
RESEARCH

Abstract
This paper explores branching vocabulary items as a possible alternative to backtracking
in Nanosyntax. Such vocabulary items give rise to the possibility of partial overwrite.
Initially, they spell out a node with two phrasal daughters. At a subsequent stage, the
right branch is interpreted by a new element, but the original item continues to spell
out the left branch of such a derivation. The effects that branching vocabulary items
give rise to thus mimic aspects of backtracking, without requiring mechanisms that
undo parts of the derivation.

HAGEN BLIX

Phrasal Spellout and Partial
Overwrite: On an alternative
to backtracking

CORRESPONDING AUTHOR:
Hagen Blix
New York University, US

hagen.blix@nyu.edu

KEYWORDS:
Nanosyntax; Phrasal Spellout;
Backtracking; Spellout-Driven
Movement; Partial Overwrite;
Pointers; Lexicalized Tree
Structures

TO CITE THIS ARTICLE:
Blix, Hagen. 2021. Phrasal
Spellout and Partial Overwrite:
On an alternative to
backtracking. Glossa: a journal
of general linguistics 6(1):
62. 1–17. DOI: https://doi.
org/10.5334/gjgl.1614

https://orcid.org/0000-0002-8838-9393
mailto:hagen.blix@nyu.edu
https://doi.org/10.5334/gjgl.1614
https://doi.org/10.5334/gjgl.1614

2Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

1 Introduction
In Nanosyntax (Starke 2018, Caha 2019), vocabulary items are hypothesized to interpret
phrasal nodes only. Mediated by a superset-based matching algorithm (a vocabulary item
matches all trees that the tree it lexicalizes contains), this leads to the vocabulary driving (parts
of) the syntactic derivation: In order for a derivation to converge, it must consist solely of trees
with matching vocabulary items. To ensure such convergence upon merging a feature F, the
derivational algorithm ‘attempts’ a variety of operations in an ordered fashion until it finds a
candidate that can successfully spell out, as in (1):

(1) Merge (F, XP), then:
a. Try: Spell out FP
b. If it fails, try: Move(Spec of XP) to Spec FP, Spell out FP
c. If it fails, try: Move(XP) to Spec FP, Spell out FP
d. If it fails: Go to the previous cycle that merged X, and try the next option for

that cycle
Lightly adapted from Starke (2018), Caha (2019)

Upon merging a feature F, the spellout algorithm will first (1a) attempt to spell out the resulting
FP (resulting in F being spelled out with the current ‘root’ structure). Should that fail (1b),
it will attempt spec-to-spec movement (generally resulting in F being spelled out with the
current suffix structure). If that, too, fails (1c), F moves its complement to its specifier – roughly
corresponding to the “construction” of a new suffixal position. These three steps create a
preference for spellout targets that are as large as possible. Should they fail, however, option
(1d), the so-called backtracking option, returns to the previous cycle, changing the structure of
XP itself.

Note however that backtracking differs categorically from the other three steps: Step (1d) calls
the spellout algorithm itself, i.e., its addition turns spellout into a recursively defined algorithm.
The corollary, in terms of computational cost, is that it turns the linear algorithm that is defined
by (1a-c), into an exponential algorithm. That is to say, for a derivation of length n (or n+2, if
we consider first merge), an algorithm without backtracking would consider no more than on
the order of 3n derivational stages (in the sense of Collins & Stabler 2016). Since backtracking
makes the function recursive, however, every feature triples the set of possible derivational
stages that may need to be considered in the full algorithm, i.e., the worst-case scenario is a
comparatively costly 3n.1

Given this computational cost, it is worth asking if backtracking is a necessary part of the
spellout algorithm, or if we can do without a recursive extension of the theory. In this paper,
I explore the possibility that the desired effects of backtracking can in fact be implemented in
a linear spellout algorithm, if we employ branching vocabulary items and pointers, as in (2) –
with A, B and Y part of the extended projection of X.

(2)

YP

Y XP

. . . X. . .

BP

B AP

A

/sound/ ⇔

A pointer (indicated by the arrow on the right branch) is a common nanosyntactic device of
conjunction: In this case, it conjoins YP with any subtree of BP (here: BP or AP). Hence, the
vocabulary item in (2) could be described as follows: It matches any subtree of the set of trees
that is formed by conjoining YP with a subtree of BP.

1 Technically, the algorithm is a depth-first search over a decision tree in which any node has three daughters,
representing the three ways to introduce and spell out a feature. However, since any node with three daughters
that are all impossible to spell out will not have its daughters’ daughters explored, the worst-case scenario is, of
course, an unlikely edge case. This does not change the fact that the algorithm is exponential with backtracking
and linear without backtracking. Section 2 will provide examples and a comparison of decision trees for particular
derivations.

https://doi.org/10.5334/gjgl.1614

3Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

Such branching vocabulary items with a pointer have two properties that will turn out to
be crucial for our purposes: First, they are able to drive movement even when the root node
is the target of spell out. That is to say, when A is merged with YP, the result of comp-to-
spec movement of YP can be matched by the vocabulary item at the root, as can the result
of subsequent spec-to-spec movement upon merging B. Second, such vocabulary items can
be subject to partial overwrite, an effect that turns out to look highly similar to aspects of
backtracking.

Both properties are illustrated in (3): After merging A, simple spellout fails. There is no relevant
specifier that spec-to-spec movement could target, and thus comp-to-spec is attempted. The
resulting AP is matched by /sound/ at the root. Merging of B triggers spec-to-spec movement of
YP to Spec BP, and /sound/ again matches the result at the root, and thus spells out the whole
BP.2 Upon merging C, simple spellout fails, and thus spec-to-spec movement is attempted. The
structure spells out successfully. However, instead of spelling out the whole BP, /sound/ now
targets only the left branch YP – it has been partially overwritten.3

(3) a. BP

YP

Y XP

. . . X. . .

BP

B AP

A

/sound/ ⇐

b. CP

YP

Y XP

. . . X. . .

CP

C BP

B AP

A

/sound/ ⇐ ⇒ /-sfx/

If we consider the effects of partial overwrite in terms of a lexicalization table, as in Table 1, we
see that our branching vocabulary items are able to create an effect that looks similar to those
created by backtracking; they do, however, create this effect without necessitating any undoing
of the derivation, or a recursive spellout algorithm.

2 The suffix /-sfx/ in (3b) that spells out [C[B[A]]], matches [B[A]] at this stage as well, yet [B[A]] is spelled
out by /sound/. I assume that the preference for /sound/ follows from general Nanosyntactic principles such as the
preference for large targets over small ones. Concretely, this could be accomplished simply by having the spellout
algorithm check whether the root can be matched before checking whether the right branch can be matched. (A left
branch must have spelled out successfully prior to being merged/moved to the specifier position, hence checking
whether the right branch can be matched is sufficient.)

3 This idea thus exploits the fact that Nanosyntax provides two ways to successfully spell out a phrasal node X:
Either spell out X directly, or spell out both daughters of X.

XP Y A B C

AP sound

BP sound

CP sound -sfx

Table 1 Lexicalization Table
for Partial Overwrite.

4Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

Both branching vocabulary items and pointers are already part of standard Nanosyntax, and
neither generates the computational complexity involved with backtracking.4 In the interest
of a minimalist theory of spellout, both in the sense of having few components, and in the
sense of computational complexity, it is thus worth exploring whether the theory can get by
without the fourth clause of the spellout algorithm. In what follows, I explore a few cases from
Caha’s (2019) recent analysis of case competition, as well as a relevant example of Pseudo-ABA
patterns. I chose this work because it represents a recent state-of-the-art view of Nanosyntax,
and because it contains an explicit argument in favor of backtracking as well as a variety of
analyses that make crucial use of this technology.

Section 2 lays out an analysis of the Iron Ossetic pronoun data that Caha uses to motivate
backtracking, and shows that a partial overwrite analysis can capture the facts. Section 3
discusses the case of the Digor Ossetic augment, arguing that the backtracking analysis does
not, in fact, capture the data perfectly, but needs additional tools. Once such tools are in place,
however, an analysis without backtracking is possible. Section 4 takes a look at Caha’s (2019;
2020) size-based theory of declension class, and sketches a modified configurational theory of
declension class. I suggest that, in addition to capturing the relevant data, branching vocabulary
items offer an empirical advantage: Since they ‘split’ the functional sequence (f-seq) into a lower
left and a higher right branch, a configurational theory may model different classes by locating
their f-seq split in different positions. Section 5 takes a look at Pseudo-ABA patterns (Middleton
2020), and shows that we can similarly model these as subextraction without backtracking.
Section 6 concludes.

2 Iron Ossetic pronouns
Caha motivates the backtracking component on the basis of a comparison between the Iron
Ossetic first person plural pronoun max and the nominal paradigm of fyd ‘father’ in Table 2.
While the latter is affixed with -y in the accusative and genitive, the pronoun shows a syncretism
between nominative, accusative, and genitive. That is to say, under standard nanosyntactic
assumptions, max lexicalizes a larger structure than fyd does – one that is at least as big as the
genitive (or the phrase headed by the feature which builds the genitive from the accusative, F3
in Caha’s terminology).

Note that both share the same case suffixes in the larger cases, such as the instrumental/
ablative, or the dative. Since the instrumental -æj does not appear to co-occur with -y, we
assume that they compete in some sense, i.e., under the standard assumptions, -æj is able to
overwrite -y in the instrumental. For overwriting to take place, -æj must therefore lexicalize a
superset of the features that -y lexicalizes, and lexicalize the same bottommost feature (or foot).

Under Caha’s proposal, the conjunction of these facts leads to the necessity of backtracking:
i) max lexicalizes a full genP, as in (4a). ii) The suffix -y that we observe with fyd ‘father’
lexicalizes, minimally, the features F2, F3 that build the genitive from the nominative
structure, and iii) -æj lexicalizes a superset of the features lexicalized by -y, up to the
instrumental, as in (4b). Therefore, the foot of -æj is lower than the largest structure max can
spell out – once we reach F4 on top of max, we must backtrack in order to anchor -æj (say,
at F1).

4 The lexicon contains only well-formed syntactic expressions, and branching vocabulary items correspond
to expressions that can in principle be derived by the spellout algorithm. Pointers are needed independently for
idioms, as well as certain types of cross-categorial syncretisms where a vocabulary item applies to the conjunction
of sets (Caha & Pantcheva 2012, Blix 2021).

1pl father, sg

nom max fyd-Ø

acc max fyd-y

gen max fyd-y

ins (abl) max-æj fyd-æj

dat max-æn fyd-æn

Table 2 Iron Ossetic Pronoun
vs Noun (Caha 2009: 74 ff, 119).

5Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

(4) The vocabulary (backtracking hypothesis)

a. GEN

F3 ACC

F2 NOM

F1 PLP

PL #P

SPKRP

SPKR PARTP

PART REF

max ⇔

b. INST

F4 GEN

F3 ACC

F2 NOM

F1

⇔ -æj

That is to say, backtracking is unnecessary until we reach F4 – at this point, the backtracking
analysis suggests that the derivational path taken is incompatible with the spellout of F4, and
it walks back step by step, attempting different derivations and checking whether they are
compatible with the spellout of F4. The result of backtracking is indicated in (5) – though
backtracking itself is not an operation on the tree, its results look just like standard phrasal
movement, because it effects a series of standard movement operations.

(5) Backtracking at F4

GEN

F3 ACC

F2 NOM

F1 PLP

PL #P

SPKRP

SPKR PARTP

PART REF

max ⇐

INS

PLP

PL #P

SPKRP

SPKR PARTP

PART REF

INS

F4 GEN

F3 ACC

F2 NOM

F1

max ⇐ ⇒ -æj

6Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

The series of these operations can be visualized in the form of the decision tree in (6). Every
node of the tree describes a derivational state, with the feature in the label being the most
recently introduced one. The label of the edge connecting it to the mother node describes which
of the three basic steps led to the derivational state, i.e., spellout (so), spec-to-spec movement
(s→s), or comp-to-spec movement (c→s). The dashed arrow describes the sequence in which
these derivational states are built/explored.

(6) Decision tree with backtracking

PLP

F1

F2

F3

F4

PLP

F1

F2

F3

F4 F4 F4

F3 F3

F2 F2

F3 F3

F4 F4 F4

F1 F1

F2 F2

F3 F3

F4 F4

so

so

so

so
s→s c→s

s→s c→s

s→s
c→s

so s→s

so
s→s

c→s

s→s
c→s

so s→s

so s→s

so s→s

Essentially, the algorithm first merges F1–F3 on top of the plP without any movement (so).
However, since this does not lead to a derivation that can successfully spell out F4 (i.e., all three
options fail), it traces back its steps, first attempting to change the configuration of F3 where
neither alternative to the so route can be matched. It then reconsiders the configuration of F2.
Here, the algorithm is forced to check whether a derivation with -y (which lexicalizes [F3[F2]])
may succeed, since F2 with F1P in its specifier can be spelled out by the hypothetical max-y.
However, this derivation, too, fails to spell out F4, so a different configuration for F1 is explored
next. Here, iteration of spec-to-spec movement finally succeeds and successfully derives max-æj.

The core idea of the alternative I would like to advance is that max is a branching lexical item,
as in (7). The left branch corresponds to the phi-structure, and the right branch to the case
structure. Crucially, the latter is embedded under a pointer, i.e., the vocabulary item can spell
out any subtree of the tree that is formed by conjunction of the plP with a subtree of the case
structure.5 Let us consider the stage at which we have built the plP, and not yet merged any case
features. Since a vocabulary item matches all subtrees of the tree it lexicalizes, and the plP is
a subtree of the tree in (7), max matches plP, and thus simple so is the path for the pl feature.
After merging F1, spec-to-spec movement is unavailable (since pl does not have a specifier), but
comp-to-spec movement is successful and max self-overwrites. F1 now has a specifier, plP, and
subsequently merging F2 triggers spec-to-spec movement, as does merging F3. This is due to the
fact that max can match the respective resulting trees. That is to say, we retain the ability of max
to spell out F1, F2, F3 that the backtracking approach offered, but we derive a configuration
where, for spellout to be successful, the plP must be in the specifier of F1/F2/F3 respectively.

(7) GEN

PLP

PL #P

SPKRP

SPKR PARTP

PART REF

GEN

F3 ACC

F2 NOM

F1

max ⇔

5 See Caha (2019: Chapter 4.6) for a relevant discussion of mixing grammatical features with pointers to lexical
entries. Note that pointed to material is sometimes thought to be obligatorily present in the syntactic structure to
be matched, whereas I take it to be optional here.

7Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

The crucial difference between this analysis and the backtracking one comes about upon
merging F4, as in (8). In both cases, simple spellout after merging F4 fails, and spec-to-spec
movement is attempted. In the backtracking analysis, this fails, and previous structure building
operations are now undone. However, under the current hypothesis, the derivation does spell
out successfully after spec-to-spec movement. plP – now in the specifier of F4 – can be spelled
out by max, because it is a subtree of the one max lexicalizes. The right branch is spelled
out successfully by a suffix -æj that is identical to the one from the backtracking analysis.
This partial overwrite analysis takes advantage of a theoretical ambiguity: A node is considered
interpreted successfully if a) it was spelled out, or b) both its daughters were spelled out. That is
to say, the structure [F4[F3[F2[F1]]]] can now be spelled out by an affix anchored at F1, with
no backtracking being necessary: max is effectively overwritten with respect to spelling out F1,
F2, and F3, but it remains the winning candidate for spelling out the plP. Note in passing that
the latter part is an accident of the lexicon (there is no smaller competitor for the spellout of
plP). I return to cases where partial overwrite leads to the emergence of a smaller competitor
for the spellout of the left branch in section 5, which discusses Pseudo-ABA patterns of this
type.

(8) INS

PLP

PL #P

SPKRP

SPKR PARTP

PART REF

INS

F4 GEN

F3 ACC

F2 NOM

F1

max ⇐ ⇒ -æj

Both analyses derive the data successfully, and we can thus compare them in terms the number
of derivational stages that had to be considered. The operation of the spellout algorithm in the
analysis without backtracking can be visualized as in (9). Crucially, no backtracking means
that there is no walking back up the tree and opening a new branch: At every level, there is a
maximum of three nodes to explore, and consequently the derivational stages form a proper
subset of those that the backtracking algorithm needs to explore. The maximum number of
derivational stages that need to be explored simply grows linearly with the number of features
in our tree.

(9) Decision tree without backtracking

PLP

F1

F2

F3

F4

PLP

F1 F1 F1

F2 F2

F3 F3

F4 F4

so
s→s

c→s

so s→s

so s→s

so s→s

Though the algorithms differ considerably in the way they achieve their aim, a look at a
lexicalization table that describes which features are interpreted by which vocabulary item, as

8Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

in Table 3, is a useful comparison to see similarities: The table describes both hypotheses equally
well. In the backtracking analysis, the spellout of F1, F2, F3 by max was undone by returning
to previous stages of the derivation and attempting alternative operations. However, the same
result was achieved by the backtracking-less analysis by means of partial overwrite – just with
a less costly algorithm.

3 The Digor Ossetic augment
Digor Ossetic numerals show an augment in the oblique cases, but not the structural cases. As
the comparison in Table 4 shows, however, the numerals take the same oblique case suffixes as
a regular noun.

The core of Caha’s analysis is represented in Table 5. The augment -em lexicalizes a low head
[X], but a zero affix that lexicalizes [F2[F1[X]]] overwrites it in the structural cases. Any affix
that can spell out F3 and subsequent case features, however, must be anchored at F1 – i.e.,
backtracking occurs. In this case, backtracking has the further effect of uncovering -em: The
cycles of spellout that overwrote -em are undone by backtracking, and thus the augment (re-)
surfaces in the larger cases.

This analysis elegantly captures the distribution of the augment, and I cannot see a way
of capturing the same data solely with a backtracking-less algorithm for spellout-driven
movement. That is to say, an algorithm without backtracking may need to stipulate feature-
driven movement to derive such lexicalization tables. Using such an auxiliary tool/assumption,
we could once again postulate a branching vocabulary item with a pointer, as in (10):

(10) The vocabulary (to be revised)

a. ACC

XP

CardP

Card Number

/-em/

ACC

F2 NOM

F1

/duu(æ)/ ⇔

plP F1 F2 F3 F4

nom max

acc max

gen max

ins max -æj

two horse

nom duuæ-Ø bæx-Ø

acc duuæ-Ø bæx-i

ins (abl) duu-em-æj bæx-æj

Table 3 The lexicalization
table for max.

Table 4 Digor Ossetic augment
(partial paradigm).

CardP X F1 F2 F3–F6

nom duu(æ) -Ø

acc duu(æ) -Ø

ins duu(æ) -em -æj

Table 5 The backtracking
analysis.

9Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

b. XP

X

/-em/ ⇔

The derivation continues in the usual way, and upon merging F2, we derive the full tree that
duu(æ) lexicalizes. The core idea is the following: If, by stipulation, F3 has an EPP feature
for CardP, then such a feature may lead to stranding of the structure above CardP, namely
X. Once CardP has stranded X, the interpretation by -em that was hitherto overwritten by the
idiom, resurfaces. As in the cases above, however, duu(æ) remains the spellout for the moved
CardP, and thus we derive the augment as a resurfacing effect, and capture the data in a way
reminiscent of Caha’s proposal, but without backtracking.

There is reason to believe that an operation not driven by spellout is needed to derive the
Ossetic augment on independent grounds, even for the backtracking analysis, and I will lay out
in more detail both why and how to derive the relevant facts with vocabulary entries such as
(10) in the remainder of this section.

Let me begin by elaborating on an issue with Caha’s analysis that cannot be captured with
backtracking alone: Nanosyntax generally takes zero-affixes to be reason for suspicion (see in
particular the arguments about zero-distribution in Caha et al. 2019), but they are certainly not
reason enough to reject an analysis. There is, however, a deeper problem that is laid bare by
Caha’s subsequent comparison with the augment in the pronominal and demonstrative system.
In particular, Caha (2019: 142ff) argues highly convincingly that the augment must in fact
be analyzed as a bimorphemic structure -e-m. He revises the structure as represented in the
simplified representation in (11) (his 24, p. 144).

(11) KP

X2P

X1P

CardP

duu(æ)

X1

-e

X2

-m

K

-æj

A bimorphemic augment however, cannot be the result solely of backtracking undoing the work
of a zero affix overwriting the augment. To see why, consider the original analysis in Table 5,
in which a zero affix overwrites the augment in the nominative and accusative cases, but
backtracking undoes this in the oblique cases. The augment (re-)surfaces in the larger cases, since
the spellout cycles that overwrote it were undone. Table 6 shows why this solution is impossible
for a bi-morphemic augment: The zero affix would continue to be a better candidate for the
spellout of X1, X2, regardless of backtracking to F1, and no augment would re-surface. This
limitation follows from core principles of Nanosyntax (the preference for few large morphemes
over many small ones, as encoded in the preference for spec-to-spec movement, or the biggest
wins theorem): Backtracking that results in the re-emergence of a smaller vocabulary item in
place of a bigger one is necessarily limited to the re-emergence of a single affix.

The backtracking analysis thus needs some tool(s) beyond backtracking itself to derive the data.
One possible analysis employing standard syntactic tools would be to augment the backtracking

CardP X1 X2 F1 F2 F3-F6

nom duu(æ) -Ø

acc duu(æ) -Ø

* ins duu(æ) -e -m -æj

-æj☞ ins duu(æ) -Ø

Table 6 The Problem of the
Bimorphemic Augment.

https://doi.org/10.5334/gjgl.1614

10Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

analysis with feature driven movement, as above. If F3 triggers the displacement of X1P, it
would block the ability of -Ø to overwrite -e and -m, because they are no longer in a phrasal
configuration that could be matched by -Ø. Once such feature driven movement is brought into
the account, however, we can make due without backtracking, and the analysis sketched above
can easily be modified to deal with a bi-morphemic augment.6

The non-backtracking analysis I would like to propose builds on Caha’s analysis in (11), but
includes the fact that there is no overt case marking in the structural cases. Both the augments
and the case structure can be analyzed as being spelled out by right branches of the vocabulary
item i.e., we simply iterate the approach from before, as in (12).

(12) a. ACC

X2P

X1P

CardP

Card Number

/-e/

/-m/

ACC

F2 NOM

F1

/duu(æ)/ ⇔

b. X1P

X1

/-e/ ⇔

c. X2P

X2

/-m/ ⇔

Simply put, this vocabulary item is a complex idiom that can overwrite a phrase that contains
the augments /-e/ and -m/, as well as any subtree of [F2[F1]]. Since Nanosyntax maximizes
targets, it will therefore result in the corresponding derivation after the merger of F2, as in
(13):7

(13) ACC

X2P

X1P

CardP

Card Number

X1P

X1

X2P

X2

ACC

F2 NOM

F1

/duu(æ)/ ⇐

6 That being said, the backtracking analysis still has the advantage of not requiring a stipulation of feature-
driven movement in cases where a monomorphemic augment appears. For instance, Caha’s (2019:304) analysis
of the declension of Russian žen-a ‘woman’ also features the re-surfacing of a single smaller vocabulary item
in the instrumental. If this is the correct analysis, the backtracking-less story will need to stipulate a feature-
driven movement where the backtracking analysis does not, and would operate in a manner parallel to the one
advanced here. An anonymous reviewer helpfully points out that parts of the Finnish case paradigm also feature
the resurfacing of a single morpheme, as discussed recently in Kloudová (2020).

7 The derivation occurs as follows: 1. Merge(Card, Number), spell out 2. Merge(X1,CardP), c→s 3. Merge(X2,X1P),
c→s 4. Merge(F1,X2P), c→s 5. Merge(F2,F1P), s→s.

The vocabulary item duu(æ) matches the whole tree at the root at every single step.

11Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

Next, let us again assume that there is an EPP-feature associated with F3 that attracts CardP.
This results in feature-driven movement of CardP to the specifier of F3. However, the remainder
cannot spell out the newly merged F3, and hence the spellout algorithm continues operating
as usual: spec-to-spec movement targets the remnant X2P, and moves it from the specifier of
F2 into the specifier of F3. This allows for the spellout of F3 in a constituent [F3[F2[F1]]],
essentially parallel to the case with max above.8

(14) OBL

CardP

Card Number

OBL

X2P

X1P

X1

X2P

X2

OBL

F3EPP:CardP ACC

F2 NOM

F1

/duu(æ)/ ⇐

/-e/ ⇐ ⇒ /-m/

⇒ /-æj/

The case structure thus spells out the same way as above; however, the feature-driven movement
has additionally extracted CardP from a larger idiom. Because duu(æ) can no longer match X1P
and X2P (since they are no longer forming a phrasal node that can be matched by duu(æ)), the
pointed to vocabulary items, i.e., the overwritten idiom chunks re-appear. The analysis is thus
quite similar in spirit to Caha’s, but derives it with different means.

None of this is to suggest that this ought to taken as a proper analysis of the Digor Ossetic
Augment. The point was to show that a) the backtracking analysis runs into an issue that
will require a further stipulation, such as feature driven movement, and that b) once such an
allowance is made, an analysis without backtracking becomes possible as well. That is to say,
the augment case does not offer a good case for the necessity of backtracking.

4 Size & Configuration: Declension Class
Caha (2019; 2020) employs backtracking to develop a size theory of declension classes: A
declension class is determined by the size of the root, and the consequences for anchoring
affixes and the point at which affixes need to start backtracking. This is a highly attractive
theoretical development, for a variety of reasons. In featural theories of declension class, the
theoretical status of the features generally remains unclear – there is no reason to suspect that
declension class represents syntactically active features (for instance, gender may be the target
of agreement/concord processes, but declension class is not). Yet, a featural conception in a
late insertion model requires post-syntactic reference to them, i.e., they seem to violate the
inclusiveness condition (Chomsky 1995). In contrast, the size theory does not have declension
class features, and models declension class purely in terms of the cyclicity of exponence
targeting feature sets (trees) of varying sizes.

A simplified example of Caha’s theory is provided in Table 7 (I refer the reader to Caha’s work for
the actual details; the overview here is meant to lay out the spirit of the proposal). Both zavód
‘factory’ and mést-o ‘place’ share an identical f-seq, but the former lexicalizes are larger part
of this structure, reaching all the way up to F2, while the latter lexicalizes only #P. This leads
to mést-o ‘place’ having affixes that are anchored at the F1 node in the nominative (F1P) and
accusative (F2P), while zavód ‘factory’ is able to spell these out as part of the root. However, for

8 It is of course essential that CardP end up in the outer specifier position in order to derive the proper
linear order. There are two obvious paths to ensure this: Either feature-driven movement precedes spellout driven
movement and the latter is subject to tucking in, or spellout-driven movement precedes feature-driven movement,
and we subextract from the inner specifier position to an outer specifier position. In either case, subsequent
spellout driven movement may have to move both specifiers to create viable spellout targets (and presumably do
so in an order preserving fashion). To my knowledge, the relation between feature driven movement and spellout
driven movement has not been discussed at much depth (at least publicly), so I will leave these details aside,
merely noting that there are options to ensure the desired results.

12Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

both items, subsequent affixes must be anchored at the F1 level, i.e., the derivation of zavód-a
(gen) involves backtracking.

I believe, however, that the featureless conception of declension class can not only be derived
without backtracking, but that such a theory may in fact improve upon the size theory of
declension class.9 Consider first how we can replicate the basic aspect of these lexicalization
tables, as in (15). As in the previous discussion, this branching conception of zavód can spell out
nominative and accusative (hence the absence of dedicated surface morphemes vis-a-vis the -o
in mést-o). The fact that it is a branching vocabulary item with a pointer, however, allows for
partial overwrite, i.e., it is compatible with the lexicalization tables introduced above without
any need for backtracking.

(15) An alternative without backtracking

a. ACC

#P

xNP

. . .

ACC

F2 NOM

F1

zavód ⇔

b. #P

xNP

. . .

mést ⇔

9 Technically, both conceptions of declension class make slightly different predictions. Insofar as the
backtracking-less theory of spellout is a sub-theory if the one with backtracking, however, the tools of the
backtracking-less theory can, of course, be employed to create a theory that can encompass the predictions of both
theories.

xNP # F1 F2 F3 F4 F5 F6

nom zavód

acc zavód

gen zavód a

loc zavód e

dat zavód u

ins zavód om

xNP # F1 F2 F3 F4 F5 F6

nom mést o

acc mést o

gen mést a

loc mést e

dat mést u

ins mést om

Table 7 Simplified
lexicalization tables for
Russian zavód ‘factory’ and
mést-o ‘place’.

13Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

By employing branching vocabulary items to model declension classes, we can explore the
possibility of a configurational theory of declension class: If vocabulary items fall into declension
classes, they vary by size (and possibly f-seq, in case they have different gender, but I leave
this aside for now), as in the size theory. However, they may additionally vary in the point at
which the f-seq is split into a left and a right branch (and if it is split at all). There is data that
suggests that such an approach is necessary, even for a theory that does adopt backtracking.
Consider for instance the two strong feminine consonantal inflection classes from Icelandic in
Table 8 (Müller 2005: 232), or the Greek declension classes VII and VIII in Table 9 (Alexiadou
& Müller 2008: 120).

In both the Greek and the Icelandic case we can observe the following: For two declension
classes, nouns of the same gender show zero morphology for the lower part of the case
hierarchy. As usual, we conclude that Icelandic geit ‘goat’ and vík ‘bay’ are able to spell out
the whole phrase corresponding to a dative. In parallel fashion we conclude that Greek spiti
‘house’ and soma ‘body’ lexicalize the whole accusative structure. They do, however, take
different suffixes for the larger cases. Under an analysis that relies solely on backtracking,
this is unexpected: They spell out structures of the same size, and presumably share the same
f-seq.10 Under the configurational perspective laid out above, however, two vocabulary items
may lexicalize the same set of features, but in a different syntactic configuration. This is not
the place to develop a serious analysis of these inflectional systems, but let me illustrate how
one can account for these type of data in principle with vocabulary items such as those in
(16):

(16) Configurational Declension Classes

a. DAT

#P

xNP

. . .

DAT

F3 ACC

F2 NOM

F1

geit ⇔

10 The latter is, of course, not necessarily a given, but examples like these are easy to find, and reducing all such
cases to differences in the f-seq risks being indistinguishable from returning to a theory that employs declension
class features.

geit ‘goat’ (FC1) vík ‘bay’ (FC2)

nom sg geit vík

acc sg geit vík

dat sg geit vík

gen sg geit-ar vík-ur

spiti ‘house’ (VIIn) soma(t) ‘body’ (VIIIn)

nom sg spiti soma

acc sg spiti soma

gen sg spitj-u somat-os

Table 8 Strong feminine
consonantal declension
classes (Icelandic).

Table 9 Neuter declension
classes VII and VIII (Greek).

14Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

b. DAT

NOM

F1 #P

xNP

. . .

DAT

F3 ACC

F2

vík ⇔

Assuming two suffixes -ar [F4[F3[F2[F1]]]] and -ur [F4[F3[F2]]] now explains how these two
classes differ besides sharing an identical f-seq and being of equal size, as in the lexicalization
tables in Table 10: The partial overwrite of the right branch requires a different anchor. While
geit restricts overwriting of the right branch to affixes anchored at F1, vík restricts it to affixes
anchored at F2. Crucially, backtracking on its own is unable to derive lexicalization tables such
as those in Table 10: Given the existence of -ur, backtracking would never result in backtracking
all the way to F1. In a configurational theory, however, identity in size does not necessarily
imply identity of inflection class.

I believe that I have shown that a backtracking-less theory can in principle underly a featureless
theory of declension classes. Obviously, this configurational theory of declension classes will
need to be put to a broader empirical test. Independently of the question of backtracking,
however, I believe to have shown that thinking of declension class not only in terms of size but
also in terms of configuration is likely be necessary to account for relations between declension
classes – whether a theory deploys backtracking or not.

5 Pseudo-ABA
Middleton (2020; 2021) provides us with a final case of interest: Pseudo-ABA patterns. In
her investigation, Middleton uncovers strong cross-linguistic evidence for a general *ABA
restriction for pronouns/diaphors/anaphors, i.e., a ban on using the same form for anaphors
and pronouns to the exclusion of diaphors. She derives the restriction from a structure along
the lines of (17).11

11 Middleton (2020; 2021) defines an anaphor as a locally bound variable, a diaphor as a non-locally bound
variable, and a pronoun as a free variable. The lexical entries for English pronouns such as they/she/he etc are
systematically ambiguous between diaphors and anaphors (an AAB pattern) – or, in terms of the theory adopted
here, they lexicalize [D[P[XP]]] and English lacks a smaller competitor.

xNP # F1 F2 F3 F4

nom geit

acc geit

dat geit

gen geit ar

xNP # F1 F2 F3 F4

nom vík

acc vík

dat vík

gen vík ur

Table 10 (Toy) lexicalization
tables for Icelandic geit ‘goat’
and vík ‘bay’.

15Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

(17) ANAPHOR

A DIAPHOR

D PRONOUN

P XP

While there are no *ABA patterns, however, there are Pseudo-ABA patterns, A-B-A+x, as shown
in (18), from Middleton (2020).12

(18) Three Pseudo-ABA Patterns (Middleton 2020)
pronoun diaphor anaphor

a. wén jì əẁénə ̀wén (Babanki)
b. avan tan avanavan (Malayalam)
c. rẹ́ òun ara rẹ́ (Yoruba)

In order to account for Pseudo-ABA patterns, we extend our approach slightly. As before, the
effect can be captured as a partial overwriting; however, this time a smaller candidate re-
emerges. Consider the vocabulary items for Malayalam, as in (19). In the same spirit as the
analyses above, the key to making this system work lies in the fact that (19b) enforces comp-
to-spec movement subsequent to merging D. In this way – and unlike a vocabulary item that
lexicalizes [D[P[XP]]] in a strict head-complement sequence – tan makes this derived specifier
available for subsequent spec-to-spec extraction.

(19) a. PRONOUN

P XP

avan ⇔

b. DIAPHOR

PRONOUN

P XP

D

D

tan ⇔

c. ANAPHOR

A DIAPHOR

D

/REDUPL/ ⇔

That is to say, tan can spell out the whole diaphor, but subsequent merger of the A feature
that derives an anaphor leads to sub-extraction of the pronoun. This is shown in (20): In (20a),
tan is able to spell out the root after the spellout algorithm attempts comp-to-spec movement
(after simple spellout and spec-to-spec movement were unsuccessful). Upon merging A (20b),
the spellout algorithm can now move this derived specifier by spec-to-spec movement. This
movement results in a structure that can be spelled out, with the right branch being matched by
the reduplicating vocabulary item redupl (19c). On the left branch, the previously overwritten

12 While comparable cases are rare in the degrees of adjectives, Bulgarian offers a similar pattern with mnogo
‘much/many’: mngogo(pos) – po-veče(cmpr) – naj-mnogo(sprl), see Bobaljik (2012: 126).

16Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

avan re-emerges as the spellout of the pronoun structure.13 The only real difference to the
previous analysis is that the left branch of tan has an independent candidate for its spellout, but
the mechanisms are otherwise identical.

(20) a. DIAPHOR

PRONOUN

P XP

D

D

tan ⇐

b. ANAPHOR

PRONOUN

P XP

A

A DIAPHOR

D

avan ⇐ ⇒ /REDUPL/

Once again, an analysis in which a vocabulary item can force movement prior to spellout,
despite targeting the root, allows for an account that can model Pseudo-ABA effects without
backtracking.

6 Conclusion
In this paper, I have offered an analysis of a variety of phenomena that eschews the notion of
backtracking. Instead, vocabulary items were argued to take a highly active role in structuring
the course of a derivation, frequently enforcing movement even when the spellout target was
the root node – a possibility that has not been explored at great depth within Nanosyntax, but
one whose availability follows from standard assumptions. I have shown that such vocabulary
items can result in partial overwrite, and that a variety of empirical phenomena that appeared
to necessitate backtracking can in fact be analyzed without backtracking, once such vocabulary
driven movement is fully exploited.

I have further argued that regardless of the adoption of backtracking, a configurational extension
of the size theory of declension class is likely to be necessary, and that such an extension
requires the tools I employed as an alternative to backtracking. That is to say, a theory with
backtracking will still need pointers, branching vocabulary items, and partial overwrite, but a
theory with these features does not necessarily need backtracking.

These results are of core importance, insofar as the proposed analyses all manage to keep
the computation of spellout in the realm of a linear algorithm. I believe that this should be a
welcome simplification of the theory, and any data that might suggest the need for the adoption
of backtracking should be scrutinized carefully before we conclude that the realm of linear
algorithms is one we have to abandon.

Competing interests
The author has no competing interests to declare.

13 Note that I am abstracting away from linear order here; the astute reader may notice that this assumption isn’t
altogether innocent, as the re-emerging smaller element has to be to the right, rather than to the left in Babanki as
well as Yoruba – i.e., the analysis here might require the suffix to undergo subsequent movement above the root.

17Blix
Glossa: a journal of
general linguistics
DOI: 10.5334/gjgl.1614

Author affiliation
Hagen Blix orcid.org/0000-0002-8838-9393
New York University, US

References
Alexiadou, Artemis & Gereon Müller. 2008. Class Features as Probes. In Asaf Bachrach & Andrew Nevins

(eds.), Inflectional identity (Oxford Studies in Theoretical Linguistics) 18. 101–155. Oxford: Oxford
University Press.

Blix, Hagen. 2021. Spans in South Caucasian agreement: Revisiting the pieces of inflection. Natural
Language & Linguistic Theory 39(1). 1–55. DOI: https://doi.org/10.1007/s11049-020-09475-x

Bobaljik, Jonathan David. 2012. Universals in comparative morphology: Suppletion, superlatives, and the
structure of words (Current Studies in Linguistics). Cambridge, Mass.: MIT Press. DOI: https://doi.
org/10.7551/mitpress/9069.001.0001

Caha, Pavel. 2019. Case competition in Nanosyntax: A study of numerals in Ossetic and Russian.
Lingbuzz/004875.

Caha, Pavel. 2020. Modeling declensions without declension features. Lingbuzz/005537.
Caha, Pavel, Karen De Clercq & Guido Vanden Wyngaerd. 2019. The Fine Structure of the Comparative.

Studia Linguistica 73(3). 470–521. DOI: https://doi.org/10.1111/stul.12107
Caha, Pavel & Marina Pantcheva. 2012. Datives Cross-Linguistically.
Chomsky, Noam. 1995. The Minimalist Program. Cambridge University Press.
Collins, Chris & Edward Stabler. 2016. A Formalization of Minimalist Syntax. Syntax 19(1). 43–78. DOI:

https://doi.org/10.1111/synt.12117
Kloudová, Veronika. 2020. The interaction of functional morphemes inside the nominal phrase (LINCOM

Studies in Theoretical Linguistics 63). München: Lincom.
Middleton, Hannah Jane. 2020. *ABA syncretism patterns in pronominal morphology. London, UK:

University College London PhD Thesis. DOI: https://doi.org/10.1007/s11525-021-09377-7
Middleton, Jane. 2021. Pseudo-ABA patterns in pronominal morphology. Morphology. https://doi.org/10/

gjj2vw. DOI: https://doi.org/10.1007/s11525-021-09377-7
Müller, Gereon. 2005. Syncretism and iconicity in Icelandic noun declensions: A Distributed Morphology

approach. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 2004, 229–271. Dordrecht,
Netherlands: Springer. DOI: https://doi.org/10.1007/1-4020-2900-4_8

Starke, Michal. 2018. Complex Left Branches, Spellout, and Prefixes. In Lena Baunaz, Karen De
Clercq, Liliane M. V. Haegeman & Eric Lander (eds.), Exploring nanosyntax (Oxford Studies
in Comparative Syntax), New York: Oxford University Press. DOI: https://doi.org/10.1093/
oso/9780190876746.003.0009

TO CITE THIS ARTICLE:
Blix, Hagen. 2021. Phrasal
Spellout and Partial Overwrite:
On an alternative to
backtracking. Glossa: a journal
of general linguistics 6(1):
62. 1–17. DOI: https://doi.
org/10.5334/gjgl.1614

Submitted: 01 March 2021
Accepted: 21 April 2021
Published: 07 May 2021

COPYRIGHT:
© 2021 The Author(s). This
is an open-access article
distributed under the terms
of the Creative Commons
Attribution 4.0 International
License (CC-BY 4.0), which
permits unrestricted use,
distribution, and reproduction
in any medium, provided the
original author and source
are credited. See http://
creativecommons.org/
licenses/by/4.0/.

Glossa: a journal of general
linguistics is a peer-reviewed
open access journal published
by Ubiquity Press.

https://doi.org/10.5334/gjgl.1614
https://orcid.org/0000-0002-8838-9393
https://orcid.org/0000-0002-8838-9393
https://doi.org/10.1007/s11049-020-09475-x
https://doi.org/10.7551/mitpress/9069.001.0001
https://doi.org/10.7551/mitpress/9069.001.0001
https://doi.org/10.1111/stul.12107
https://doi.org/10.1111/synt.12117
https://doi.org/10.1007/s11525-021-09377-7
https://doi.org/10/gjj2vw
https://doi.org/10/gjj2vw
https://doi.org/10.1007/s11525-021-09377-7
https://doi.org/10.1007/1-4020-2900-4_8
https://doi.org/10.1093/oso/9780190876746.003.0009
https://doi.org/10.1093/oso/9780190876746.003.0009
https://doi.org/10.5334/gjgl.1614
https://doi.org/10.5334/gjgl.1614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

