert. 1999. Movement and control. Linguistic Inquiry 30. 69–96. DOI: https://doi.
org/10.1162/002438999553968

Huang, C. T. James. 1982. Move WH in a language without WH movement. The Linguistic Review 1(4).

369–416. DOI: https://doi.org/10.1515/tlir.1982.1.4.369
Hunter, Tim. 2015. Deconstructing merge and move to make room for adjunction. Syntax 18. 266–319.

DOI: https://doi.org/10.1111/synt.12033
Joshi, Aravind K. 1990. Processing crossed and nested dependencies: an automaton perspective

on the psycholinguistic results. Language and Cognitive Processes 5(1). 1–27. DOI: https://doi.
org/10.1080/01690969008402095

Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1(1). 3–44. DOI:

https://doi.org/10.1007/BF00351935
Keenan, Edward L. 2016. In situ interpretation without type mismatches. Journal of Semantics 33(1).

87–106.

Kennedy, Christopher. 1997. Antecedent-contained deletion and the syntax of quantification. Linguistic

Inquiry 28(4). 662–688.

Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity in language

and grammar. Los Angeles, CA: UCLA dissertation. http://home.uchicago.edu/~gkobele/files/
Kobele06GeneratingCopies.pdf.

Kobele, Gregory M. 2008. Across-the-board extraction and Minimalist grammars. In Proceedings of the

ninth international workshop on Tree Adjoining Grammars and related frameworks.

Kobele, Gregory M., Christian Retoré & Sylvain Salvati. 2007. An automata-theoretic approach to

Minimalism. In James Rogers & Stephan Kepser (eds.), Model theoretic syntax at 10, 71–80.

https://doi.org/10.5334/gjgl.1209
https://doi.org/10.1162/002438902317382189
https://doi.org/10.1002/9780470758342.ch2
https://doi.org/10.1007/978-3-642-31262-5_4
https://doi.org/10.1007/978-3-642-31262-5_4
http://thomasgraf.net/doc/papers/Graf13Thesis.pdf
https://doi.org/10.1007/978-3-662-44121-3_4
https://doi.org/10.1007/978-3-662-53042-9_12
https://doi.org/10.3115/v1/W15-2301
https://doi.org/10.15398/jlm.v5i1.157
https://doi.org/10.1093/jos/ffr009
https://doi.org/10.1007/3-540-48199-0_12
https://doi.org/10.1162/002438999553968
https://doi.org/10.1162/002438999553968
https://doi.org/10.1515/tlir.1982.1.4.369
https://doi.org/10.1111/synt.12033
https://doi.org/10.1080/01690969008402095
https://doi.org/10.1080/01690969008402095
https://doi.org/10.1007/BF00351935
http://home.uchicago.edu/~gkobele/files/Kobele06GeneratingCopies.pdf
http://home.uchicago.edu/~gkobele/files/Kobele06GeneratingCopies.pdf

33Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

Kobele, Gregory M., Sabrina Gerth & John T. Hale. 2013. Memory resource allocation in top-down

Minimalist parsing. In Glyn Morrill & Mark-Jan Nederhof (eds.), Formal grammar: 17th and 18th

international conferences, 32–51. Springer. DOI: https://doi.org/10.1007/978-3-642-39998-5_3
Kotek, Hadas. 2016. Covert partial wh-movement and the nature of derivations. Glossa: a journal of

general linguistics 1(1): 25. 1–19. DOI: https://doi.org/10.5334/gjgl.49
Kotek, Hadas & Martin Hackl. 2013. An experimental investigation of interrogative syntax/semantics. In

Maria Aloni, Michael Franke & Floris Roelofson (eds.), Proceedings of the 19th Amsterdam Colloquium,

147–154.

Kurtzman, Howard S. & Maryellen C. MacDonald. 1993. Resolution of quantifier scope ambiguities.

Cognition 48(3). 243–279. DOI: https://doi.org/10.1016/0010-0277(93)90042-T
Larson, Richard K. & Robert May. 1990. Antecedent containment or vacuous movement: Reply to Baltin.

Linguistic Inquiry 21(1). 103–122.

Lee, So Young. 2019. A Minimalist parsing account of attachment ambiguity in English and Korean.

Journal of Cognitive Science 3(19). 291–329. DOI: https://doi.org/10.17791/jcs.2018.19.3.291
Lee, Sunyoung. 2009. Interpreting scope ambiguity in first and second language processing: Universal

quantifiers and negation. Manoa, HI: University of Hawai’i dissertation.

Liu, Lei. 2018. Minimalist parsing of heavy NP shift. In Proceedings of the 32nd pacific asia conference

on language, information and computation. Hong Kong: Association for Computational Linguistics.

https://www.aclweb.org/anthology/Y18-1047.

Moulton, Keir. 2007. Scope relations and infinitival complements. University of Massachusetts Amherst,

Ms.

Pasternak, Robert. 2020. Compositional trace conversion. Semantics & Pragmatics 13(14). Early Access.

DOI: https://doi.org/10.3765/sp.13.14
Pereira, Fernando C.N. & David Warren. 1983. Parsing as deduction. In 21st annual meeting of

the association for computational linguistics, 137–144. Cambridge, MA: MIT. DOI: https://doi.
org/10.3115/981311.981338

Rambow, Owen & Aravind K. Joshi. 1994. A processing model for free word order languages. In C. Clifton,

L. Frazier & K. Rayner (eds.), Perspectives on sentence processing, 267–301. Mahwah, NJ: Lawrence

Erlbaum Associates.

Ruys, E. G. 2015. A Minimalist condition on semantic reconstruction. Linguistic Inquiry 46(3). 453–488.

DOI: https://doi.org/10.1162/LING_a_00189
Sikkel, Klaas. 1997. Parsing schemata (Texts in Theoretical Computer Science). Berlin: Springer. DOI:

https://doi.org/10.1007/978-3-642-60541-3
Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré (ed.), Logical aspects of

computational linguistics (vol. 1328 of Lecture Notes in Computer Science), 68–95. Berlin: Springer.

DOI: https://doi.org/10.1007/BFb0052152
Stabler, Edward P. 2013. Two models of minimalist, incremental syntactic analysis. Topics in Cognitive

Science 5. 611–633. DOI: https://doi.org/10.1111/tops.12031
Stabler, Edward P. 2003. Comparing 3 perspectives on head movement. In A. Mahajan (ed.), Syntax

at sunset 3: Head movement and syntactic theory, vol. 10 (UCLA Working Papers in Linguistics),

178–198. Los Angeles, CA: UCLA.

Stabler, Edward P. 2006. Sidewards without copying. In Gerald Penn, Giorgio Satta & Shuly Wintner (eds.),

Formal Grammar ’06, proceedings of the conference, 133–146. Stanford: CSLI.

Stabler, Edward P. 2011a. Computational perspectives on Minimalism. In Cedric Boeckx (ed.), Oxford

handbook of linguistic Minimalism, 617–643. Oxford: Oxford University Press. DOI: https://doi.
org/10.1093/oxfordhb/9780199549368.013.0027

Stabler, Edward P. 2011b. Top-down recognizers for MCFGs and MGs. In Proceedings of the 2nd workshop

on cognitive modeling and computational linguistics, 39–48.

Stanojević, Miloš & Edward P. Stabler. 2018. A sound and complete left-corner parser for Minimalist

grammars. In Proceedings of the 8th workshop on cognitive aspects of computational language

learning and processing, 65–74. DOI: https://doi.org/10.18653/v1/W18-2809
Syrett, Kristen. 2015a. Experimental support for inverse scope readings of finite-clause-embedded

antecedent-contained-deletion sentences. Linguistic Inquiry 46(3). 579–592. DOI: https://doi.
org/10.1162/LING_a_00194

Syrett, Kristen. 2015b. QR out of a tensed clause: Evidence from antecedent-contained deletion. Ratio

28(4). 395–421. DOI: https://doi.org/10.1111/rati.12107
Syrett, Kristen & Jeffrey Lidz. 2011. Competence, performance, and the locality of quantifier raising:

Evidence from 4-year-old children. Linguistic Inquiry 42(2). 305–337. DOI: https://doi.org/10.1162/
LING_a_00043

Tanaka, Misako. 2015a. Asymmetries in long distance QR. In Anna E. Jurgensen, Hannah Sande, Spencer

Lamoureux, Kenny Baclawski & Alison Zerbe (eds.), Proceedings of the 41st annual meeting of the

Berkeley Linguistic Society, 493–501. Berkeley, CA: University of California, Berkeley Linguistic Society.

DOI: https://doi.org/10.20354/B4414110000

https://doi.org/10.5334/gjgl.1209
https://doi.org/10.1007/978-3-642-39998-5_3
https://doi.org/10.5334/gjgl.49
https://doi.org/10.1016/0010-0277(93)90042-T
https://doi.org/10.17791/jcs.2018.19.3.291
https://www.aclweb.org/anthology/Y18-1047
https://doi.org/10.3765/sp.13.14
https://doi.org/10.3115/981311.981338
https://doi.org/10.3115/981311.981338
https://doi.org/10.1162/LING_a_00189
https://doi.org/10.1007/978-3-642-60541-3
https://doi.org/10.1007/BFb0052152
https://doi.org/10.1111/tops.12031
https://doi.org/10.1093/oxfordhb/9780199549368.013.0027
https://doi.org/10.1093/oxfordhb/9780199549368.013.0027
https://doi.org/10.18653/v1/W18-2809
https://doi.org/10.1162/LING_a_00194
https://doi.org/10.1162/LING_a_00194
https://doi.org/10.1111/rati.12107
https://doi.org/10.1162/LING_a_00043
https://doi.org/10.1162/LING_a_00043
https://doi.org/10.20354/B4414110000

34Pasternak and Graf
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1209

TO CITE THIS ARTICLE:
Pasternak, Robert and
Thomas Graf. 2021. Cyclic
scope and processing difficulty
in a Minimalist parser. Glossa:
a journal of general linguistics
6(1): 8. 1–34. DOI: https://doi.
org/10.5334/gjgl.1209

Submitted: 03 February 2020
Accepted: 03 October 2020
Published: 25 January 2021

COPYRIGHT:
© 2021 The Author(s). This is an
open-access article distributed
under the terms of the Creative
Commons Attribution 4.0
International License (CC-BY
4.0), which permits unrestricted
use, distribution, and
reproduction in any medium,
provided the original author
and source are credited. See
http://creativecommons.org/
licenses/by/4.0/.

Glossa: a journal of general
linguistics is a peer-reviewed
open access journal published
by Ubiquity Press.

Tanaka, Misako. 2015b. Scoping out of adjuncts: Evidence for the parallelism between QR and

wh-movement. London, UK: University College London dissertation.

Torr, John & Edward P. Stabler. 2016. Coordination in Minimalist grammars: Excorporation and across

the board (head) movement. In Proceedings of the 12th international workshop on tree adjoining

grammars and related formalisms (TAG+12), 1–17. Düsseldorf, Germany. https://www.aclweb.org/
anthology/W16-3301.

Torr, John, Miloš Stanojević, Mark Steedman & Shay Cohen. 2019. Wide-coverage neural A* parsing for

Minimalist grammars. In Proceedings of the 56th annual meeting of the association for computational

linguistics (volume 1: Long papers). Florence, Italy: Association for Computational Linguistics. DOI:

https://doi.org/10.18653/v1/P19-1238
Tunstall, Susanne. 1998. The interpretation of quantifiers: Semantics & processing. Amherst, MA: University

of Massachusetts Amherst dissertation.

Wurmbrand, Susi. 2001. Infinitives. Berlin: Mouton de Gruyter. DOI: https://doi.org/10.1515/9783110908329
Wurmbrand, Susi. 2014a. Restructuring across the world. In Ludmila Veselovská & Markéta Janebová

(eds.), Complex visibles out there. proceedings of the Olomouc Linguistics Colloquium 2014: Language

Use and Linguistic Structure, 275–294. Olomouc: Palacký University.

Wurmbrand, Susi. 2014b. Tense and aspect in English infinitives. Linguistic Inquiry 45(3). 403–447. DOI:

https://doi.org/10.1162/LING_a_00161
Wurmbrand, Susi. 2015. Restructuring cross-linguistically. In Thuy Bui & Deniz Özyıldız (eds.), Proceedings

of the North East Linguistic Society 45. 227–240. Amherst, MA: Graduate Linguistic Student

Association (GLSA), University of Massachusetts Amherst.

Wurmbrand, Susi. 2018. The cost of raising quantifiers. Glossa: a journal of general linguistics 3(1): 19.

1–39. DOI: https://doi.org/10.5334/gjgl.329
Zhang, Chong. 2017. Stacked relatives: their structure, processing and computation. Stony Brook, NY:

Stony Brook University dissertation.

https://doi.org/10.5334/gjgl.1209
https://doi.org/10.5334/gjgl.1209
https://doi.org/10.5334/gjgl.1209
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.aclweb.org/anthology/W16-3301
https://www.aclweb.org/anthology/W16-3301
https://doi.org/10.18653/v1/P19-1238
https://doi.org/10.1515/9783110908329
https://doi.org/10.1162/LING_a_00161
https://doi.org/10.5334/gjgl.329

