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Abstract
General-linguistic datasets that have become available in recent years promise to 
enable new progress toward a theory of general grammar. A barrier to success is 
the incompatibility between the inductive, externalist approach that is natural for 
exploiting the datasets and the deductive, mentalist philosophy that is currently 
dominant within linguistics. I argue that the externalist philosophy is viable and that 
there are reasons to consider it preferable. I argue that the mainstream approach is 
in some cases unnecessarily concerned with psychological reality, and in other cases 
too quick to reject required subtheories on the grounds that they belong to “language 
processing” rather than linguistics, with the result that current grammars give 
systematically inaccurate answers to questions of the linguistic status of sentences. I 
suggest that the inductive development of general grammar is already being carried 
out (though not in those terms) in the field of natural language processing, and that 
linguistic participation in the effort would be of benefit to both fields.

STEVEN ABNEY 

Inductive general grammar

CORRESPONDING AUTHOR:
Steven Abney
University of Michigan, US

abney@umich.edu

KEYWORDS:
philosophy of linguistics; 
general grammar; grammar 
induction; machine learning; 
corpus-based methods

TO CITE THIS ARTICLE:
Abney, Steven. 2021. Inductive 
general grammar. Glossa: a 
journal of general linguistics 
6(1): 75. 1–22. DOI: https://
doi.org/10.5334/gjgl.1332

https://orcid.org/0000-0002-7467-6690
mailto:abney@umich.edu
https://doi.org/10.5334/gjgl.1332
https://doi.org/10.5334/gjgl.1332


2Abney 
Glossa: a journal of 
general linguistics  
DOI: 10.5334/gjgl.1332

1 Introduction
The only useful generalizations about language are inductive generalizations. Features 
which we think ought to be universal may be absent from the very next language that 
becomes accessible …. The fact that some features are, at any rate, widespread, is 
worthy of notice and calls for an explanation; when we have adequate data about many 
languages, we shall have to return to the problem of general grammar and to explain these 
similarities and divergences, but this study, when it comes, will be not speculative but 
inductive (Bloomfield 1933: p. 20).

Eighty-five years after Bloomfield wrote that passage, resources are at last available that render 
viable the development of an inductive general grammar. By inductive I mean a bottom-up 
or data-driven approach, in contrast to a top-down or postulate-driven approach. To pursue 
an inductive approach to general grammar, one requires what we might call general-linguistic 
datasets: broad-coverage annotated language samples from a substantial, typologically diverse 
range of languages using language-universal systems of annotation. An emphasis should be 
placed on language samples—what I have in mind are not tables summarizing typological 
properties of languages, but rather significant samples of annotated primary data from a 
range of languages. Within the last few years, researchers in the field of Natural Language 
Processing (NLP) have developed the first substantial general-linguistic datasets; the Universal 
Dependencies Treebank (UDT) offers a prominent example (McDonald et al. 2013).

The fields of linguistics and NLP have proceeded along independent courses for many years, 
with ever-dwindling connections between them. The divergence between the fields has only 
accelerated with the rise of so-called deep learning methods in NLP. But the emergence of 
general-linguistic datasets offers an unusual opportunity for collaboration between the fields, 
one that promises benefits to both fields.

One barrier to collaboration is the lack of awareness, within linguistics, of the relevant datasets. 
Another barrier is philosophical. To understand the value of the existing datasets, and to put 
them to good use, one requires a dedication to good description, systematicity, breadth of 
coverage, and a flexibility with respect to formalism, that run counter to tendencies within 
current linguistics. For lack of a better term, I will call the currently dominant linguistic 
philosophy internalist, in contrast to the externalist approach that dominates in NLP and enables 
a general grammar predicated on induction from large datasets.1 My aim in the present article 
is to make the case that the externalist approach represents good linguistics, not just good 
engineering, and in fact that it flows naturally from the most basic assumptions about the 
primary goals of linguistic inquiry.

To forestall false expectations, I do not intend to catalog the empirical results of research in 
inductive general grammar, for two reasons: first, because the research that has been done is 
unlikely to be recognized as linguistic research by many readers—and, in fairness, technology 
development has indeed driven the work more than linguistic inquiry has—and second, 
because the most interesting work is yet to be carried out. I will focus instead on the more 
basic philosophical and methodological questions. In part I would like to make the case for a 
formulation of the goals of linguistics in which general-linguistic datasets play a key enabling 
role; and in part I would like to make the case that, contrary to initial appearances, much of 
the work that has been done to date does address linguistic questions and indeed fundamental 
questions of linguistics, despite the fact that the work appears in NLP venues and not in 
linguistics journals, and however incidental the linguistic considerations may have been to the 
researchers’ motivations.

To be specific, I will argue below that “disambiguation” should not be dismissed as a processing 
issue but must be addressed head-on, if we are to answer central questions of linguistics. And 
I will argue that, instead of allowing uninformed speculation about what is “learnable” or 
not learnable to guide key decisions in grammar, it is better to work together with machine 
learning researchers to develop serious models of how language can in principle be acquired, 
and to test those models on the large scale.

1 The dominance of the internalist framework began with Chomsky’s work, and one might for that reason call 
it Chomskyan, but its influence extends beyond the Chomskyan paradigm, narrowly defined. Generative grammar 
is another designation that is often used, but in the present context that is a misnomer— generative has a well-
established meaning in formal language theory that has nothing to do with mentalism.
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Before discussing those specific issues, I would like to lay out the aims and assumptions of 
the inductive general grammar paradigm. Calling it inductive general grammar is idiosyncratic 
to me, but the paradigm is, I believe, the concensus view within the field of NLP, and in 
artificial intelligence research more generally. It is firmly rooted in formal language theory, 
logic, and machine learning. But it is at odds with the internalist approach, which insists on a 
“psychological reality” that goes beyond accuracy of prediction, and which dismisses formal 
languages as epiphenomenal and unworthy of study. I intend to clarify what the differences are 
between the frameworks and what the motivations are for adopting the inductive approach.

In what follows, I do criticize particular versions of the internalist paradigm, but that is not my 
primary goal. My purpose is to make a case for a fresh approach to the fundamental questions 
of linguistics, to make clear how it differs from business as usual, and to give my reasons for 
considering it superior to the current framework.

2 The linguistic abstraction
2.1 Fundamental questions of particular grammar

The central assumption of the externalist approach is the following.

Assumption 1 (The linguistic abstraction.) Language is a mapping between sound and meaning, 
and the central purpose of a particular grammar is to give an explicit and accurate characterization 
of that mapping.

I use particular grammar in the classical sense of a synchronic grammar of an individual 
language, in contrast to general grammar, which describes the common properties of, and range 
of variation across, languages.

A couple of questions arise immediately. The first is exactly what is meant by an individual 
language. Is it a language as a social construct, language as an abstract grammatical system, 
language as a psychological faculty, or something else? This question requires space for 
discussion and I postpone it momentarily.

I have also not spelled out what meanings are. We may for now assume the usual intensions, 
that is, functions from worlds to model-theoretic constructs, though there are many viable 
alternatives and little in the following discussion hinges on the choice, except in section 4.2.

Corollary 1 The fundamental questions of particular linguistics are these: For any sentence of the 
language, what meaning(s) does a native speaker of the language assign to it? And, conversely, for 
any meaning expressible in the language, what sentence(s) would a native speaker of the language 
consider to be natural expressions of it?

To be more precise, what I mean by “a mapping” in Assumption 1 is a many-many relation 
R(μ, σ), where μ ranges over meanings and σ ranges over “sounds,” by which I really mean 
expressions of the language, the most basic modality being spoken expressions. R is equivalent 
to two functions: the production function or expression function ER(μ) = {σ|R(μ, σ)} takes meanings 
as input and produces sentences as output, and the interpretation function IR(σ) = {μ|R(μ, σ)} 
takes sentences and produces meanings.2 These functions are open to observation, observations 
that may be characterized as a speaker’s responses to two questions:

[Q1] What expressions are natural ways of expressing meaning μ?
[Q2] What meaning or meanings does expression σ have?

ER(μ) is what we observe when we ask Q1 and IR(σ) when we ask Q2. A speaker deems σ to be 
ambiguous just in case |IR(σ)| > 1.

Question Q1 obviously characterizes linguistic production, and Q2 characterizes linguistic 
comprehension. Those accustomed to Chomsky’s formulations will expect language acquisition 
to appear here as well. But at this point, the matter under discussion is particular linguistics. 
Acquisition is a matter of general linguistics and is addressed later (section 5).

2 For the sake of simplicity and familiarity, I have characterized R as a simple relation, so that ER(μ) and IR(σ) 
are sets. This is not meant to preclude a more general account, in which R is a probabilistic relation and ER(μ) and 
IR(σ) are probability distributions.
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The reader may also object to the omission of grammaticality judgments as basic sorts of 
observations. A grammaticality judgment is an answer to the question, “can one say σ?” for 
some candidate expression σ. The intended meaning is always implicit in context, and if it 
would otherwise be unclear, one provides it explicitly: “can one say σ to mean μ?” In this 
explicit form, it is evident that a grammaticality judgment is a response to a minor paraphrase 
of Q1: “is σ a natural way to express the meaning μ?” As a consequence, the set of well-formed 
expressions is the same as the set of expressions that R associates with meanings.

Examples have, of course, been put forward that are allegedly grammatical but meaningless; 
the “autonomy of syntax” examples of Tesnière (1959) or Chomsky (1957) come immediately 
to mind.3 In fact, though, the proffered examples are not meaningless. One has definite 
judgments about what a noun phrase like colorless green ideas refers to, namely, ideas that 
have the property of being green and also the property of being colorless. The problem is that 
no such ideas exist, nor could exist in any world we can conceive of. But one certainly judges 
that, however absurd colorless green ideas might be, they do differ from other absurdities, say, 
preternatural red cosmologies. As a technical matter, if a meaning is an intension, and if we 
assume a one-one correspondence between possible worlds and models, a phrase like colorless 
green ideas does have an intension, though it has an extension only in worlds that violate the 
relevant lexical axioms. But even if grammaticality judgments are ultimately not reducible to 
production judgments, any discrepancies are minor, and for the sake of simplicity I put them 
aside. I return to the issue of grammaticality judgments below (section 4.1).

A more worrisome concern is that the goal, as I have formulated it, admits a trivial solution: 
to define R, one need only list the pairs (μ, σ). An enumeration would indeed be possible if the 
domain were finite; but, critically, the domain is not finite. R is an infinite set of pairs. Defining 
it is non-trivial because a satisfactory definition must be finite.4 What we require is a grammar, 
in the formal sense of a finite definition for the infinite sound-meaning relation. Not only is it 
non-trivial to formulate a grammar that accurately models R, I argue below that developing 
an adequate model of R actually requires us to deal with issues that most linguists dismiss as 
“processing” issues. See sections 4.1 and 4.2.

Another concern is the possibility that different speakers might have different linguistic 
systems, giving different answers to questions Q1 and Q2, or that a single speaker might give 
different answers if asked at different times. I have also not addressed the possibility that a 
speaker’s active and passive linguistic abilities might differ, that is, that the speaker’s answers 
to Q1 and Q2 might be inconsistent, perhaps interpreting σ to mean μ but not including σ 
among the natural ways of expressing μ. Again, for the sake of simplicity, I put these possible 
inconsistencies aside, modeling speakers as being perfectly consistent with each other and 
with themselves.

The assumption of homogeneity—that is, the assumption that all speakers possess the same 
linguistic system—is standard; it is adopted both by De Saussure (1986) and by Chomsky 
(1986), to name two prominent examples. De Saussure and Chomsky disagree about the locus 
of regularity in language: de Saussure sees it in the social system, whereas Chomsky sees it in 
the psychology of the individual. But the question is somewhat moot, inasmuch as, as long as 
we assume homogeneity, language as the possession of the speech community and language as 
possession of the individual are one and the same.

2.2 Levels of abstraction

Assumption 1 is quite similar to the “Thesis” of Lewis (1975). The original idea is older, 
stemming from formal language theory, which in turn imports from mathematics and logic 
the attitude that definitions should be formulated in a maximally general way. In the context 

3 Tesnière offers the example le silence vertebral indispose la voile licite in support of the claim that syntax is 
autonomous: elle [la syntaxe] est autonome (Tesnière 1959: p. 42). (He generated his example from le signal vert 
indique la voie libre by replacing each word with the next word in the dictionary with the same part of speech.) 
According to the preface of Tesnière (1959), the manuscript was complete at the onset of Tesnière’s final illness 
in 1950, and no substantial changes or additions were made to the text in preparing it for publication. If so, 
Tesnière’s example and his use of the term “autonomy of syntax” appear to predate the better-known presentation 
of Chomsky (1957).

4 By “satisfactory,” I mean mathematically satisfactory. A set S is definable just in case there is an open formula 
of one variable φ such that x ∈ S if and only if the statement φ[x] is provable (Boolos & Jeffrey 1980: p. 173). Any 
definition, by virtue of being a formula, has a written representation of finite length.
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of linguistics, that means that the concept language should be defined in a way that does not 
limit it to the specific case of language spoken by humans, but should abstract away from the 
details of human psychology. Language thus defined views human psychology from the outside, 
in terms of the input-output relation it computes, rather than the process by which it does 
the computation. The same externalist philosophy is evident in truth-conditional and model-
theoretic semantics.

Chomsky (1986), on the other hand, espouses a form of psychologism in which a system that 
does not make substantive claims about human psychology is “an epiphenomenon at best” 
(p. 25), possessing no status in linguistics, on a par with, say, a listing of the pairs of rhyming 
words in the language. He introduced the term I-language for his own, internalist, view, and 
E-language for the externalist approach of Lewis.

The internalist position seems clearly dominant within linguistics. Standard textbooks in syntax 
adopt it (Carnie 2012), and both proponents of externalism (Soames 1984) and proponents 
of internalism (Phillips & Lewis 2013) agree that internalism is dominant. Since I take an 
unequivocally externalist position with Assumption 1, and since an externalist philosophy 
thoroughly pervades the design of general-linguistic datasets and the work that they support, 
this issue deserves particular attention.

The chief argument that Chomsky (1986) offers against external models is to claim that, unlike 
internal models, they do not make “true or false statements about something real and definite” 
(p. 26). He asserts that “theories of E-languages, if sensible at all, have some different and more 
obscure status because there is no corresponding real-world object,” and he insists that they are 
not worth pursuing, “given the artificial nature of the construct [E-language] and its apparent 
uselessness for the theory of language” (p. 27).

These assertions are really quite baffling.5 The fact of the matter is that a central motivation 
for the externalist approach is to describe real, physically embodied systems at a useful level of 
abstraction. In adopting an external model, one certainly does not deny that there is a mental 
mechanism that gives rise to language, but rather, as a strategy for more effectively studying that 
mechanism, one abstracts away from its internal structure in order to focus on the mathematical 
nature of the association between sounds and meanings that those mental mechanisms give 
rise to.

The abstraction allows one to more readily compare human languages to other, similar, formal 
systems, such as animal languages or artificial languages. It also seems more in keeping with 
pre-theoretic understanding of what a language is. Consider a thought experiment in which a 
non-human intelligence—an alien or an artificial intelligence—learns, say, English so well that 
an interlocuter is unable to distinguish the alien’s abilities from those of a native speaker. In 
such a case it would seem unreasonable to deny that the non-human intelligence speaks English, 
and it follows that, whatever English is, its implementation in a human mental substrate is not 
a necessary condition.

Nor does an external model preclude a more concrete internal model of the same system. 
Indeed, as already mentioned, a key motivation for formulating an external model of language 
is that a clear understanding of the relation that is computed is plainly desirable when one 
attempts to formulate a more concrete model of how that relation is computed. Nor is there 
only one internal model: it can be useful to identify several different levels of abstraction, and 
I will explicitly mention a few. A computational model is one that considers the algorithms and 
data structures by which the sound-meaning relation might be computed, and what properties 

5 Chomsky does not give a formal definition of either term, but he seems to take an E-language to be a 
set of sound-meaning pairs, whereas he appears to take an I-language to be a grammar. In the text, I assume 
that is a minor inconsistency in presentation. It may, however, be the actual crux of the matter. If so, then 
Chomsky’s entire discussion hinges on a comparison between apples and oranges: the legitimate comparison is 
between E-grammar and I-grammar, or between E-observables and I-observables. The sound-meaning relation is 
the space of E-observables; it is a different object than a grammar, which is a means of generating (a hypothesis 
about) the population of E-observables. What Chomsky considers the I-observables to be is less clear, though the 
obvious answer is observations about the time course of processing. Grammars (that is, models accounting for 
observables) are not the exclusive possession of the internal level of abstraction, and comparing the internal to 
external approaches by comparing the grammar of the former to the observables of the latter would be simply 
disingenuous. And if, by I-language, Chomsky means the physical object, the unfairness of the comparison is 
even more extreme: the physical object is identical for both the external and internal accounts; only the level of 
abstraction of the description differs.
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they have, for example, in time and space usage. A computational model is not committed 
to a particular substrate—it applies equally to human and artificial systems—but it does 
provide useful information about the available options in the design of the human system. A 
psycholinguistic model, in turn, is specific to the human mind. The question is which algorithm 
and data structures humans actually employ, out of all of the possibilities. It concerns language 
at the level of abstraction corresponding to mind, rather than brain. A neurolinguistic model is 
the most concrete; it asks how the human language-processing algorithm is implemented in 
brain wetware.6

Again, let me emphasize that all of these models are models of the same physical system, but 
at different levels of abstraction, and that this strategy of stepwise refinement is simply good 
scientific practice. Since ER and IR are largely accessible to observation, we may study R directly, 
without the necessity of special apparatus or difficulties of interpreting indirect measurements.7 
Understanding the nature of R is a natural preliminary to inquiry into the computational 
question of how R might be computed, which in turn provides a foundation for tackling the 
psychological question of determining which algorithm and data structures the mind actually 
uses. The psychological algorithm and data structures are not directly observable, but the 
results of the computational inquiry allow one to determine what “signature” each candidate 
would produce on observable variables, and comparison of predictions to experimental results 
allows one to draw conclusions about which candidate is most likely.

Let us return now to Chomsky’s arguments. He claims that (1) external models are not models 
of any real-world object, and (2) external models are “apparently useless” for the theory of 
language. Claim (1) is rebutted in the preceding paragraphs: in matter of fact, external models 
of language are abstract models of the human linguistic system and are part and parcel of a 
strategy for effective investigation of the human mind and brain at all levels of concreteness. 
Claim (2) is equally indefensible, as is made clear by even the most casual awareness of 
the success of the external approach in logic, formal language theory, and natural language 
processing.8 I conclude that Chomsky’s arguments against external models are simply invalid, 
and that external models of language, of a sort consistent with Assumption 1 (language as 
sound-meaning relation), are reasonable and viable.

2.3 Pychological realism

Within the approach that I adopt, there is in principle no conflict between an external model of 
language, such as one might naturally construct from a treebank, and an internal model, such 
as the one that Chomsky espouses. A notable feature of externalism is what we might call its 
catholicism: the externalist approach is perfectly at ease with having multiple models of the 
same physical system, at different levels of abstraction, or simply for different purposes.

By contrast, Chomsky’s version of internalism rejects external models as ungrounded in reality 
and useless. When multiple levels of abstraction are introduced, the logic of the argument 
appears to require that each level of abstraction except the most concrete be rejected: a 
psychological model rendering a computational model “epiphenomenal” and thus “useless,” 
and a neurological model in turn rendering psychology epiphenomenal and useless. The natural 
end of the philosophy is reductionism, and in fact there is more than a hint of that in the recent 
popularity, within the Chomskyan school, of the idea of “biolinguistics” (Chomsky 2004).

Again, if one adopts an external model of language, any two distinct grammars G1 and G2 that 
generate precisely the same sound-meaning relation are equivalent definitions of the language, 
and thus if one is correct, so is the other. This is a virtue, not a defect: proving the equivalence 
of superficially very different systems has been a key means of advancing our understanding 

6 The discussion invites comparison to Marr’s levels of analysis (Marr 1982), but it should be noted that the 
levels of abstraction in the text differ from Marr’s. Marr’s highest level of abstraction he calls the computational 
level; he does not consider the external level.

7 We may include introspection as a form of observation, provided that there is consistency across judges.

8 One might question whether success in those domains really constitutes evidence of efficacy in investigating 
the human mind. It is true that accurately capturing the sound-meaning relation does not tell us what makes the 
human mind different from other hypothetical physical embodiments of a speaker of the language, such as alien or 
artificial intelligences. But it does tell us what makes the human mind different from physical systems that do not 
speak the language in question, and that is a great deal indeed.
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within the fields of logic and formal language theory, as in mathematics more generally. 
Different models often have different strengths, and establishing equivalence allows one to 
translate freely between the models and exploit the strengths of both.

The internalist view, on the other hand, treats grammars like our G1 and G2 as standing in 
competition. Even if G1 and G2 provably define the same relation between sounds and meanings, 
and are thus not even in principle distinguishable by any observations (of the sort that the 
models account for), the internalist considers them to be competing models that make different 
claims about the human language faculty, and insists that only one of them can be true.

If one insists that G1 and G2 make different claims, the only way to determine which is correct 
is to go beyond the kinds of observations that were used to develop them (conventional 
linguistic observations), to entirely new classes of observations, such as reaction time data or 
eye movement data. But most linguists, including those who espouse psychological realism, are 
unwilling to take the step of devoting themselves in a serious way to psycholinguistics. There is 
good reason for reluctance: it is simply too daunting to thoroughly master a field other than one’s 
own. In practice, even Chomsky does not stray far from conventionally linguistic observations. 
Yet, without a thorough mastery of psycholinguistics, any attempt to use psycholinguistic data 
to argue for one linguistic theory over another opens the researcher to accusations of cherry-
picking isolated facts that happen to agree with the researcher’s own opinions.

This leaves us with a near-contradiction between the demand for psychological reality and the 
reluctance to go beyond the scope of conventional linguistic observations. What is the point 
of insisting that one’s theory “makes claims” about psycholinguistics if one has no intention of 
proving those claims, by doing serious psycholinguistics? In an attempt to resolve the tension, 
Chomsky proposes that a grammar possesses psychological reality if it constitutes “knowledge 
of language” that “enters into the expression of thought and the understanding of presented 
specimens of language” (p. 4)—that is, if the elements of grammar correspond directly to 
stored data that is put to use in language production and comprehension. He later writes more 
explicitly of language comprehension being performed by “a parser that incorporates the rules 
of the I-language along with other elements” (p. 25).

In other words, one can have an internal model without going outside conventional linguistic 
observations by constructing a partial model of language processing. In computational terms, 
one describes particular data structures, but not the algorithms that operate on them. In this 
way, what matters is not the form of the grammar or the class of observations it accounts for, 
but only the linguist’s intentions or claims. One and the same grammar might be interpreted as 
an external model or as a partial model of psychology; the choice lies with the linguist. Soames 
(1984) uses the term narrow competence theory for such a partial model of language processing, 
in which linguists’ grammars are regarded as “the internalized rules employed by competent 
speakers” (p. 167).

Understood in the “laziest” fashion, in which the linguist simply pursues business as usual, 
Chomsky’s position is still open to charges of making empty claims, of reducing psychological 
reality to a mere rhetorical flourish. At least some researchers do take it more seriously. 
Phillips & Lewis (2013), for example, take the position that the grammar describes “a structure 
building system that combines words and phrases to form sentences and meanings in real-time, 
in essentially the same manner in comprehension and production” (p. 17). In their version 
of internalism, the grammar constitutes not a data resource but a component of the human 
language processing system.

But that takes one out of the frying pan into the fire: a partial model of psycholinguistics is 
untestable. The postulated internal grammar, whether it is a rule store or a structure-building 
component, is not observable. If we relate it only to conventional linguistic observations, then 
we are back to a distinction without a difference. Our G1 and G2 remain indistinguishable, and 
the claim that one is psychologically real while the other is not becomes a rhetorical flourish, 
a claim that one has no intention of proving. In order to prove it, one must bite the bullet and 
actually do psycholinguistics.

Soames comes to a similar conclusion: “if this is right, then proponents of ‘the received view’ 
should either stop requiring their theories to maximize linguistic generalizations or stop taking 
them to represent adequate psychological theories of linguistic competence. … Which alternative 
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one chooses will depend on whether one wants to do linguistics or mentalistic psychology” 
(pp. 170–1). Phillips and Lewis do not concur explicitly, but they go to lengths to sketch a 
plausible psycholinguistic system that embeds a grammatical component and they cite the 
psycholinguistic literature heavily. That is, they do “bite the bullet,” implicitly acknowledging 
that one cannot propose a partial model and stop; one requires some account of the rest of the 
system, no matter how provisional, if one wishes one’s model to have any empirical content at 
the psycholinguistic level of abstraction.

Phillips and Lewis nonetheless reject the idea that their model might be consistent with a 
different model at an external level of abstraction. They offer a novel argument: they claim 
that an external model is justifiable only if the system is implementation independent, by which 
they mean that “the exact same abstract system can be realized in different ways by multiple 
lower-level implementations, with no change in the abstract system itself” (p. 14). This 
definition agrees with remarks I made earlier. It is obvious that languages, including English, 
can be implemented in a wide variety of ways, as even a passing glance at the NLP literature 
makes clear. However, Phillips and Lewis assert that a given human speaker has only one 
method for assembling sentence structures in the course of language processing, not multiple 
implementations, therefore human language is not implementation independent, therefore an 
external model is “unwarranted.” But that argument is logically incoherent. Implementation 
independence as they define it does not imply that any given individual implements the system 
in multiple ways, or even that different individuals implement it in different ways, but rather 
that multiple ways exist in which the system can be implemented. Thus their argument is 
invalid and their conclusion unjustified.

Indeed, it is hard to imagine a system description that is genuinely implementation dependent, 
in their sense. Even a description at the level of neurons would be implementation independent, 
in that it would of necessity leave some aspects of neurons unspecified and thus free to be 
implemented in multiple ways. If we assume that Phillips and Lewis actually intended 
implemention dependence to mean that all the physical instances of a given system description, 
in a particular reference set of instances, implement the description in the same way, then 
speaking English is indeed (more or less) implementation dependent with respect to the set 
of human speakers of English, but that is a trivial consequence of choosing a homogeneous 
set of physical instances as reference set. Implementation dependence in that sense is not 
intrinsic to the system description; it vanishes as soon as we include non-human speakers in 
our reference set.

Contrary to Phillips and Lewis, Soames argues that the most accurate and insightful model for 
the sound-meaning relation, and the most accurate and insightful model for psycholinguistic 
data, may be quite different. Since they are accounts of the same physical system, there will be 
connections between them, but those connections may be indirect.

I find a couple of analogies to be useful. High-level programming languages are designed to 
make the programmer’s task as easy as possible, whereas machine code is designed to be as 
close as possible to the architectural components of the machine and the operations that they 
support. High-level programs and machine code provide descriptions of one and the same 
computation, but at very different levels of abstraction, and the connection between them is 
very indirect: the job of a compiler is to translate one to the other. The analogy to external and 
internal models is obvious.9 One might object that the analogy is imperfect because the brain 
is not an artifact designed to carry out a high-level goal. But in fact, it is designed to achieve 
certain high-level goals: the available neural computing resources are marshalled in the course 
of evolution and development to solve high-level tasks that are necessary for the survival of the 
organism. The place of the compiler is taken by something like the weight optimization that 
takes place in artificial neural networks.

Or to offer a simpler analogy, consider waves on the surface of a pool. The natural terms to 
describe the “external” system are wavelengths and amplitudes, whereas the natural terms 
to describe the “internal” system are locations and momentums of water molecules. The two 
descriptions (“grammars”) are systematically related but not by any means the same.

9 Compilers generally involve program transformations that map very different high level programs to the same 
machine code; in the same way, equivalent pairs like our G1 and G2 may involve grammars that are very different 
in appearance.
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I conclude that it is reasonable (indeed, commonplace) to develop grammars based on 
conventional linguistic observations, and that this practice is justified, with no further onus 
of demonstrating “psychological reality,” by considering grammars to be models of the human 
language system at the external level of abstraction. Given how widespread the practice is, I 
will henceforth identify the external level of abstraction as the distinctively linguistic level of 
abstraction, and the idea of abstracting away from internal mechanisms to the external sound-
meaning relation I will call the linguistic abstraction.10

The linguistic abstraction is legitimate and useful. The question of defining R is crisply 
defined, and a rigorous definition of R is obviously useful for addressing the computational, 
psychological, and neurological questions. Assumption 1 (language as sound-meaning relation) 
is essentially a statement of the linguistic abstraction.

3 Evaluation
3.1 Fit and prediction

I have characterized a grammar as a definition of the sound-meaning relation R. To be precise, a 
grammar generates a relation R̂ that models or approximates R. In common practice, a grammar 
G is represented as a set of rules or constraints or the like, and there is a grammar notation 
definition F, also known as a grammar formalism, that determines ˆ   ( )R G . In this way, a 
particular choice of grammar provides a hypothesis R̂E  regarding the empirical production 
function ER, and a hypothesis R̂I  regarding the empirical interpretation function IR.

Assumption 2 (Prediction as measure of quality.) The acid test of grammar quality is the degree 
to which the grammar’s predictions are correct.

In particular, if we draw a sentence σ at random from the entire infinite population of sentences, 
what is the probability that ( )ˆ ( )RRI I  , and if we draw a meaning μ at random from the 
population of meanings, what is the probability that ˆ ( ) ( )RRE E  ?11

There is a mistake that is widespread in linguistics, namely, the confusing of prediction with fit 
to known examples. Both fit and prediction are measurements of discrepancy between R̂I (σ) and 
IR(σ); the difference between them is whether one measures discrepancies on examples collected 
before formulating the grammar that gives us R̂I  or on new “test” examples collected afterwards. 
The former is fit and the latter is prediction.

The usual practice in linguistics is to collect a range of examples that display some phenomenon, 
and to devise a grammatical system that “gets the examples right.” When comparing one’s 
particular grammar to an alternative, one either identifies examples that one’s own grammar 
gets right and the competitor gets wrong, or one makes an attempt to show that one’s own 
grammar is “simpler,” or one extends the range of examples under consideration and modifies 
one’s grammar so that it (and not the competitor) gets the larger set right.

Nowhere in the usual methodology is there any genuine testing of predictions. When determining 
whether one’s grammar gets certain examples right, one often talks about “the predictions of 
the grammar,” but in fact all of the comparisons are measuring fit, not prediction. In the usual 
methodology, the examples under consideration comprise a finite set, and coming up with a 
theory that fits them is, in a sense, too easy. The examples are already known, and one cannot 
meaningfully “predict” what one already knows. At that point, it is too late for prediction; only 
hindsight is possible.

What matters in the end is, not the theory’s fit to the finite set of motivating examples, but 
rather, how well the theory predicts the entire infinite relation between sounds and meanings, 
the population of sound-meaning pairs. One of course cannot examine the entire relation, 
but there is a straightforward way to get a good estimate of accuracy. Draw a fresh, random 

10 Soames also refers to external theories simply as linguistic theories, in contrast to narrow theories of competence, 
and Phillips and Lewis admit that “we suspect that [the extensionalist position] is a position that many practicing 
syntacticians are comfortable with, and it certainly corresponds with much standard practice in linguistics” (p. 13).

11 In statistics, the population is the full set of things about which one would like to draw conclusions, and from 
which one draws samples for statistical study. The probability of a property is the proportion of the population that 
has that property. For example, the probability of the property ˆ ( ) ( )RRE E   is the proportion of sentences σ for 
which ˆ ( ) ( )RRE E   is true, out of the (infinite) population of all possible sentences of the language.



10Abney 
Glossa: a journal of 
general linguistics  
DOI: 10.5334/gjgl.1332

sample of pairs from the relation and measure accuracy on the sample. Borrowing terms from 
machine learning, the set of examples used to develop the grammar is the training set and the 
freshly-drawn sample is the test set. Hindsight is 20/20: it is well known that accuracy on the 
training set overestimates true accuracy. But the grammar’s accuracy on the test set does give an 
unbiased estimate of accuracy on the population as a whole. Not only is the estimate unbiased, 
its confidence interval can be measured and made arbitrarily small by drawing a large enough 
test set.

To be clear, we know the values of the empirical functions ER and IR for a finite set of instances 
(the training set), and we can query their values for freshly drawn instances (the test set), but 
we do not know, and will never know, their values over the entire domain. In this, R differs 
from R̂. We do know the entirety of R̂, in the sense that it is rigorously defined by the grammar, 
and we can compute R̂E (μ) and R̂I (σ) for any given meaning μ or sentence σ.

The grammar’s fit to the known data is measured by its training error, which is the proportion 
of training instances x that it gets wrong, that is, where ˆ )( ) (RRE x E x  or ˆ )( ) (RRI x I x .12 The 
quality of the grammar’s predictions is measured by its test error, which is the proportion of test 
instances that it gets wrong, and the test error is an unbiased estimate of its generalization error, 
which is the proportion of the population that it gets wrong.

The idea of evaluating grammars based on their predictive performance, as measured by 
test error, is fundamental to the methodology used in NLP. The methodology is by no means 
unique to NLP; it is used in all branches of artificial intelligence and data science, as well as 
applications of machine learning and predictive modeling in a wide range of subject areas. 
The methodology revolves around prediction tasks like the task of predicting human sentence 
production or interpretation. One defines the domain of instances X and an experimental 
protocol for obtaining observations y(x) for x ∈ X. The protocol may take different forms, ranging 
from a psycholinguistic experiment with sophisticated apparatus and careful instructions to the 
subject, to the stylebook used to annotate a treebank, to personal judgments made by the author 
of a paper when labeling example sentences. Instances of the appropriate sort are collected and 
annotated with the results of observation, producing labeled data consisting of pairs 〈x, y(x)〉. 
One set of labeled data is designated as the training set, and it is used to construct or refine a 
model. The process of constructing a model is viewed as choosing a candidate out of a (usually 
infinite) space of possible models, and is known as hypothesis selection. In machine learning, the 
choice of model is determined by an objective function that typically represents a combination 
of the fit of the model to the training set and the simplicity of the model by some measure. A 
second, independent, representative sample of instances is drawn and annotated to produce a 
test set, and performance on the test set provides an objective measure of the relative quality of 
competing models.13 This second step is hypothesis evaluation.

In machine learning, hypothesis selection is done mechanically, but apart from that, the 
prediction task methodology is really just the scientific method. In the scientific method, 
one proposes a hypothesis (hypothesis selection), and one devises an experiment (prediction 
task) to test it. The experimental design specifies the form that observations are to take, and 
thereby determines a population of possible observations. One makes observations—that is, one 
draws a random sample from the population of potential observations—and one evaluates the 
hypothesis by comparing its predictions on the test set to the actual observations (hypothesis 
evaluation). One then refines the hypothesis (hypothesis selection under a different guise) 
based on accumulated experience, including the test set, which now becomes a training set, 
and the cycle repeats.

Understood in this way, there is a clear separation between the model and the observations. 
The model is a hypothesis about the physical system, constructed in the hypothesis selection 
step, and shaped by considerations of simplicity and fit to previously-collected data. There 
is no expectation that the constructs of the model are directly observable; they represent 

12 For simplicity I assume what is known as 0–1 loss, where the prediction is either fully correct or fully 
incorrect. Finer-grained loss functions, for example set differences or divergence between probability distributions, 
might be used. Technically, training error is the expected loss over the training set.

13 As a practical matter, the test set is not always drawn after the hypotheses to be compared have been 
constructed, but using the test set in any way in the construction of the hypothesis is an egregious violation of the 
methodology.
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the hidden workings of the system. But they represent the physical system schematically, 
in the same way that a blueprint represents a building. No model can reveal what the 
physical system is in se; rather, the model is an account of the system as seen through 
the window of experimental observations. Observations, unlike model-internal constructs, 
must be objective. To qualify as a well-defined experiment, it must be the case that any 
two well-intentioned observers, regardless of their theoretical persuasion, agree on what 
is observed, up to the limits of instrument accuracy. Theory development is a cycle that 
alternates between refining the experimental design to capture the relevant aspects of 
the physical system of interest, and seeking models with high predictive accuracy on the 
experiments. To repeat, the model captures, not everything that is true about the physical 
system, but specifically those aspects of the physical system that are revealed in the observations. 
The experimental design embodies a choice of which aspects of the physical system matter, 
which aspects of the system are to be modeled. The linguistic abstraction (Assumption 1) 
identifies production and interpretation observations as that which makes the brain a linguistic  
system.

The failure of internalist linguistics to distinguish fit and prediction, or hypothesis selection 
and hypothesis evaluation, is closely tied to an underappreciation of systematic observations 
and proper experiments. The point of an experiment is to measure predictive accuracy, not 
only in order to adjudicate between competing theories, but also, through systematic testing 
of predictions, to provide information that can be used to direct theory development. Without 
experiments, one has only fit to particular examples that have come to one’s attention, and 
simplicity, to guide hypothesis selection.

A few comments about simplicity may be useful. Simplicity is really a family of notions that 
are formalizations of Occam’s Razor. The central idea is that, although fit to the known facts 
is a good criterion for choosing a hypothesis, one obtains a better criterion by also factoring 
in the simplicity of the candidate hypotheses. During hypothesis selection we would like to 
choose the best hypothesis, in the sense of the one with the highest predictive accuracy, which 
is to say, the lowest generalization error. But generalization error is not available during 
hypothesis selection, so we cannot directly measure predictive accuracy. Fit and simplicity 
provide proxies for predictive accuracy, and, as a rule of thumb, combining them works better 
(yields hypotheses with lower generalization error) than using fit alone.

In Bayesian statistics, the role of simplicity is filled by prior probability, the connection being 
that prior probability is naturally assigned in such a way that prior probability decreases 
monotonically with complexity, or, conversely, that we can define complexity to be a monotone 
decreasing function of prior probability. Log prior probability is widely used as a quantitative 
measure of simplicity.

Let me close this section by addressing a couple of possible objections. First, in response to my 
assertion that conventional linguistic practice fails to distinguish fit and prediction, one might 
object that, although most linguists eschew the rigor of machine-learning style experimentation, 
they are well aware of the importance of not simply getting the known examples right, but 
doing so in a way that “extends without further stipulation to other phenomena.”14 Such an 
objection misses the point. The predictions of a model concern unobserved instances of the 
modeled phenomenon, not other phenomena. In order to consider prediction, one must have 
an idea of a population of instances of the phenomenon, a population that can be sampled to 
construct a test set and to measure predictive accuracy. That is largely absent from current 
linguistic practice.

Predictive accuracy on the test set provides an unbiased estimate of generalization, which is 
predictive accuracy on the population as a whole. Whether or not aspects of the model extend 
to other phenomena is a matter of overall simplicity. Simplicity and generalization are quite 
distinct. As mentioned above, they are related by Occam’s Razor, which can be paraphrased as 
stating that the simplest model is most likely to make the best predictions. However, Occam’s 
Razor is a rule of thumb, not a logical necessity, and it is relevant for hypothesis selection, not 
hypothesis evaluation.

14 The quote is from an anonymous reviewer, to whom I am grateful for thoughtful comments.
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Second, I have assumed that predictive accuracy is defined in terms of error rates when sampling 
from the distribution of possible observations. Plainly stated, we are counting tokens rather than 
types, when counting errors. Some readers may feel that the number of types that are correctly 
handled is more significant. I suspect that the underlying idea is that types more closely align 
with pieces of theory—components, constraints, rules, what have you—and that one should 
measure progress in terms of the proportion of pieces of the theory that are “working right.” 
If that diagnosis is correct, the issue is again one of conflating hypothesis selection, where 
simplicity matters and counting pieces of the model makes sense, with hypothesis evaluation, 
where prediction matters and the structure of the model is immaterial.

To be clear, I do not wish to suggest that one can substitute scores on an experiment for good 
scientific judgment. But hypothesis selection unguided by evaluation is equally defective. The 
essence of the scientific method is the cycle of selection and evaluation, and either on its own 
is incomplete.

3.2 Systematicity and linguistic datasets

As noted above, Assumption 1 lends itself readily to experimentation. Q2 (the interpretation 
question) in particular immediately suggests the following experimental design: collect a corpus 
of sentences and ask native speakers what each sentence means. The task for a hypothesis—that 
is, for a grammar—is to predict the native speaker’s answer. The general-linguistic datasets 
mentioned in the introduction enable precisely this sort of experiment.

To achieve any significant degree of predictive accuracy on the sentence-interpretation task, a 
grammar must cover all phenomena that occur in sentence σ, for some significant proportion 
of randomly drawn sentences σ. This leads immediately to an emphasis on large, systematic 
grammars, and a need for large, labeled data sets to develop them. Hence, there is a natural 
connection between Assumption 1 (the linguistic abstraction) and an inductive methodology, 
with a central role for general-linguistic datasets. The connection is not one of logical necessity, 
but I nonetheless use the terms externalist and inductive as more or less synonymous designations 
for the overall approach.

For a grammar defining relation R̂, the relevant labeled data sets are samples of pairs (μ, σ). 
It is useful, but not essential, to include postulated syntactic structures as well. A collection of 
sentences with syntactic structures is a treebank, one with meanings is a meaning bank, and one 
with both is a semantic treebank. All three types of resource exist. Examples of meaning banks 
include the Groningen Meaning Bank (Bos et al. 2017) and a collection of meaning banks that 
use Abstract Meaning Representation (AMR) (Banarescu et al. 2013); the latter are notable for 
the size and activeness of the community involved in their development. Syntactic treebanks 
do not provide everything we need, but they do provide at least a crude approximation to 
meaning, and they have the advantage of being available for a wider range of languages. 
The largest family of treebanks sharing a single, language-universal labeling scheme, is the 
Universal Dependencies Treebank (UDT) collection (McDonald et al. 2013). As for an example 
of a semantic treebank, I may cite the LinGO Redwoods Treebank (Oepen et al. 2002).

As the existence of these resources makes clear, developing and evaluating grammars on the 
basis of their predictive accuracy is not an unreachable ideal, and the approach I describe is not 
merely a proposal. It is the standard approach within NLP; and even if systematic grammars have 
lost their prestige within the currently dominant school of linguistics, such work does continue, 
especially within documentary linguistics as well as in “feature grammar” frameworks such 
as LFG and HPSG. Work within these latter frameworks straddles the line between NLP and 
linguistics. Practioners have developed relevant resources, such as the Redwoods Treebank just 
mentioned, and have used them to develop a rigorous, broad-coverage grammar, the English 
Resource Grammar (Copestake & Flickinger 2000). The work has been extended to multiple 
languages, and the underlying formalism is intended to be language-general.15

The development of general-linguistic datasets is motivated by a philosophy that differs from 
the internalist philosophy, but contributing to general-linguistic efforts does not require any 
radical change in standard linguistic practice. The development of such datasets is very much 

15 Although the LinGO project is largely conducted under the assumptions that I espouse, it remains susceptible 
to the criticisms I raise below in sections 4.1 and 4.2.
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in the spirit of language documentation and description, and the expansion of the existing 
datasets to include a larger variety of languages, particularly endangered languages, is an area 
where collaboration between NLP and linguistics is particularly urgent. The main requirement, 
I think, is a willingness to view grammars as tools for description and prediction, rather than 
as canonical expressions of exclusive truth. The inductive approach values description above 
speculative theorization. It is not wedded to a particular grammatical formalism, but rather 
is happy to use any formalism whose meaning, in the sense of what it says about the sound-
meaning relation, is clear, and it is happy to convert among formalisms, so as to employ 
whichever is most convenient for a given task.

Some readers may worry that the inductive approach emphasizes systematicity to the exclusion 
of narrower, “piecemeal” inquiry into individual phenomena. That would be problematic, in 
that most linguistic inquiry is of the narrower sort and thus would appear not to be evaluable, 
under the proposed assumptions. In fact, the linguistic concepts that one uses to define 
phenomena are for the most part characterizable in terms of the sound-meaning relation, and 
thus contribute to predictions, even if a particular piece of work does not describe a complete 
grammar.16 In standard linguistic practice, the main desideratum is to “get the facts right,” the 
facts generally boiling down to what the valid expressions of the language are and what they 
mean. The main differences among the frameworks reside in how one thinks of the ultimate 
goals, the big picture into which the narrower work fits.

The main practical consequence is how one responds to uncertainties in how to apply the 
concepts. We can agree that, in order to capture the relation between sound and meaning, it is 
useful to subdivide expressions into phrases and words, words into morphemes, and morphemes 
into phones, and we may agree even about the syntactic categories and phonological features 
to use, and yet still face uncertainty about how to analyze particular cases or particular classes 
of cases. The structuralists dealt with those uncertainties by defining discovery procedures, 
which were intended to determine a unique analysis for every example in the corpus, which is 
to say, in the training set. Now operationally defined concepts of this sort do have a role in data 
annotation—one cannot get consistent annotation without clear operational definitions—but 
they do not solve the problem. Arguably, discovery procedures replace one problem with an 
even harder problem: if it is difficult to make a principled decision in individual cases, surely it 
is even harder to spell out a way of automating those decisions. One can characterize discovery 
procedures as an attempt to automate science, which is unnecessary and impossibly difficult.

In contrast to operational concepts, theoretical concepts are elements in a grammar, which 
is an explicit account of the sound-meaning relation. In the internalist approach, the correct 
decision in cases of uncertainty is the one that corresponds with the internal mechanisms that 
human speakers use. The problem with that approach is that it again replaces one problem 
with an even harder one: if it is difficult to determine which choice gives the best account 
of the linguistic facts, it is even harder to determine which mechanisms human speakers use. 
Psycholinguistic results are very difficult to interpret, and do not provide definitive information 
nor particularly fine-grained information.

In the inductive/externalist approach, the meaning of a theoretical concept is determined 
entirely by its consequences for the sound-meaning relation. In deciding on the best course 
in a particular case, one is relying on one’s understanding of the consequences for predictions 
about the sound-meaning relation, and one is making an informed guess about which of the 
options will ultimately yield the best predictions about the full (infinite) range of the sound-
meaning relation. Simplicity can certainly play a role: in extrapolating from the collected 
examples, the simpler account has the best chance of being right. But “being right” is ultimately 
measured by accuracy in predicting the sound-meaning relation in its entirety. This approach 
relies on good investigator judgment, not on the blind application of discovery procedures, nor 
promissory notes for a future day when psycholinguistics has been solved, nor empty claims of 
psychological reality. What is at stake is not ultimate truth, but a judgment about which choice 
will yield a system that makes optimal predictions.

16 In addition, it is possible to define experiments that are more narrowly targeted than the ultimate sentence-
interpretation experiment. The only requirement is that one can relate the phenomena of interest to well-defined 
observables for which one can draw samples.
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3.3 Critical experiments

Some are likely to counter by holding up cases in which predictions are not tested by drawing 
samples from a population, but rather in which theory dictates the choice of specific, rare, 
critical observations.

A famous example is the empirical confirmation of the general theory of relativity by Dyson 
et al. (1920). During the solar eclipse of May 29, 1919, they observed the apparent location 
of stars whose light passed very close to the sun. The Newtonian model predicted a small 
deflection of the light because of the gravitional influence of the sun on the photons, whereas 
the theory of general relativity predicted a slightly larger deflection. The observed deflection 
was closer to the predictions of general relativity than to the predictions of the Newtonian 
model, and this confirmation of Einstein’s theory made front-page news in the popular press.

The example is instructive, but not in the way it is usually thought. It is instructive, not because 
it is a paradigmatic example of prediction-testing in the scientific method, but precisely because 
it is not business as usual. A critical experiment arises only if we have two theories that are 
nearly equivalent—not equivalent in form, but in making the same predictions in nearly all 
cases—and if there is broad concensus that one of the two is correct. The Newtonian model had 
already been systematically confirmed by countless observations over the course of 250 years, 
and Einstein intentionally constructed his model of general relativity to make exactly the same 
predictions as the Newtonian model under all but the most extreme circumstances.

However satisfying (and news-worthy) the dramatic critical experiment may be, it is not 
business as usual. The bread and butter of science is the 250 years of systematic, large-scale 
observations that gave us such confidence in the Newtonian model. Few linguistic models have 
had their predictions seriously examined, and none have had their predictions confirmed as 
systematically as those of the Newtonian model. As long as that is true, conducting a critical 
experiment to distinguish between Theory A and variant theory A’ will be of interest only 
to those who are already committed to Theory A for essentially subjective reasons such as 
ideology or familiarity.

4 The psychological reality of externalism
As we have discussed, internalism considers the sound-meaning relation to be superficial 
and “apparently useless,” and demands psychological reality. Taking psychological reality 
seriously all but forces one to go beyond conventional linguistic observations into the realm of 
psycholinguistics.

By contrast, the linguistic abstraction of Assumption 1 leads immediately to a sentence-
interpretation experiment that requires no observations that fall outside of conventional 
linguistics. I pointed out that devising a grammar that does well on large, systematic data sets 
is highly non-trivial, without additional requirements of psychological reality.

I would like to show now that, although the externalist sentence-interpretation task requires 
no unconventional observations, it does push us to go beyond conventional linguistic theories. In 
particular, doing it well requires one to address issues that are usually considered to belong to 
language processing. In other words, despite the externalism of Assumption 1, the logic of the 
problem itself imposes a kind of organic psychological reality.

4.1 “Disambiguation”

Under Assumption 1, the central human judgments to be modeled are interpretation judgments 
and production judgments: what does a given sentence of the language mean (IR), and which 
sentences are natural expressions of a given meaning (ER). These judgments correspond to 
basic exercises in beginning linguistics classes. Drawing a syntax tree largely determines its 
meaning, and translating an English sentence to predicate calculus more directly represents 
an interpretation judgment. Conversely, translating a predicate calculus formula μ to English 
represents the computation of at least one element of ER(μ). In short, the prediction tasks 
represented by ER and IR are fundamental and elementary tasks of linguistics. Even so, no 
contemporary linguistic theory models them or even attempts to model them.
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Readers may find that comment puzzling, so let me give an example to make the point clearer. 
What is the linguistic status of the following example?

(1) the dog barks

This is not a difficult or questionable example. Example (1) is unambiguously a grammatical 
sentence of English, which states that a particular member of the species canis familiaris vocalizes 
in the manner that is typical for its species. And yet, almost no conventional grammar predicts 
this judgment correctly. Virtually every conventional grammar asserts that the example is 
several ways ambiguous. For example, (1) has a reading as a noun phrase referring to members 
of a certain class of sailing vessels (having square-rigged fore- and mainmasts but a fore-and-
aft rigged mizzenmast) that are associated with dogs. Perhaps their cargo consists of members 
of canis familiaris, or perhaps their cargo consists of andirons or various other hardware items 
that are used to stop movement. The point is this: a human confidently judges the sentence 
to be unambiguous, and identifies a single interpretation as correct, whereas the grammar 
categorizes the sentence as ambiguous, and provides no guidance even about which is the most 
common or natural interpretation.

One possible response is that example (1) is in fact grammatically ambiguous, but that there 
is a disambiguation procedure that humans use to choose a single best interpretation. Since 
disambiguation is a matter of processing, it is beyond the scope of linguistic theory.

Such a response sounds reasonable at first, but it is actually nonsensical. The function IR is not 
intrinsically computational, any more than anything else in linguistics. It assigns a particular 
set of interpretations to each sentence, but it says nothing about how that assignment is to be 
computed. Under the linguistic abstraction, any rigorous (and accurate) definition of the function 
will do. Interpretation judgments are centrally important linguistic judgments, regardless of 
how they are mentally computed. It is completely immaterial whether IR is mentally computed 
in two steps—first enumerating a long list of possibilities, followed by disambiguation—or 
directly computed in a single step. Discriminating between those two possibilities is outside our 
purview, if processing is outside our purview. The linguistic fact remains: (1) is robustly judged 
to be an unambiguous well-formed sentence of English.

A subtler version of the “performance” argument is the following. One might assert that the 
string the dog barks is grammatically ambiguous even if it is not perceived as ambiguous. After 
all, if one sets up the right context, one can get human judges to perceive the alternative 
interpretations, even if they do not spring to mind in the neutral context. In this view, the 
grammatical ambiguity of the string reflects its status in an account of competence, whereas 
the perceived lack of ambiguity is a performance error. I think this argument is also mistaken, 
even within the conventional paradigm, but it is instructive to consider why.

We have not previously discussed contexts. Obviously, the context can indeed have an effect 
on the mapping R.17 Let us represent that dependency by writing Rɣ for the sound-meaning 
mapping that obtains in context ɣ. We can continue to use R without a superscript to represent 
the mapping in the null or default context. Then my original point stands: grammars developed 
in the dominant paradigm fail to model IR and ER, or IRɣ and ERɣ for any other context ɣ. That is, 
a conventional grammar does define a relation R̂ between sound and meaning, but that relation 
does not make good predictions about Rɣ for any choice of ɣ. Specifically, IRɣ(σ) is a singleton 
set, for most contexts ɣ and sentences σ, but R̂I (σ) is usually a large set. If one responds to that 
discrepancy by dismissing the singularity of IRɣ(σ) as a “performance error,” one is essentially 
claiming that the theory is right; the data are wrong. I trust that the absurdity of such a claim 
is self-evident.

In fact, it is neither an error nor an accident that IRɣ(σ) is a singleton for most sentences σ in 
most contexts ɣ. If sentences were genuinely as ambiguous as conventional grammars have 
it, communication would be impossible.18 Consider: a speaker has a meaning μ in mind and 
chooses a sentence σ ∈ ER(μ) to express it. The hearer receives σ and must choose a meaning 

17 For discussion of the role of context in elicitation of meaning judgments, see Matthewson (2004).

18 Treebanks rely critically on the singularity of IRɣ(σ) given only the limited discourse context available in the 
treebank itself. The existence of large treebanks for numerous languages makes it clear that human judgments 
concerning the unique correct interpretation for a given sentence are very robust.
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μ′ ∈ IR(σ). A communication failure occurs if μ′ ≠ μ. Assuming the hearer chooses uniformly at 
random from IR(σ) and that IR(σ) contains n meanings on average, the probability of successful 
communication is 1/n. Although misunderstandings clearly do occur, they occur relatively 
rarely, much less than half the time, from which we can conclude that n is significantly less than 
two on average, and certainly far smaller than the rate of ambiguity predicted by conventional 
grammars.

Rather than dismissing the discrepancy between IRɣ and R̂I  as a performance error, a better 
response, within the conventional paradigm, is to concur with my original statement—that 
a conventional grammar provides a model neither for interpretation judgments IR(σ) nor for 
production judgments ER(μ)—but to assert that a conventional grammar does provide an 
account of what we might call a context-free sound-meaning relation:

    
     *( , ) ( , ).R R

This provides context-free interpretation and production functions:

   
 

 

     * *E ( ) E ( ) I ( ) I ( )  R R R R

These in turn correspond to the following questions:

Q1*  Given meaning μ, what sentences σ exist such that σ can be naturally used to 
express meaning μ in at least one context?

Q2*  Given sentence σ, what meanings μ are such that there is at least one context in 
which σ can mean μ?

I think this is in fact the right way to understand the predictions of conventional grammars. But 
there are two issues. First, answering question Q1* or Q2* is not a simple matter of making a 
native-speaker judgment. It takes considerable training and ingenuity to come up with relevant 
contexts. Untrained native speakers cannot answer Q1* or Q2*, and even with training and 
ingenuity, there is no guarantee that one has discovered all possibly relevant contexts. Second, 
Q1 and Q2 are the more fundamental questions. One poses Q1 (resp., Q2) repeatedly in the 
course of answering Q1* (resp., Q2*). Moreover, ERɣ(μ) cannot be computed from ER*(μ) nor 
can IRɣ(σ) be computed from IR*(σ). Namely, in going from ERɣ to ER* or from IRɣ to IR*, one 
throws away information by pooling across contexts. The information about which reading 
goes with which context cannot be determined, given only ER* or IR*. And the fact remains that 
conventional grammars provide no model for ERɣ or IRɣ.

One reason why conventional grammars focus on the context-free functions instead of the more 
fundamental context-specific functions is that, to model the context-specific functions well, it 
appears that one needs to consider world knowledge and probabilities.19 This cedes the point 
with which I began the discussion—that contemporary grammars fail to model ER and IR—but it 
does provide a way of viewing conventional grammars in which they at least make an indirect 
contribution to our our understanding of R.20

Without making any particular claims about mental processes, we may linguistically model 
IR(σ) in two derivational steps. In the first step, a set of meanings (or structures) R̂I *(σ) is 
generated, modeling IR*(σ). In the second step, the meanings that are salient in context are 
selected to yield  ˆ ( )RI , either by a model of pragmatics (loosely speaking), or by a context-
specific weighting.21 The advantage of this approach is that world knowledge and probabilities 
are needed only for the second step.

19 The success of probabilistic parsers trained on treebanks shows that one can do a good job of modeling 
interpretation using only probabilities and not world knowledge, but ultimately both are surely necessary.

20 One may justify avoidance of probabilities and world knowledge, and modeling of R*, as an effort to “cut 
nature at its joints.” Structuring one’s theory so that it captures what one believes to be “nature’s joints” is perfectly 
legitimate; but the fact remains that a model of R* is only a partial theory of R. If R is the fundamental linguistic 
relation, a theory of R* is only a partial theory of linguistics. Partial theories risk being untestable, though in this 
case the necessary observations (Q1* and Q2*) are for the most part obtainable, even if they are not the most 
fundamental observations.

21 The idea of a weighting as second step comes from Collins (1999). He proposes dividing the parsing problem 
into a model consisting of grammar plus weights, and a parsing algorithm that, for a given sentence, constructs the 
tree that is optimal according to the model.
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Although the two-step approach can be metaphorically thought of as a disambiguation 
procedure, I would like to emphasize that there is nothing intrinsically computational about 
it, as defined. Note that derivation and generation in the preceding paragraph are mathematical 
terms, not computational terms. They concern only the definition of sets and functions. It is 
possible that the two derivational steps correspond to two separate steps of mental processing, 
but it is not necessary; that is a question for psycholinguistics.

4.2 Reversibility

To this point, we have focussed on sentence interpretation. Evaluating a model’s predictions on 
the production task is also important, though more difficult. Just as a systematic approach to 
the interpretation task requires a model that incorporates components that are conventionally 
relegated to language processing, addressing the production task requires an attention to issues 
that are conventionally dismissed as processing matters. An adequate account of the relation 
between sounds σ and meanings μ must satisfy at least the following criteria.22

i. It must define R̂I (σ) for all sentences σ,
ii. The function R̂I (σ) must accurately predict human interpretation judgments,
iii. It must define R̂E (μ) for all meanings μ that higher cognition may produce, and
iv. The function R̂E (μ) must accurately predict human production judgments.

The ambiguity problem is the failure of standard accounts to satisfy criterion (ii). A much less 
familiar problem, which I will call the reversibility problem, is the failure of standard accounts 
to satisfy criterion (iii).

Meanings are obviously less tangible than sentences. The manner in which meanings are 
represented will necessarily be theory-internal, since direct observations are impossible, but 
the meaning representation must capture those properties of meanings that are subject to 
observation. If we take an externalist approach to representing meaning—if, roughly speaking, 
we seek to characterize the representations implicated by the “laws of thought,” in the words 
of Boole (1854)—we largely recapitulate the history of the development of the predicate 
calculus. The programme, from the time that Leibniz (1677/1951) coined the term until the 
complete first-order predicate calculus was defined (Frege 1879), aimed to boil thought down 
to its essence, abstracting away from the details of mental processes to the logical structure 
of thoughts and inference. In short, externalism suggests that one represent meanings using 
a formal language such as the predicate calculus that supports logical inference or a similar 
abstract model of thought processes.

To say it plainly, the μ in R(μ, σ) should not actually be a model-theoretic construct, but rather a 
formula of some appropriate logical language, which itself has a model-theoretic interpretation. 
Formulae μ serve as abstract representations of thoughts, and there is a space of formulae M 
that may arise in the course of human higher cognition. The production task involves sampling 
formulae μ from M and testing the predictions of the grammar regarding ER(μ).

Although standard accounts in semantics assign model-theoretic denotations directly to natural-
language sentences, it is straightforward to recast a standard account as defining a mapping 
from a sentence to an expression in the chosen meaning-representation language. Let us write f 
for the translation function from parse tree τ to meaning representation μ = f(τ). Then R̂I (σ) is 
the set of f(τ) where τ ranges over parse trees that represent possible readings of σ. Inversely, 
we may define R̂E (μ) as the set of σ such that f(τ) = μ for some parse τ of σ.

In the standard approach, semantic theory assigns a unique meaning μ = f(τ) to each parse 
tree τ, but it pays no attention to the range of f. The reversibility problem arises if the range of 
f differs from the set of meaning representations M that higher cognition might produce. The 
issue is not one of “ineffable” thoughts; let us assume that every meaning μ ∈ M is related to at 
least one expression σ by the true sound-meaning relation R, hence that ER(μ) is nonempty for 
any μ ∈ M. The issue is also not one of gross incompleteness of the grammar. Let us suppose 
that, for any meaning μ ∈ M that is expressible as sentence σ, the grammar interprets σ as μ′, 
where μ and μ′ are logically equivalent. The problem is that conventional grammar-construction 
in semantics concerns itself exclusively with IR and pays no attention to ER. Thus it is possible to 

22 I omit the context superscript ɣ to avoid clutter; the reader may supply it.
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have R(σ, μ), ˆ ( ) 'RI   , and μ ↔ μ′, and yet have ˆ ( )RE   . The grammar incorrectly predicts 
that μ is inexpressible. Standard approaches make no effort to avoid this situation, so we must 
assume that it arises; it does indeed arise for practical NLP systems that interpret sentences by 
translating them to a logical calculus.

The reader might suppose that an easy fix is available. Namely, we have R̂(σ, μ′) and μ′ ↔ μ, 
so let us expand R̂ to include R̂(σ, μ). That is, to make a prediction regarding ER(μ), return 
any sentence σ such that ˆ ( ) 'RI    and μ′ ↔ μ. But that proposal is not viable: we cannot 
enumerate all expressions μ′ that are logically equivalent to μ, because logical equivalence 
is undecidable. This issue has been discussed in the NLP literature (Shieber 1993). Even if 
the undecidability of logical equivalence were not an issue, the proposal does not give us a 
tractable way of computing predictions. Blindly enumerating sentences will not do; we must 
rather invert the model’s semantic-interpretation function f. But conventional proposals for f(τ) 
are not invertible. The usual formulations of f involve beta reductions, for example, and the 
inverse of beta reduction is infinitely ambiguous.

I do not believe the problem to be insoluble. The human production function ER(μ) is 
presumably such that one need not search the space of μ′ that are logically equivalent to μ, but 
it may be such as to require a more limited kind of equivalence. To give a concrete example, 
we might have R(σ, μ) ↔ R(σ, μ′) if μ and μ′ have the same Conjunctive Normal Form (CNF) 
representation (Abney 2018). Having the same CNF representation implies logical equivalence, 
but not all pairs of logically-equivalent formulae have the same CNF representation. That is, the 
reversibility problem may have a solution that tells us something interesting about the sound-
meaning relation.

To summarize, Assumptions 1 and 2, despite their externalism, have a kind of psychological 
reality, in that constructing a model that does well on the associated prediction tasks takes us 
beyond the traditional boundaries of linguistics into areas usually relegated to processing. This 
variety of psychological reality is intrinsic to the tasks themselves, when they are approached 
systematically.

5 Inductive General Grammar
Let us now turn from individual languages to general linguistics.

Assumption 3 The main goal of general grammar is to characterize human language acquisition by 
providing a learning function that maps samples of primary data to particular grammars.

“Primary data” is the term commonly used in linguistics; “training data” is the standard term in 
machine learning. I am being intentionally vague about exactly what form primary data takes. 
Clearly it includes examples of well-formed sentences, but presumably also something more. 
Psychologically most realistic would be a representation of the physical context of utterance, 
but a more practical approximation might be the meaning or partial meaning for a subset of the 
training sentences, making the problem a semi-supervised learning problem.

Assumption 3 needs some unpacking.

Definition 1 The empirical learning function L : D → R, where D is primary data and R is 
the sound-meaning relation, is the function computed by humans in the natural course of language 
acquisition.

Language acquisition is a change in brain state in response to exposure to primary data D. 
Given the inextricability of D from all other aspects of the environment that affect learning 
and development, and given the stochastic nature of changes at the level of brain state, we 
cannot suppose that the mature brain state is a function of D, in the sense of being uniquely 
determined by D. But it is reasonable to assume a family of brain states that all correspond to 
being a speaker of a particular language, and in accordance with Assumption 1, we represent 
the language as a sound-meaning relation R.

A general grammar provides a hypothesis concerning L. In keeping with standard practice, I 
assume that it does so indirectly. Namely, a general grammar provides a grammatical inference 
function L ̂that maps D to a particular grammar G, and the sound-meaning relation predicted by 
G models the output of L. That is:
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Accordingly, we may represent a general grammar formally as a pair ˆ ( , )L , where   is the 
grammar notation definition previously discussed and L ̂is the grammatical inference function.

My formulation is more or less the standard approach in machine learning, though somewhat 
adapted to the linguistic context. In machine learning, there is a target function f, and D provides 
information that the learning algorithm uses to construct a hypothesis f ̂that approximates f. 
In my formulation, the target is R, and the learning algorithm L ̂constructs a grammar G that 
represents the hypothesis R̂. The target and hypothesis are relations rather than functions, but 
they can each be thought of as a pair of functions: ER and IR for the target R, R̂E  and R̂I  for the 
hypothesis R̂.

The natural measure of the quality of a general grammar is as follows.23

Assumption 4 The measure of quality of a general grammar ( , L)̂ is the expected predictive 
accuracy of G = L(̂D), namely, the expected rate of agreement between R = L(D) and ˆ   ( )R G .

Assumption 3 takes learning to be the crux of general linguistics (a.k.a. universal grammar), and 
is in that respect in agreement with the Chomskyan paradigm. I think the only controversy that 
Assumption 3 might raise is the question of the nature of the output of L. It is thus surprising 
that the field has shown so little interest in the sizeable body of theoretical and practical 
knowledge of learning in general and language learning in particular that comes from the field 
of machine learning.

Instead of applying the results of machine learning, the strategy in the Chomskyan approach 
has been to avoid learning by making maximally pessimistic assumptions about learnability and 
adopting a strategy of reducing what must be learned to a minimum. In particular, a parametric 
grammar strategy is adopted, in which the aim is to express variation across languages in terms 
of a relatively small number of abstract parameters (Chomsky 1981). Concretely, instead of 
taking the form of a collection of rules, a particular grammar is to take the form of a lexicon 
and a vector of parameter settings.

In point of fact, reducing the number of possible grammars is not guaranteed to make the 
learning problem easier. More important than the raw number of possible hypotheses is the 
relationship between observable properties and the hypothesis space. For example, if the 
hypothesis space is the uncountably infinite set of lines on the plane, then one of the oldest 
and simplest learning algorithms, the perceptron algorithm, is guaranteed to find either the 
correct hypothesis or one that is indistinguishable from it on the basis of the training instances. 
On the other hand, if there are only four possible instances corresponding to the corners of the 

23 For the sake of concreteness, what I have in mind is something along the following lines. General-grammar 
quality may be measured as:
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Note that R is the language of the speech community, R′ is the language learned by the child, and R̂ is the language 
that the general grammar predicts the child should learn. If we assume that the child learns the community language 
correctly, which is to say that R′ = R on average (more precisely, that the expected loss of R′ is zero), then we can 
simplify the measure of quality to:

     

ˆloss( , )
~Pr( ), ~Pr( ; )

R R
R R D D R



This brings the formulation more in line with the usual problem statement in machine learning.

The formula for grammar quality assumes a probability distribution Pr(R) over languages. That assumption is 
somewhat problematic. It is clear that the “convenience samples” consisting of all languages currently spoken 
on Earth, or all languages for which we have documentation, are biased samples, with strong correlations within 
families. It is desirable to try to reduce that bias by sampling across as many families as possible, but I am not in a 
position to offer a definitive method for reducing sampling bias. More fundamentally, it is unclear how exactly the 
population of natural languages should be defined.
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unit square, yielding only 24 = 16 distinguishable hypotheses to choose among, the perceptron 
algorithm cannot be guaranteed to succeed, inasmuch as some hypotheses (those in which 
diagonally opposite corners of the square are grouped together) are not expressible as dividing 
lines on the plane. Lappin & Shieber (2007) give additional examples and discuss the issue in 
considerably greater detail. In short, the parametric grammar strategy is not only speculative, 
based on presumptions rather than investigations, the presumptions on which it is based are 
ill-informed and at least partially erroneous.

The alternative is an empirical investigation of what is learnable and of what hypotheses 
regarding general grammar are most effective, as measured by their ability to actually learn 
languages. That alternative may seem far beyond our current abilities, but it is not. Work 
on learning languages is currently being carried out in NLP, and has spawned a substantial 
literature. A key venue is the Conference on Natural Language Learning (CoNLL), which has 
sponsored a number of “shared tasks” on the learning of entire languages, to push research 
forward through friendly competition on common ground (Zeman et al. 2018). The shared tasks 
in fact were a key driver behind the development of the Universal Dependencies Treebanks 
(UDT), mentioned earlier. The main shared task is called multi-lingual dependency parsing. It is a 
supervised learning task, hence not immediately relevant to our interests, but it can be modified 
to provide an approximate version of the induction of a general grammar.

In outline, multi-lingual dependency parsing has the following form. Given a hypothesized 
general grammar, in the form of a learning algorithm L,̂ a test set of languages is selected at 
random from the UDT, L ̂ is used to learn a model for each test language, and the success of 
learning is measured by the prediction accuracy of the model. As a practical matter, parsing is 
used as a proxy for the interpretation function, since meanings are not explicitly represented in 
the UDT. If we accept a parse tree as an approximate meaning representation, a parsing model 
does qualify as a grammar in a certain form: it computes the function R̂I (σ), which determines R̂.

There are three learning tasks that have the overall form just sketched, but which differ in how 
much information is made available to the learning algorithm. The most common but least 
interesting task is supervised learning, already mentioned, in which the learner is given parsed 
training data in the test language. That is, in supervised learning, L ̂learns a parser based on 
parsed examples.

In the remaining two tasks, test-language trees are used only to evaluate hypothesized parsers; 
the learning algorithm is not given access to them. In unsupervised learning, the learning 
algorithm is given unparsed test-language text, and nothing else. The learning algorithm 
instantiates assumptions about the parameters of variation in language and how to identify 
structure “from scratch” (Klein 2005; Spitkovsky et al. 2012). The methods that have been 
explored are not implementations of proposals from linguistics, but they at least broadly accord 
with common linguistic assumptions about language learning algorithms.

The third learning task is transfer learning. As in unsupervised learning, the only test-language 
information that the learning algorithm receives is unparsed text, but the learner is also given 
a second set of treebanks (the training treebanks), containing languages other than the test 
language. The training treebanks are used to induce a general-linguistic model in the form of a 
“universal parser,” obtained by generalizing over the rules of the particular grammars for the 
languages in the training set. The universal parser is then applied to unparsed test-language text 
to create a crude treebank, which can in turn be used to bootstrap a language-specific parser 
for the test language (McDonald et al. 2011; 2012; Naseem et al. 2012).24 These methods are 
called transfer methods because general knowledge about language induced from the training 
set is being transferred and applied to the test set.

A small modification to transfer learning gives us a concrete instance of the inductive general 
grammar paradigm. Namely, instead of expecting the construction of a universal parser to 
be done automatically by the learning algorithm, let us view the training treebanks as raw 
material for the linguist to use in inducing a general grammar. There is, after all, no motivation 
for treating the induction of a general grammar (in the form of a universal parser or in any 

24 In addition to the cited works, the shared task of CoNLL 2018 (Zeman et al. 2018) provided no within-
language training data for a handful of target languages, making that portion of the shared task a transfer learning 
task.
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other form) as a learning task. It is more properly a matter of theory formation, to be performed 
by the linguist. The induction algorithms used in the current transfer-learning systems may, 
however, provide useful machine assistance in the construction of a model of general grammar.

From a linguistic perspective, there is plenty of room to criticize the NLP language-learning 
efforts. The use of parsers in lieu of particular grammars may make the work seem remote 
from linguistic sensibilities, and the lack of semantics or real-world context for learners are 
significant limitations that have been accepted in the interest of tractability. None of the current 
unsupervised or transfer-learning algorithms yield learned parsers that are as good as parsers 
created by supervised learning from a treebank for the target language. Even so, clear progress 
has been made in improving the predictive accuracy of learned parsers, giving reason to believe 
that research within the inductive general grammar paradigm is possible and practical. Two 
results of interest are that, at least across the range of proposals that have been evaluated so far, 
transfer methods significantly outperform unsupervised methods, and that hybrid methods that 
incorporate traditional typological universals into transfer perform even better than transfer 
alone (Naseem et al. 2012; McDonald et al. 2012).

In conclusion, the inductive approach that Bloomfield foresaw is not only reasonable and 
possible, but something very much like it is already being pursued, albeit by NLP researchers 
rather than linguists. I believe current efforts would benefit by greater involvement of linguists, 
particularly in the development of treebanks for an even broader and more typologically diverse 
range of languages, in improving the annotation systems that have become standards in NLP, 
in addressing linguistic questions overtly rather than incidentally to technology-driven efforts, 
and, most importantly, in developing a general grammar with the assistance of large datasets 
and induction algorithms. I hope I have also made a credible case that pursuing the inductive 
approach to general grammar is of benefit not only to NLP but also to linguistics, and may 
represent our best strategy for addressing the fundamental questions of linguistics.
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