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How do grammars assess the well-formedness of words with multiple phonotactic violations? 
Certain models predict that as the strength of phonotactic restrictions decrease, forms that 
violate multiple restrictions should be less acceptable than expected, in a pattern we term 
super-linear cumulativity. We test this prediction using a series of Artificial Grammar Learning 
experiments, in which we vary the number of exceptions to phonotactic patterns in artificial 
languages. We find that super-linear cumulativity is indeed observed in the conditions with 
the weakest restrictions. Strikingly, participants exhibit super-linear cumulativity even when the 
trained language does not contain evidence for it.
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1 Introduction
This paper addresses the relationship between the strength of phonotactic constraints and the 
way in which multiple coincident violations of such constraints interact in the grammar. Some 
grammatical approaches predict that violations simply stack up to yield a penalty that is the sum of 
the component penalties. Other approaches predict that forms with multiple violations are better 
or worse than would be obtained by adding the individual penalties, and indeed, cases of this sort 
have been observed in lexical counts and experimental results. As we will demonstrate, in some 
grammatical approaches, the predicted size of the penalty varies depending on the strength of the 
restrictions involved. We investigate whether there is a causal relationship between the strength 
of a given phonotactic restriction and how it combines with other restrictions in the grammar. 
Using an Artificial Grammar Learning (AGL) paradigm, we find that as we decrease the strength of 
phonotactic restrictions by introducing exceptions, we observe an increasing penalty for multiple 
violations beyond the simple combination of the independent penalties. That is, participants’ 
acceptability ratings for doubly-marked forms are lower than what is obtained by adding up the 
independent penalties in acceptability for each of those forms’ individual violations. We argue that 
this supports a grammatical model in which the degree of penalty assigned to multiple constraint 
violations is a deterministic function of the weights of the constraints involved. We discuss the 
implications of this model for theories of phonotactics, and the contents of the constraint set.

2 Computing grammaticality across multiple marked structures
2.1 Linear, super-linear, and sub-linear cumulativity
We begin by laying out some terminology in order to state our hypothesis as precisely as possible. 
The broad domain of inquiry is about the acceptability of words that contain multiple marked 
structures. This contains an empirical question (how does the acceptability of multiply marked 
words relate to that of singly marked words), and a theoretical question (how do grammatical 
models combine violations to compute an overall grammaticality).

Empirically, the question is how decomposable acceptability judgments of strings are into 
separate components. A natural default assumption is that if a word has two dispreferred substrings 
(i.e., two Markedness violations), each contributes its own penalty independently, so the doubly-
marked form is exactly as unacceptable or improbable as one would expect based on its individual 
violations. There are various ways of computing such an expectation. In this section, we focus on 
expectations implemented in terms of probability, because several current grammatical formalisms 
generate probability distributions over outputs. Assuming that a model is able to predict the 
probability of a form with a single Markedness violation, then a word with two Markedness 
violations would have a probability equal to the joint probability of the two Markedness violations. 
The joint probability of two violations is equal to the product of the independent probabilities of 
those violations, or, in log-space, their sum. We use the term linear to refer to the situation where 
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the Markedness violations of a string all affect the outcome independently. The assumption of 
linear interactions is seen, for example, in how the “Expected” values in Observed/Expected counts 
are typically calculated (Frisch et al. 2004; Wilson & Obdeyn 2009), and also in how n-gram models 
combine probabilities of each successive n-gram (Jurafsky & Martin 2009: chapter 4). Weighted 
constraint models such as Harmonic Grammar (Legendre et al. 1990) and MaxEnt (Smolensky 
1986; Goldwater & Johnson 2003) also calculate the Harmony of a candidate as the linear sum 
of its weighted violations. However, this alone does not guarantee that we will observe linear 
interactions empirically, since the way that the acceptability or probability of a form is determined 
from its Harmony in these frameworks may make the actual acceptability or probability of a 
doubly-marked form higher or lower than the joint probability of its parts (more on this below).

With this definition of linearity in hand, it is now straightforward to define deviations from 
linearity. Specifically, if the probability or acceptability of a multiply-marked form is lower than 
expected based on the independent probability or acceptability of its parts, we follow Smith & 
Pater (2020) in calling this a super-linear interaction.1 Similarly, we can say that if the probability 
or acceptability of a multiply-marked form is higher than expected, it is a sub-linear interaction.

On the theoretical side, linearity can also be a property of grammatical models. Here, it 
refers to how models combine different theoretical quantities to yield an overall grammaticality 
value. For example, as noted above, a model that adds weighted Markedness violations to yield 
a Harmony value is linear, in the sense that Harmony is decomposable into the component 
violations. For present purposes, we are not directly concerned with whether a given grammatical 
model is a linear model, though in practice, all of the models that we consider are. Rather, we are 
concerned with what models predict for the candidates’ grammaticality-determined probability, 
as observed through acceptability judgments.

2.2 Evidence for cumulativity of violations
A growing body of evidence in the phonological literature supports the view that Markedness 
violations are cumulative: when speakers judge the well-formedness of a word, their judgement is 
not based on only the most marked structure it contains (as predicted by strict-ranking constraint-
based models such as Optimality Theory (Prince & Smolensky 1993) and its variants). Rather, 
speakers attend to all relevant structures in a domain, and weight their importance according to 
their severity (as predicted by weighted-constraint models such as Harmonic Grammar (Legendre 
et al. 1990) and its variants). This aggregation of evidence across different structures was termed 
cumulativity by Jäger & Rosenbach (2006),2 and is observed both in the probability of a given 
structure in the lexicon, and that of experimentally-determined acceptability.

	 1	 The term super-linear is used even though the probability or acceptability is lower than expected, because the penalty 
is higher than expected under linear combination.

	 2	 Note that the distinction that Jäger & Rosenbach (2006) make between counting and ganging cumulativity is ortho-
gonal to the current discussion of different degrees of cumulativity — linear, sub-linear, or super-linear.
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Recent work has focused on how exactly the contributions to markedness from each of a 
number of structures are combined in the grammar. Specifically, there are some indications that 
the total markedness of a word containing multiple marked structures might not be accurately 
measured by the simple combination of the markedness of its parts. In lexical attestation, nonce 
word judgments, and phonological patterning it’s been observed that sometimes, strings with two 
marked structures are penalized to a greater extent than obtained by adding up the markedness 
of each of the violations assessed alone — super-linearity. An example of this type of cumulativity 
can be found in the lexicon of English: as part of a study of English monosyllable phonotactics, 
Albright (2012) found that 491 (8.2%) of monosyllables in the CELEX database (Baayen et al. 
1996) had a stop+l onset, and 47 (3.2%) had a s+stop coda. However, the number of #stop+l…
s+stop# words was lower than either of these, with only 7 occurrences (0.11%). This instance 
the cumulativity exhibited is super-linear in nature: the combination of independent probabilities 
of the marked syllable margins alone predicts that 8.2% × 3.2% = 0.22% of the monosyllables 
in the database — about 16 unique words — should exhibit both the marked onset and marked 
coda. Similar data in lexical studies have also been noted in Albright (2008), which finds that 
Lakhota roots which contain multiple structures which are only moderately uncommon, such as 
consonant clusters and fricatives, co-occur in dramatically fewer roots than predicted by their 
joint probability. Also in this vein is a study by Yang et al. (2018), who carry out a comparison 
of English and Mandarin monosyllables and find that the attested monosyllabic lexicons are more 
well-formed than would be expected by the independent probabilities of their parts.

Although lexical statistics are often advanced as evidence of synchronic phonological 
knowledge, divergences between lexical statistics and productive grammatical knowledge are 
well-known (Becker et al. 2011; Hayes & White 2013 among others). Indeed, Frisch (1996); 
Martin (2007; 2011) and Beguš (2018) highlight how the phonotactic structure of the lexicon 
can change over time so as to favor well-formed words at the expense of marked forms as part of 
a self-amplifying feedback cycle with basic properties of the synchronic phonological grammar. 
Thus simply observing that a generalization holds of a language’s lexicon does not necessarily 
imply that it enjoys a cognitively real status in the synchronic grammar of its speakers. Therefore 
it is important to ask whether super-linear cumulativity is exhibited synchronically.

Super-linear cumulativity has also been observed in nonce word judgments, though the 
data are relatively scarce. Albright (2012) replicated a nonword acceptability judgment task 
from Bailey & Hahn (2001) which asked subjects to rate the acceptability of novel English 
monosyllables containing onset clusters (e.g. [krεn, draf]), coda clusters (e.g. [lεsk, mısp]), or 
both (e.g. [drısp, krεsk]). Albright then modeled whether the acceptability of the doubly-marked 
forms could be predicted solely on the basis of their constituent violations and found that it could 
not: doubly-marked forms such as [drısp] were rated less acceptable than predicted by the sum of 
their independent penalties.
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Other cases of super-linearity have been documented in phonological alternations: for 
example Smith & Pater (2020) note that super-linear behavior is observed in the interaction 
of deletion and epenthesis in the surface-realization of French schwa. Green & Davis (2014) 
find that multiple optional syllable structure simplifications in colloquial Bamana are 
dramatically less likely to co-occur than expected given the product of the probability of each 
independent simplification process. Kim (2019), building on Kumagai (2017), demonstrates 
the cumulative effect of nasals on blocking the inter-morpheme obstruent-voicing process 
rendaku in Japanese compounds which also displays super-linear behavior. Kawahara & 
Kumagai (2021) re-examine the data on nasals with a better-controlled experiment, and 
do not replicate Kumagai (2017)’s findings of super-linearity. However, they unexpectedly 
find that two approximants ([w] or [j]) in the second element of a compounds does exert a 
blocking effect on Rendaku that is dramatically stronger than that of a single approximant, 
again a case of super-linear cumulativity. Super-linear cumulativity has also been observed 
in the contribution of different phonological structures to the likelihood of belonging to a 
specific lexical class (Shih 2017).

At the same time, not all studies that have examined cumulativity have found it to be super-
linear: Breiss (2020) tested for cumulativity in phonotactic markedness using an AGL paradigm, 
and found that, when trained on a language which conformed to two exceptionless phonotactics, 
participants judged words that violated both phonotactics as less well-formed than those which 
violated only one, again demonstrating cumulativity but without evidence of super-linearity. 
Durvasula & Liter (2020) also used an AGL task to examine multiple concurrent phonological 
generalizations learned over representations of different grain-sizes, and also found results that 
are compatible with linear cumulativity. Moving beyond the domain of linguist-created languages, 
Kawahara & Breiss (2021) examined cumulativity in sound symbolism, and found that participants 
combined multiple phonological cues to the same sound-symbolic quality in a cumulative manner 
in the domain of Pokémon names (see also Kawahara & Moore 2021; Kawahara 2021). Pizzo 
(2015) found that English-speaking participants judged words which violated English syllable-
margin phonotactics in one location, ex. plavb, tlag as less acceptable than one which violated none 
— plag — and crucially more acceptable than those which violated both, ex., tlavb. Importantly, 
the penalty for doubly-marked forms in her data was not more than the expected value under 
linear cumulativity (though we return to these findings in more detail in section 6.3).

Summarizing the state of the literature on cumulativity reviewed above, we find that there 
are conflicting claims about the linearity of cumulative phonological interactions, and further 
there is a lack of clarity about which factor(s) might lead a given instance of cumulativity to be 
(non-)linear in the first place, since studies on the topic draw on acceptability judgements from 
both real and artificial languages, as well as studies of lexical attestation, the distribution of sub-
classes of forms within the lexicon, and factors influencing phonological alternations.
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2.3 Deriving non-linear cumulativity with grammatical models
Grammatical models differ in whether they predict the existence of linear, super-linear 
and sub-linear effects. Optimality Theory (OT; Prince & Smolensky (1993)) assumes strict 
constraint domination, and predicts no super-linear interactions. Categorical OT cannot 
derive probabilities other than 0 or 1 at all, and if a candidate contains two different 
intolerable (p = 0) violations, it will be eliminated by the higher ranked violation, with 
no additional cumulative effect of the lower-ranked violation; that is, only one violation 
contributes, but this is indistinguishable from the effect of two intolerable violations 
(probability of 0 is equivalent to probability 0 × probability 0) (see Coetzee 2004 for 
further discussion of grammaticality in categorical OT). Stochastic OT (Boersma et al. 1997; 
Boersma & Hayes 2001) can assign gradient probabilities, and Smith & Pater (2020) have 
shown that doubly-marked candidates may receive a probability that is not identical to 
the probability of its highest violation, but the interaction is always sub-linear, and never 
super-linear.

Weighted constraint models, by contrast, do not employ strict domination, and as 
mentioned above, all of the weighted violations in a form are summed to compute the 
Harmony of a candidate. Whether or not adding multiple Markedness violations leads to 
linear or super-linear interactions depends on how acceptability or probability are then 
determined, based on the Harmony of the candidates. In Harmonic Grammar (Legendre et 
al. 1990), the candidate with the best Harmony is chosen as the categorical winner, with the 
consequence that a single intolerable violation is all that matters in eliminating forms, as 
in categorical Optimality Theory. Noisy Harmonic Grammar assigns probabilities much like 
Stochastic OT by imposing noise on Harmony values, and the predictions for how this affects 
probability depends on implementational details of how noise is added (Hayes 2017; Zuraw & 
Hayes 2017; Flemming 2021). This has the potential to derive not only sub-linear and linear 
cumulativity, but also super-linear cumulativity under certain circumstances (Smith & Pater 
2020 and others).

Maximum Entropy (MaxEnt) models (Smolensky 1986; Goldwater & Johnson 2003) have the 
potential to derive a wider range of non-linear interactions. In MaxEnt models, the probability 
of a candidate is derived from the Harmony via a non-linear transformation: exp(Harmony) 
(for details see Jurafsky & Martin 2009: chapter 5). Whether or not this yields super-linear 
interactions depends on certain assumptions about the candidate set, and how Markedness and 
Faithfulness constraints interact (Pater 2009b). The tableaux in Table 1 illustrate one way in 
which the probability of a doubly-marked form may come to be less than the product of the 
probability of individual violations (super-linearity). In these tableaux, we assume that the 
fully faithful form competes with a single “Null Parse” candidate, represented as [⊙], which 
represents the choice not to produce the form (Prince & Smolensky 1993, p. 51; Wolf & McCarthy  
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2010).3 The Null Parse violates a single constraint, MParse. The Harmony (H) of a candidate is 
the negated weighted sum of its violations, and the probability is exp(H) divided by the summed 
exponentiated Harmony for all candidates. The Markedness constraints Agree[±back] and 
Agree[±nasal] demand that adjacent vowels have the same value for backness, and adjacent 
consonants have the same value for nasality, respectively. The tableaux show that if MParse 
is assigned a weight of 5 and the Agree constraints are assigned weights of 3, the probability 
of the doubly-marked form [poni], which violates both Agree[±back] and Agree[±nasal], is 
only .27, which is far lower than the product of the probabilities of the independent violations in 
[poti] and [ponu] (.882 = .78).

/poti/ 
Weight:

MParse  
5

Agree[±bk]  
3

Agree[±nas]  
3

  
H

  
exp(H)

 
p

	 a.	 poti 1  –3 0.0498 .88
	 b.	 ⊙ 1 –5 0.0067 .12
/ponu/ 

Weight:
MParse  
5

Agree[±bk]  
3

Agree[±nas]  
3

  
H

  
exp(H)

 
p

	 a.	 ponu 1 –3 .0498 .88
	 b.	 ⊙  1   –5 .0067 .12
/ponu/ 

Weight:
MParse  
5

Agree[±bk] 
3 

 Agree[±nas]  
3

  
H

  
exp(H)

 
p

	 a.	 poni 1 1 –6 .0025 .27
	 b.	 ⊙ 1   –5 .0067 .73

Table 1: Super-linear cumulativity in a MaxEnt + Null Parse model of phonotactics.

In a MaxEnt model that uses the Null Parse in this way, whether or not a cumulative 
interaction is expected to be super-linear, linear, or even sub-linear depends on the strengths of 
the restrictions (cf. Smith & Pater 2020: p. 23). In the example in Table 1, the restrictions against 
disharmonic forms are, qualitatively speaking, relatively weak, and super-linear cumulativity is 
predicted. Compare this behavior with the example in Table 2, where the same restrictions are 
stronger, reflected in the lower weight of MParse relative to the Markedness constraints. Here, 
we find a less obvious degree of super-linear cumulativity, since the probably assigned to a single 
violation is already low (.17), and the joint probability of two independent violations (.03) is 
scarcely different from the predicted probability of a doubly-marked form (.01). Floor effects of 
this type are not the only circumstance in which this model can predict linear cumulativity, but 

	 3	 When the competition is defined as a two-way choice between the faithful output and the Null Parse, we avoid the “trading 
off” relations between Markedness and Faithfulness constraints observed by Pater (2009b), thus permitting a wider range of 
super-linear interactions. Note that the same type of effect can be observed in the interaction of multiple Markedness con-
straints with a single Faithfulness constraint, as in Smith & Pater (2020)’s analysis of French schwa epenthesis and deletion.
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this example is chosen to resemble the exceptionless phonotactic restrictions in the Breiss (2020) 
experiment, which failed to detect super-linear cumulativity.

/poti/ 
Weight:

MParse  
1.4

Agree[±bk]  
3

Agree[±nas]  
3

  
H

  
exp(H)

 
p

	 a.	 poti  1  –3 .0498 .17

	 b.	 ⊙ 1   –1.4 .2466 .83

/ponu/ 
Weight:

MParse  
1.4

Agree[±bk]  
3

Agree[±nas]  
3

  
H

  
exp(H)

 
p

	 a.	 ponu 1 –3 .0498 .17

	 b.	 ⊙ 1   –1.4 .2466 .83

/ponu/ 
Weight:

MParse  
1.4

Agree[±bk]  
3

Agree[±nas]  
3

  
H

  
exp(H)

 
p

	 a.	 poni 1 1 –6 .0025 .01

	 b.	 ⊙ 1   –1.4 .2466 .99

Table 2: Approximately linear cumulativity in a MaxEnt + Null Parse model of phonotactics.

In this framework, it is also possible to derive sub-linear cumulativity under certain weighting 
conditions. For example, as shown in Table 3, if the weight of MParse is 1.4 and the weights 
of the Markedness constraints are .2, the predicted probability of a doubly-marked form (.73) is 
actually greater than the joint probability of two independent violations (.772 = .59). We return 
to the issue of sub-linear cumulativity in section 6.3.

/poti/ 
Weight:

MParse  
1.4

Agree[±bk]  
.2

Agree[±nas]  
.2

  
H

  
exp(H)

 
p

	 a.	poti 1  –.2 .8187 .77

	 b.	⊙ 1   –1.4 .2466 .23

/ponu/ 
Weight:

MParse  
1.4

Agree[±bk]  
.2

Agree[±nas]  
.2

  
H

  
exp(H)

 
p

	 a.	ponu 1 –.2 .8187 .77

	 b.	⊙ 1   –1.4 .2466 .23

/ponu/ 
Weight:

MParse  
1.4

Agree[±bk]  
.2

Agree[±nas]  
.2

  
H

  
exp(H)

 
p

	 a.	poni 1 1 –.4 .6703 .73

	 b.	⊙ 1   –1.4 .2466 .27

Table 3: Sub-linear cumulativity in a MaxEnt + Null Parse model of phonotactics.
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The preceding examples show that the MaxEnt with null-parse approach has the expressive 
power to capture various types of linear, super-linear, and sub-linear cumulativity. The approach 
is constrained, however: it is not able to capture any arbitrary interaction, but rather, the degree 
of (non-)linearity emerges as a by-product of the strength of the restrictions involved, and the 
absolute value of the constraint weights. The relation between the weight of the constraints and 
their predicted cumulative interaction is shown in Figure 1, which illustrates how varying the 
weight of MParse and Markedness constraints determines whether the interaction is super-
linear, linear, or sub-linear. A formal description of the specific weighting conditions under 
which Maximum Entropy grammars with MParse exhibit different types of linearity is provided 
in the appendix.

Figure 1: Relationship between weight of a singly-violating candidate and the weight of 
MParse.

In an experimental manipulation, we cannot vary the weights that learners assign to 
markedness and MParse directly, but rather, we vary how strongly the markedness restriction 
is enforced. Figure 2 recasts the relation between MParse and markedness, focusing on how 
linearity depends on the probability assigned to outputs with a single Markedness violation. A 
probability of zero reflects a strongly enforced markedness restriction, and a probability of one 
reflects a completely unenforced restriction.

The goal of this study is to test the prediction that the degree of linearity in the cumulative 
interaction of two constraints depends on the strength of the restrictions involved. Note that since 
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we do not have any way to derive expectations about the absolute weights of constraints in the 
learned grammar, we do not make a specific prediction about the amount of non-linearity that 
should be introduced by a particular manipulation of the strength of a restriction. We do expect 
that by exposing learners to languages with varying strengths of phonotactic restriction, we 
should observe different points along a single vertical “slice” of Figure 2, with the concomitant 
shift between linear and non-linear cumulativity. Furthermore, for a large portion of weight 
space, the model predicts that as markedness restrictions get weaker (from bottom to top of the 
plot), their predicted interaction shifts from linear to super-linear.

Figure 2: Relationship between probability of singly-violating form and the weight of MParse.

In what follows, we will first test whether speakers exhibit super-linear cumulativity as 
phonotactic restrictions get weaker. We then test whether learners infer super-linear cumulativity 
as a function of the strength of the restrictions, even in the absence of overt evidence. A positive 
answer to both will support a theoretical device like the MaxEnt model illustrated here, in which 
super-linear cumulativity is an automatic consequence of the constraint weights. This finding 
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also has the potential to shed light on the mixed empirical results in the literature summarised in 
section 6.3, in which both linear and super-linear cumulativity have been observed.

3 Testing for non-linear cumulativity
In this study, we use an AGL task to test whether we can observe non-linear interactions 
between phonotactic restrictions synchronically in speaker judgements. AGL tasks allow the 
experimenter to manipulate properties of languages, to perform controlled comparisons of what 
participants learn under minimally different learning conditions. Such tasks have been used to 
manipulate the formal complexity (Moreton 2008; Moreton & Pater 2012a; b; Lai 2015; Öttl 
et al. 2015; McMullin 2016; Avcu & Hestvik 2020) and phonological substance (Wilson 2006; 
Finley & Badecker 2009; White 2013; Finley 2015; Glewwe 2019) of phonotactic restrictions and 
alternations. In order to test the effect of the strength of phonotactic restrictions, we can control 
the probability of individual Markedness violations by introducing exceptions (cf. also Hudson 
Kam & Newport 2005; Schuler et al. 2021 among many others). This allows us to calculate the 
joint probability of two violations, and compare it to participants’ acceptability judgements. 
It also allows us to manipulate those probabilities, to test whether the presence or strength 
of super-linear interactions depends on the strength of the individual Markedness violations. 
Finally, we can directly control whether super-linear interactions are present in the training data 
or not, to test whether learners infer them even in the absence of overt evidence. This approach 
allows us to make controlled comparisons in a way that is impossible with natural languages. 
Ultimately, though, we believe that whatever results we observe here should also be confirmed 
by studies of speakers’ intuitions about how phonotactic restrictions in their native language 
interact.

Our strategy (following a design employed by Breiss 2020) is to create languages in which 
two distinct Markedness constraints hold: backness harmony between vowels, and nasal 
harmony between consonants. This combination of phonotactic restrictions is useful in probing 
super-linear cumulativity, because they are orthogonal: simultaneous violations of backness 
and nasal harmony (e.g., [poni]) do not create violations of any other known constraint (see 
6.1 for further discussion). In each language, the constraints are enforced with a specific 
strength, meaning we manipulate the percentage of words that violate them. Participants were 
trained on mini-lexicons, and then asked to rate novel items that violated neither, one, or both 
Markedness constraints. What we are interested in measuring is the penalty for doubly-marked 
forms relative to the singly-marked ones, as modulated by the strength of the phonotactic 
restrictions.

At this point it is important to note that, just as we cannot experimentally observe 
and manipulate the weights in a speaker’s grammar, we likewise cannot directly observe 
the probabilities that the grammar assigns. In general, we assume that grammars assign 
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grammaticality values, which are used to judge the acceptability of linguistic expressions, which 
in turn guides responses in experimental tasks. The MaxEnt grammar that we employ assigns 
probabilities to competing candidates. However, experiments do not measure probabilities of 
candidates directly, but rather, probabilities of responses in a task. For this reason, the relation 
between grammatical probability and experimentally obtained measurements is necessarily 
indirect. We seek an experimental effect that bears the hallmarks of the expected grammatical 
effect. Specifically, we seek an experimental response that allows us to quantify the penalties for 
forms with individual markedness violations, and use these to predict responses for forms with 
multiple violations. The expected grammatical effect is that multiply marked forms should be 
judged worse than expected, based on their individual violations. In the experiments reported 
here, we have chosen a ratings task as a first way to explore this prediction. Ratings tasks allow 
us to quantify the penalty for individual violations, by comparing ratings for forms with zero 
vs. one violation. As described below in section 4, we use linear modeling to predict ratings 
for doubly marked forms, and we test whether participants’ ratings are lower than expected. 
Although the computation of expected values in the linear model is mathematically different 
from the computation of probabilities in the grammatical model, we believe that observing such 
an effect in ratings is a good first step in testing the super-linearity prediction of the grammatical 
model.

In Experiment 1, we begin by manipulating the number of exceptions to the two phonotactic 
restrictions. In this experiment, participants are trained on a lexicon that largely conforms to 
backness and nasal harmony, but has a certain number of exceptions to each independently 
(depending on the Condition). In this experiment, doubly-marked forms that violate both 
backness and nasal harmony are withheld in training, and we then test whether participants rate 
them exactly as predicted given their judgments about single violations (linear cumulativity), 
or whether they are rated better/worse (sub-/super-linear cumulativity). At a basic level, this 
experiment tests whether speakers show non-linear cumulativity in how they enforce restrictions 
synchronically. It also tests whether the degree of non-linearity depends on the strength of the 
phonotactics.

The design of Experiment 1 leaves open the possibility that participants exhibit super-linear 
cumulativity precisely because the doubly-marked forms were absent (withheld). Therefore, in 
Experiment 2, we test whether participants still exhibit super-linear cumulativity, even when 
the training language contains exactly as many doubly-marked forms as expected under linear 
cumulativity. This tests whether speakers are not only able to represent super-linear cumulativity, 
but whether they are compelled to, even when such forms are not actually underrepresented. 
We will see that speakers do in fact infer super-linear cumulativity, even when it is not present 
in the training data.
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4 Experiment 1
This experiment tests the relation between the strength of phonotactic restrictions and the type 
of cumulativity that they produce. The design described in this section was also employed in 
Breiss (2020), and the results of Experiment 3b of Breiss (2020) are included as Condition A.

4.1 Methods
4.1.1 Stimuli
The exposure phase contained 32 unique CVCV, initially-stressed nonwords, with consonants ∈ 
{/p, t, m, n/} and vowels ∈ {/i, e, u, o/}. As noted above, one of the two phonotactics was 
a requirement that consonants harmonize with respect to the feature [nasal], such that both 
consonants in the word were drawn from either {/p, t/} or {/m, n/} (exhibiting nasal harmony). 
The other phonotactic required that vowels harmonize with respect to the feature [back], such that 
both vowels in the word were drawn from either {/i, e/} or {/u, o/} (backness harmony). For more 
on these types of consonant and vowel harmony respectively, see Hansson (2010); Walker (2011).

Five distinct training Conditions (A-E) were distinguished by the number of items that 
violated each of the phonotactic patterns in the language: 0%, 6.25%, 12.5%, 18.75% or 25%. 
There were no training items which violated both phonotactics at once, so even in the most 
exceptionful Condition (Condition E) each phonotactic received support from 75% of the words 
in the training phase. Table 4 displays the counts and violation profiles of stimuli.

Condition:  A B C D E

Percent exceptions to each 
phonotactic: 

 0% 6.25% 12.5% 18.75% 25%

No exceptions potu 32 28 24 20 16

Back exceptions poti 0 2 4 6 8

Nasal exceptions ponu 0 2 4 6 8

Doubly-violating poni 0 0 0 0 0

Table 4: Distribution of stimuli across Conditions in Experiment 1.

The verification phase used 16 pairs of minimally-differing nonwords: one member of each 
pair was a fully-conforming word from the exposure phase, and the other was created by reversing 
the featural specification for backness (and rounding) or nasality of one of the consonants or 
vowels in the fully-conforming word. This yielded a pair of words differing only in a single 
instance of that phoneme. 8 pairs differed in a violation of nasal harmony, and 8 in violation of 
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backness harmony, with differences between pair-members balanced for segmental placement 
and identity. Verification pairs were balanced so that when a fully-conforming verification word 
had identical consonants (ex. totu), it differed only in the violation of backness harmony (ex., 
totu vs. toti). The same condition was imposed on verification trials whose conforming word 
contained identical vowels. There were no doubly-violating words in the verification phase, 
since its purpose was simply to ensure that participants had learned each of the two phonotactic 
constraints independently.

The test phase used a set of 48 novel nonwords which varied in conformity to both phonotactics. 
24 conformed to both phonotactics (ex. potu), eight violated only the nasal-harmony phonotactic 
(ex., ponu), eight violated only the backness-harmony phonotactic (poti), and eight violated both 
the nasal-harmony and backness-harmony phonotactics (poni).

All words were recorded in a sound-attenuated room by a phonetically trained female native 
English speaker using PCQuirer. They were digitized at 44,100 Hz and normalized for amplitude 
to 70 dB.

4.1.2 Design
Participants were assigned to one of the five Conditions, and learned the language by 
listening to a continuous speech stream containing 20 randomized repetitions of the 32 
words selected for that particular training phase. After exposure, participants completed 
16 self-paced two-alternative forced choice verification trials. Participants were allowed 
to advance to the generalization phase if they learned each of the phonotactics to a non-
significantly-different degree. This was operationalized by imposing a condition that the 
difference in number of correct answers between pairs differing only in a nasal harmony 
violation and those differing only in a backness harmony violation was not allowed to be 
greater than 3, chosen by using Fisher’s exact test (Fisher 1934) to determine the level at 
which the proportion of correct answers for each phonotactic significantly differed, across 
the range of possible accuracies. If participants did not meet criteria after two exposure 
blocks (one initial and one after failing to meet criterion during the verification phase), they 
were simply asked to complete the final demographic questionnaire and did not generate 
data in the generalization phase (although we will see in section 4.1.4 that no participants 
were excluded for this reason).

If participants met criteria on the verification phase, they advanced to a generalization phase 
which consisted of a ratings task containing 48 novel words in which participants were asked 
to rate each of the words on a scale from 0 (very bad) to 100 (very good) based on how good 
they sounded as an example of the language they had learned during the exposure phase. At the 
end of the experiment, demographic and language-background information was collected. The 
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entire experiment lasted approximately 20–30 minutes, depending on the number of additional 
exposure blocks each participant required.

4.1.3 Procedure
The experiment was conducted in a sound-attenuated room using a modified version of the 
Experigen platform (Becker & Levine 2020). At the start of the experiment, participants were 
informed that they would first be learning a new language, and that they then would be tested 
on their knowledge of that language. During the exposure phase, participants were instructed 
to simply sit and listen to the speech stream and, if they felt themselves getting bored, to try to 
count how many unique words they could find in the speech stream (this task was suggested 
simply to encourage participants to attend to the speech stream). The exposure phase lasted 
about ten minutes.

Following the exposure phase, participants completed a self-paced verification phase. On 
each verification trial participants were played a pair of nonwords in a random order, and 
were instructed to choose the one that sounded like it could belong to the language they had 
learned. The generalization phase followed a similar structure, except that each trial containing 
a single novel nonword to which participants assigned a numerical rating. After completing the 
generalization phase (or after failure to meet criterion during the verification phase), participants 
completed a brief demographic questionnaire.

4.1.4 Participants
375 undergraduate students were recruited from the SONA Psychology subject pool at the 
University of California, Los Angeles, and were compensated with course credit. Participants’ 
data were excluded if they failed to meet the criterion for sufficient learning as assessed 
during a verification phase (n = 0; see section 4.1.2 for details), for not having spoken English 
consistently in some context (home, school, etc.) since early childhood (n = 43), and in the case 
of experimenter error (n = 3), leaving data from 329 participants included in the final analysis.

4.2 Results
The results from the generalization phase are plotted in Figure 3. As anticipated, stimuli that 
conform to both restrictions received the highest ratings, stimuli that violated both restrictions 
received the lowest ratings, and stimuli that violated only one of the two restrictions received 
intermediate ratings. Furthermore, as the number of exceptions in training increased (Condition 
A through Condition E), the ratings of violating forms generally increased, as well. Unexpectedly, 
as the number of exceptions in training increased, the ratings of fully-conforming items also 
decreased, particularly in Conditions D and E.
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Figure 3: Experiment 1 results, group-level rating plotted on the vertical axis with standard 
error, Condition plotted on the horizontal axis. Color denotes which phonotactics were 
violated.

As it turns out, although exceptions to backness and nasal harmony were presented with equal 
frequency in the training data, violations of backness harmony were judged better than violations 
of nasal harmony, even converging with ratings of fully-conforming items in Conditions D and E. 
Note that this difference emerged in spite of the fact that, to a first approximation, participants 
indicated comparable levels of sensitivity to violations of nasal and backness harmony in the 
verification phase. There are several possible sources of this discrepancy. First, the criterion for 
comparable accuracy in the verification phase was a difference of 3 responses or less, which 
translates to a difference of up to ∼19%; thus, participants may have learned nasal harmony 
more strongly and still passed the verification phase. Second, the verification phase involved 
trained items, whereas the generalization phase involved novel items, so it is conceivable that 
participants used memory to perform better on backness harmony in the verification phase than 
in the generalization phase. Finally, it is conceivable that the discrepancy reflects a difference 
in either the sensitivity of the measures or strategy that participants used to complete the 
verification vs. generalization tasks.

In addition to an overall difference between nasal and backness harmony, the interaction 
with Condition raises the question of whether the learning of backness harmony was impeded 
by exceptions in a way that the learning of nasal harmony was not. We can address this in a 
preliminary way by examining participants’ performance in the verification phase. We calculated 
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each participant’s nasal advantage score, a measure ranging between –3 and 3 which corresponded 
to the difference between the number of correct answers (out of 8) that participant gave on 
questions testing backness vs. nasal harmony in the verification phase. A positive score indicates 
that a participant got more correct answers on the nasal-harmony-assessing questions (ex., potu 
vs. ponu) than on backness-harmony-assessing questions (potu vs. poti), and a negative score 
indicates the reverse. If participants were simply not learning the backness-harmony phonotactic,  
we should expect to see participants in training Conditions with more exceptions having 
a higher nasal advantage score. Figure 4 plots nasal advantage scores by Condition. A linear 
model confirmed the visual impression that training Condition (coded as a numerical predictor 
corresponding to the percentage of training data conforming to both phonotactics) does not 
significantly predict nasal advantage score (β = – 0.015, p = 0.791). We therefore conclude that 
although backness harmony was enforced less stringently than nasal harmony – and that this lead 
to an eventual convergence with fully-conforming items in the most exceptionful Conditions – it 
is not the case that manipulating the number of exceptions had a differential effect on learning 
backness vs. nasal harmony.

Figure 4: Nasal advantage score by Condition: one dot is one participant’s score (jitter added 
for readability).
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We are now in a position to assess how the the cumulative interaction of nasal and backness 
harmony varied across Conditions. This interaction is seen in the re-plotted data in Figure 5, 
which shows a gradual divergence in the slopes of the two lines representing the effect of nasal 
harmony, in the presence or absence of backness harmony violations.

Figure 5: Interaction of Condition, nasal harmony, and backness harmony.

Recall from section 2.1 that we define linear cumulativity as the scenario where each 
Markedness violation has its own independent effect on the well-formedness of a form, 
independent of any other violations present. Conversely, non-linear cumulativity means that 
certain combinations of violations yield a greater reduction in well-formedness than we could 
deduce from the sum of their violations alone. Statistically speaking, this means that we first fit 
a model of participants’ ratings, in which we attempt to predict a form’s rating as a function of 
its (non-)conformity to backness and nasal harmony, independently. Specifically, we fit a linear 
mixed effects regression model using the lme4 package (Bates et al. 2015) in R (R Core Team 
2021), modeling the ratings data from the generalization phase. In this model, each constraint 
violation constitutes a main effect, with the possibility that it may combining forces with another 
constraint violation (an interaction). Thus, the model included fixed effects for the two Markedness 
constraints: violation of vowel harmony (y/n, reference level = n) and violation of consonant 
harmony (y/n, reference level = n). We can assess the linearity of constraint cumulativity by 
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looking at whether the interaction between the markedness effects is significantly different from 
zero; the interaction term indicates the degree to which the rating is ill-formed above and beyond 
the contribution attributable to each of the component violations independently. Finally, we 
are interested in not only the cumulativity of any two violations per se but also the relationship 
between the strength of the individual constraints (Conditions A–E) and the cumulativity of 
those constraints. Therefore, we also included a continuous fixed effect corresponding to the 
percentage of exceptions to individual phonotactics in a given participants’ training Condition. We 
are crucially interested in the three-way interaction between the two phonotactic violations and 
Condition: if it is significantly negative, that means that the penalty for doubly-violating forms is 
greater than can be accounted for based on the independent penalties for each violation. We will 
take such an interaction as initial support for a model that produces super-linear cumulativity. 
Recall from section 3 that this way of calculating deviations from expected grammaticality is not 
identical to the probability-based definition given in section 2.3, but what they have in common 
is that a response value (probability, rating) for doubly marked forms is lower than expectations 
based on singly marked forms.

Following Barr et al. (2013), we began by fitting a model with a maximally-specified random 
effect structure and simplified as necessary to achieve convergence. The final model contained 
the three-way interaction between the fixed effects outlined above, plus random intercepts for 
participant and nonword.

This model revealed that violating the nasal harmony phonotactic was associated with 
significantly lower ratings (β = –24.93, p < 0.001). The interaction between violation of nasal 
harmony and Condition was significant (β = 0.29, p < 0.001), indicating that as the percentage 
of forms violating the nasal harmony phonotactic in the training data increased, novel forms 
which violated this phonotactic were judged less ill-formed. The analogous main effects and 
interaction between violation of the backness harmony phonotactic and training group was also 
significant (main effect: β = –9.95, p = 0.015; interaction: β = 0.19, p < 0.001). There was also 
a significant main effect of training group, indicating that as as the number of fully-conforming 
words heard in training decreased, fully-conforming words were judged less well-formed as a 
baseline (β = –0.18, p < 0.001). Critically, the three-way interaction between violation of nasal 
harmony, violation of backness harmony, and Condition was significant (β = –0.17, p < 0.002). 
The negative coefficient indicates that as the percentage of nonconforming words in training 
increased, the difference between singly-marked and unmarked items decreased, while the relative 
markedness associated with the doubly-marked items remained approximately unchanged.

4.3 Local discussion
Experiment 1 found that speakers are able to represent super-linear patterns in their grammar, 
and that this super-linearity is related to the strength of the phonotactic restrictions involved. 
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We found that as the number of exceptions in the training increased, learners judged doubly-
violating items as more and more ill-formed than one would expect, based on their judgements 
of singly-violating forms. These results are consistent with the proposed model that is able to 
represent super-linear cumulativity under particular weighting conditions.

Experiment 1 manipulated the number of forms that violated each phonotactic restriction; 
that is, we introduced violations of backness harmony (ex., poti) and of nasal harmony (ex., 
ponu). A by-product of this manipulation was that the Conditions also differed in the expected 
rate of doubly-violating forms — that is, forms that violated both backness and nasal harmony 
simultaneously, like poni. Recall that the expected rate of doubly-violating forms is the product 
of the probabilities of each individual violation. For Condition A, with zero exceptions, the rate 
of one violation is 0%, and the expected rate of two violations is 0%2 = 0%. For Condition E, 
on the other hand, the rate of single violations is 25%, and the expected rate of two violations 
is 25%2 = 6.25%, or 2 words in a lexicon of 32 words. However, such doubly-violating forms 
were withheld completely in training for all Conditions, since we were interested in testing 
participants’ judgments about an untrained word type. This raises the possibility that learners 
were sensitive to the lack of doubly-violating forms, particularly in Conditions D and E, and used 
this to learn a grammar that specifically penalized them.

Does our MaxEnt + Null Parse model allow for the above suggestion of super-linear cumulativity 
via overt learning? Here, the expected degree of super-linearity is a function of the weights of the 
constraints involved. Figure 2 shows that for most weights of MParse, the model predicts that as 
the weight of Markedness decreases — and the probability of singly-violating forms correspondingly 
increases — the penalty for multiply-violating forms becomes super-linear. If the weight of MParse 
is invariant, the degree of super-linearity should be an emergent by-product of the strength of 
the phonotactic restrictions. Other models allow a broader range of cumulative effects through 
additional parameters. If the weight of MParse is variable, learners would be able to capture a 
wider (though still quite constrained) range of linear or non-linear effects by setting the weight 
of MParse in response to the data. An even more powerful approach is to induce a conjoined 
constraint, such as Agree[±back] & Agree[±nasal], which allows for any degree of super-
linearity (Smolensky 1993; Ito & Mester 2003; Shih 2017 see section 6.1 for further discussion). 
The question, then, is whether learners in Experiment 1 noticed the one or two missing forms and 
used highly parameterized grammars to accommodate super-linearity, or whether they projected it 
as a by-product of enforcing the individual restrictions. We address this question in Experiment 2.

5 Experiment 2
We carried out a replication of Condition E from Experiment 1, except that the training data 
included two doubly-violating forms, so that they were no longer underrepresented in the 
training data. If this experiment finds linear cumulativity, we can conclude that the super-linear 
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effect observed in Experiment 1 Condition E was due to the lack of doubly-violating forms, 
suggesting overt learning. If we nonetheless observe super-linear cumulativity, we can conclude 
that learners project super-linear cumulativity of weak phonotactic restrictions, even when this 
deviates from the observed frequencies.4

5.1 Methods
The stimuli, design, and procedure for Experiment 2 were identical to those of Experiment 1 
Condition E, except that two of the singly-violating forms were altered so as to also violate the 
other phonotactic; see Table 5. 86 undergraduate students were recruited from the same subject 
pool to participate in the experiment, and were compensated for their time with course credit. Of 
these, 15 were excluded for not having spoken English consistently in some context since before 
the age of seven, leaving data from 71 participants for analysis.

Experiment: 1E 2

Unmarked potu 16 16

Back exceptions poti 8 8

Nasal exceptions ponu 8 8

Doubly-violating poni 0 2

Table 5: Distribution of training items by type, comparing Experiment 1 Condition E to 
Experiment 2.

5.2 Results
The results of Experiment 2 are shown in Figure 6. Comparing Experiment 1 Condition E and 
Experiment 2, we see that in both cases, participants rated forms that violated neither phonotactic 
restriction were rated highest, and forms that violated backness harmony were rated essentially 
as high. Forms that violated nasal harmony were rated lower, while forms that violated both 
nasal and backness harmony received lower ratings still. As above, the question of interest is 
whether the penalty for violating both nasal and backness harmony continued to be greater than 
expected (super-linear) in Experiment 2, based on the independent penalties associated with 
each individual violation.

	 4	 We leave open whether learners project super-linearity because their grammatical mechanism is so tightly paramet-
erized that the degree of linearity in cumulativity is necessarily determined by the strength of the restrictions, or 
whether they project it due to prior expectations about constraint weights that yield super-linearity of weak phonot-
actic restrictions. In order to address this, we would need provide learners with more evidence for super-linearity; 
for example, a larger number of forms, so that the discrepancy between observed and expected numbers of doubly-
marked forms would be greater.
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Figure 6: Comparison of mean and standard error of ratings by word type in Experiment 1 
Condition E (left), and Experiment 2 (right).

To test this, we analyzed the two datasets together in a mixed-effects linear regression 
model. Since we anticipate a null result, in contrast to Experiment 1 we opted for a Bayesian 
implementation of the model, using the brms package (Bürkner et al. 2017).5 Bayesian models 
estimate a range of probable values for the parameters of interest; thus we can conclude that 
an effect is robust to the extent that 95% of these values, a measure known as a 95% Credible 
Interval (abbreviated to “95% CI”, followed by upper and lower bounds in square brackets), 
does not include zero. The inverse of this is that if the range is centered on zero, then we can say 
there is evidence for no effect of the parameter of interest on the dependent variable. Thus, the 
Bayesian model allows us to present evidence that supports, rather than simply fails to reject the 
null hypothesis. For a linguistically-oriented introduction to Bayesian methods for both theory-
building and data analysis, see Nicenboim & Vasishth (2016); for tutorial materials on the brms 
package in a linguistic context, see Vasishth et al. (2018); Nalborczyk et al. (2019); for a more 
general primer in Bayesian statistical modeling, see Kruschke (2014).

	 5	 The model we fit used default weakly-informative priors, with a burn-in period of 1000 iterations followed by a 
sampling period of 1000 iterations. We ran four chains to ensure thorough exploration of the posterior distribution, 
and all R̂ values were between 1 and 1.01, indicating that the chains mixed successfully.
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As in Experiment 1, the dependent variable was the numerical rating given to each word in 
the generalization phase. Also as in Experiment 1 the model contained a fixed effect of whether 
the form violated backness harmony (y/n, reference level = n), whether the form violated nasal 
harmony (y/n, reference level = n), and a binary factor for Experiment (one/two, reference 
level = one), as well as all two- and three-way interactions of these predictors. The model also 
contained random intercepts for nonword with slopes for Experiment, and random intercepts for 
subject with slopes for the interaction of the two binary phonotactic predictors.

We can interpret the output of the model as follows: if the 95% Credible Interval for the 
three-way interaction of violating backness harmony, violating nasal harmony, and Experiment 
excludes zero, it indicates that the degree of linearity in the cumulative interaction of violating 
both phonotactics together compared to their independent violations differed meaningfully 
between studies. If the 95% Credible Interval for the interaction is centered on zero, we can 
conclude that the cumulative effect of violating both phonotactics did not differ between studies, 
and thus was unlikely to have been overtly learned in Experiment 1.

Violating nasal harmony resulted in lower ratings (β = –12.72, 95% CI [–21.49, –3.85]), 
while the effect of violating backness harmony did not (β = –0.10, 95% CI [–8.91, 8.72]). One 
experiment was not reliably associated with higher ratings than the other overall (β = 3.89, 
95% CI [–0.87, 8.35]). The coefficient for the interaction between violating backness and nasal 
harmony did not differ meaningfully from zero (β = –8.87, 95% CI [–22.44, 4.96]), nor did 
the coefficient for the interaction between Experiment and violating backness harmony (β = 
–0.72, 95% CI [–4.50, 2.96]), nor did the coefficient for the interaction between Experiment and 
violating nasal harmony (β = 2.56, 95% CI [–2.30, 7.22]). Turning to the quantity of interest, 
the credible intervals for coefficient of the three-way interaction between violating backness 
harmony, violating nasal harmony, and Experiment surrounded around zero (β = 1.89, 95% CI 
[–4.13, 7.73]).

5.3 Local discussion
Experiment 2 tested for whether the super-linear cumulativity observed in Experiment 1 was a result 
of participants overtly learning a super-linear penalty from the super-linear underrepresentation 
in their data. We found that the linearity of cumulativity was not affected by whether or not the 
training data contained a subtle super-linear pattern. We take this to be compelling evidence in 
support a synchronic link between exceptionality in learning data and super-linear cumulativity, 
as discussed in section 2, and against the possibility of the effect having been overtly learned.

6 Discussion
The experimental results in this study have shown that speakers can enforce super-linear 
cumulativity between phonotactic restrictions as a synchronic effect, and in fact even assume 
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super-linearity under certain conditions, even when it is not present in the data. Using AGL 
experiments, we first systematically varied the number of exceptions to phonotactic restrictions in 
training, and found that the degree of non-linearity depends on the strength of those restrictions 
in the grammar. We then varied the amount of evidence that learners received for super-linear 
cumulativity in the training data, and found that learners continued to exhibit it even when such 
evidence was removed entirely.

On the basis of these data, we conclude that speakers can represent super-linear cumulativity 
in their synchronic grammar, and that this super-linearity was emergent from the interaction of 
the two constraints — a property of the grammar itself — rather than overtly learned from the 
training data.

6.1 Super-linear cumulativity or one constraint?
In our experimental results, we observe an interaction between two harmony restrictions: 
backness of vowels and nasality of consonants. We have assumed that these restrictions are 
enforced by separate Markedness constraints, and that the observed effect must reflect a super-
linear interaction between two constraints. It is crucial for this interpretation that it is not due to 
the action of a single constraint, “nasal and backness CV harmony”, which penalizes only those 
sequences which violate both independent Agree constraints. Thus, it is important to consider 
whether participants were employing such a unitary constraint.

There are two ways of thinking about a putative “nasal and backness CV harmony” 
constraint. On the one hand, it could be a unitary constraint enforcing simultaneous agreement 
of consonant nasality and vowel backness. On the other hand, it could be a conjoined constraint, 
Agree[±back] & Agree[±nas] (Smolensky 1993; Ito & Mester 2003).6 In either case, we 
have no particular reason to believe that there is such a constraint, since we know of no formal, 
phonetic, or typological connection between these two restrictions. More importantly, even if 
such a constraint existed, it would be mysterious why participants in Experiment 2 inferred its 
presence or activity, since we removed any trace of nasal plus backness harmony from speakers’ 
learning data. We therefore conclude that the effects that we observe involve super-linear 
cumulativity of two separate constraints.

6.2 Whence super-linearity? MParse and beyond
We have based much of the framing of this paper on a model of phonotactic acceptability in 
which each form competes against a Null Parse candidate for existence, and then this probability 

	 6	 Numerous authors have pointed out that local constraint conjunction has the potential to radically expand the 
predicted phonological typology beyond what has been observed (Pater 2009a; b; Potts et al. 2010). Moreover, the 
putative constraint Agree[±back] & Agree[±nas] pushes the limits of what is allowed for constraint conjunction, 
since the locus of violation spans multiple segments and syllables (Łubowicz 2005).
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is mapped onto a rating given by the participant. We illustrated this using a MaxEnt model, in 
which super-linearity emerges as a consequence of how probability is calculated from Harmony. 
We adopted the MaxEnt framework because it is easy to demonstrate how it derives super-
linearity, but similar effects can be derived in other probabilistic constraint-based models, too, 
such as Noisy Harmonic Grammar (Boersma & Pater 2016; Hayes 2017; Smith & Pater 2020). 
We do not believe that the current results uniquely support a MaxEnt model, though they are 
consistent with it.

A distinguishing feature of this model that does play an important role in deriving super-
linearity is the use of MParse. In most existing frameworks, unacceptability is modeled with 
grammars that assign low probability to a form, and high probability to a competitor — either 
an unfaithful rendition of the UR (Prince & Smolensky 1993) or other competitor strings which 
are more probable (Hayes & Wilson 2008). In models that employ MParse, unacceptability may 
also be modeled as the selection of the Null Parse, which violates only a single constraint (Prince 
& Smolensky 1993; Smolensky 1993; Wolf & McCarthy 2010). In the model illustrated in section 
2.1, we crucially assumed that the Null Parse is not only a competing candidate, but the only 
competing candidate. This allows for the grammar to set a threshold of markedness above which 
the marked form is quite probable, and below which the Null Parse quickly becomes the more 
favored candidate (see also footnote 9 in Legendre et al. 1998). This thresholding effect is not 
so readily available in models that have candidate sets in which Markedness and Faithfulness 
violations trade off against each other in a one-to-one manner (Pater 2009b), or models which 
are based on the relative Harmony of different non-null candidates, such as the model proposed 
in Hayes & Wilson (2008).

A consequence of choosing this model is that, since it lacks Faithfulness, it cannot model 
any process in which a string must be repaired, such as alternations, loanword adaptation, and 
others. This leaves open the question of how to model such phenomena. The question of how 
closely tied phonological repairs are to phonotactic restrictions is an area of long-standing debate 
(Sommerstein 1974; McCarthy 2002: p. 77; Pizzo 2015; Chong 2017; Do & Yeung 2021). We see 
several possible answers to this question that can accommodate super-linearity in phonotactics, 
while also producing repairs. One is that phonotactic acceptability and phonological alternations 
are completely separate processes, as suggested by Hayes & Wilson (2008). However, our use 
of MParse does not require two separate grammars. Phonotactic restrictions and repairs could 
be derived with a single grammar, with a single set of Markedness constraints and weights, but 
in which different candidate sets are considered in different contexts or for different tasks. For 
example, we could model phonotactic acceptability judgments as a competition between the 
fully faithful candidate and the Null Parse, in which MParse is the arbiter. Alternations, on the 
other hand, could be modeled as a competition between the fully faithful candidate and possible 
repairs, decided by Faithfulness constraints.
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6.3 Super-linearity vs. sub-linearity
The model that we have explored here has the ability to capture both linear and super-linear 
cumulativity, but in a restricted fashion: as seen in Figure 2, the degree of cumulativity depends 
on the strength of the phonotactic restrictions involved. This is precisely what we observed in 
our experimental results. The fact that the very same phonotactic restrictions can interact in 
different ways depending on their strength has the potential to shed light on a discrepancy in the 
literature, between studies that do (Albright 2008; 2012; Green & Davis 2014; Kumagai 2017; 
Shih 2017; Yang et al. 2018; Kim 2019; Smith & Pater 2020) and do not (Pizzo 2015; Breiss 2020; 
Durvasula & Liter 2020; Kawahara 2021; Kawahara & Breiss 2021; Kawahara & Moore 2021) 
observe super-linearity.

Figure 2 predicts exactly the type of transition we observed: as we move upwards along 
the vertical axis from a stronger to a weaker phonotactic restriction, we observe a transition 
from one type of interaction to another, and the specific transition depends on the weight 
of MParse. For most values of MParse, the prediction is a shift from linear to super-linear 
interactions, as in our experiments. However, for some values of MParse, the model also 
predicts a region of sub-linear cumulativity. In fact, there are possible indications of sub-
linear cumulativity in the literature: Pizzo (2015) found that violations of syllable-margin 
restrictions in English interacted sub-linearly in phonotactic acceptability. It is conceivable, 
therefore, that the apparently discrepant results in the literature are simply a consequence 
of the weights of markedness and MParse involved. Continued systematic experimental 
investigation of how phonotactic restrictions of varying strengths interact will reveal 
whether linearity, super-linearity, and sub-linearity emerge under the predicted weighting 
conditions. AGL tasks like the one employed here are a useful tool for probing this question, 
because they allow us to vary phonotactic strength independent of other properties of the 
language.

7 Conclusion
The work presented here is a first step towards a fuller understanding of the empirical and 
typological landscape of (non-)linear cumulativity. The dependency between constraint strength 
and cumulative behavior proposed by our model makes strong predictions about both the wide 
scope of constraints that can enter into non-linear cumulative relationships, and also specific 
claims about the weighting requirements that must be met for such effects to be observed. A 
great deal of further empirical research is therefore needed to test and refine these predictions 
going forward.
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