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Whether we analyze phonological processes using a system of rules or constraints, the resulting 
map from underlying representations to surface pronunciations can be characterized as a 
function. Viewing processes as mathematical objects in this way allows us to study properties 
of phonology that hold no matter how it is implemented. Work in this vein has found that a 
majority of phonological processes only consider information within a finite window, placing 
them in the highly restrictive class of Strictly Local (SL) functions (Chandlee 2014; Chandlee et al. 
2014; 2015). Long-distance phonological processes, however, lie outside the capabilities of the SL 
functions since they consider information that can be arbitrarily distant. The more powerful class 
of subsequential functions has been offered as a potential characterization of long-distance 
phonology (Heinz & Lai 2013; Luo 2017; Payne 2017), but we argue that an intermediate class 
offers a more natural model. Specifically, by incorporating an autosegmental tier (e.g., Goldsmith 
1976) into the structure of an SL function, the non-local information crucial for applying long-
distance processes can be rendered local. In addition to assessing the typological coverage 
of these Tier-based Strictly Local functions (Burness & McMullin 2019; Hao & Andersson 2019; 
Hao & Bowers 2019), we show that they fail to generate two pathological behaviours (minimum 
distance requirements and modulo counting) that can be accomplished with a subsequential 
function. We therefore conclude that tier-based computation is a better characterization of 
long-distance phonology than subsequential computation.
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1 Introduction
A typical assumption of generative phonological theory is that abstract underlying representations 
are mapped to surface representations by means of a phonological grammar. This grammar—whether 
it comprises a series of rules, requires optimization over a set of candidates and ranked constraints, 
or invokes some other mechanism entirely—can therefore be formally understood as a function 
that takes an underlying form as its input and produces a surface form as its output. With respect 
to segmental phonology, we can view this as a transformation from an input string (a sequence of 
underlying segments) to an output string (a sequence of segments produced in the surface form).

The interest in modeling phonological patterns as string-to-string transformations stems 
from the goal of identifying their individual computational properties as well as the overall 
computational complexity of the phonological grammar. A common assumption in this line of 
work is that local and long-distance phenomena have different computational properties (Heinz 
2010): while local phonotactics and processes can be modeled with grammars that pay attention 
to contiguous substrings, long-distance patterns cannot. For example, the Samala language (also 
known as Ineseño Chumash; Applegate 1972) exhibits a regressive pattern of sibilant harmony, 
requiring all sibilants to agree for anteriority no matter how far apart they are in the word (with 
the value of [±ant] being dictated by the rightmost sibilant). This can be seen in words such 
as /ha-s-xintila-waʃ/ → [haʃxintilawaʃ] ‘his former gentile name’, and /k-su-k’ili-mekeken-ʃ/ 
→ [kʃuk’ilimekekeʧ] ‘I straighten myself up’ (Applegate 1972). To address the challenge of 
needing to look ahead (or back) across arbitrarily large distances, many theoretical frameworks 
use phonological ‘tiers’ (e.g., Goldsmith 1976; Clements 1980; Goldsmith 1990; Odden 1994; 
Clements & Hume 1995; Heinz et al. 2011; McMullin 2016), rendering long-distance dependencies 
local on the relevant tier, such as a tier of sibilants for Samala.

This paper demonstrates how various processes can be modelled with string-to-string 
functions that incorporate tier-based computation. In formal language theory, a tier is generally 
defined as a subset of the segment inventory, with non-members acting as if invisible to the model 
(Heinz et al. 2011). The use of such tiers has led to a better understanding of the computational 
nature of long-distance phonotactic dependencies (modelled as sets of well-formed strings; see 
McMullin 2016; McMullin & Hansson 2016; Aksënova & Deskmukh 2018; Lambert & Rogers 
2020), and this paper explores the computational implications of extending the same idea to 
functions in order to characterize the types of long-distance processes that result in morpho-
phonological alternations. Formal characteristics of these functions have already been fleshed 
out (Burness & McMullin 2019; Hao & Andersson 2019; Hao & Bowers 2019; Andersson et al. 
2020), although to date there has not been a thorough investigation of how well tier-based 
functions approximate the attested typology of non-local phonological processes. Our endeavour 
to fill this gap reveals typological predictions that are supported cross-linguistically and offers 
insights into the computational nature of long-distance phonology.
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The remainder of this paper is organized as follows. Section 2 summarizes relevant work on the 
computational complexity of local and long-distance phonotactic patterns as well as work that models 
local phonological processes using the class of Strictly Local functions. Section 3 discusses a previous 
computational model of long-distance processes, the subsequential functions, showing that this class 
readily generates two behaviours that we consider pathological. Section 4 shows how the class of 
Tier-based Strictly Local functions can model basic long-distance patterns, and how the class excludes 
the pathologies raised for the subsequential functions in the previous section. Section 5 demonstrates 
the wide-ranging capabilities of the TSL functions, including their ability to model important aspects 
of attested long-distance rules such as segmental transparency and segmental blocking. Section 6 
then considers attested behaviours that lie outside the reach of tier-based functions, suggesting ways 
in which these limitations might be overcome. Finally, Section 7 concludes.

2 Background and context
2.1 Formal language theory and phonotactics
To better understand the limits of possible language patterns, early work in computational 
linguistics modeled patterns as sets of well-formed strings and classified patterns according to 
the machinery necessary for deciding whether a given string is well-formed, giving rise to what 
is known as the Chomsky Hierarchy of formal languages (Chomsky 1956). At the bottom of 
the Chomsky hierarchy are the finite languages, which can be modelled as finite sets of strings. 
Anything in the set is considered good and included in the language, whereas anything not in 
the set is considered bad and excluded from the language. The original Chomsky hierarchy 
distinguishes four classes above the finite languages. From least to most powerful, these are the 
regular languages, the context-free languages, the context-sensitive languages, and the recursively 
enumerable languages. Phonology is argued to be at most regular in terms of complexity (Johnson 
1972; Kaplan & Kay 1994) but does not, in most cases, require the full capabilities of regular 
languages and functions. Accordingly, much work has divided the regular region into a hierarchy 
of subregular formal language classes (e.g., McNaughton & Papert 1971; Rogers & Pullum 2011; 
Rogers et al. 2013). Importantly, while formal languages are well-suited to static phonotactic 
patterns, they cannot directly model dynamic processes, and so a parallel hierarchy of functions 
and relations (i.e., collections of well-formed pairs of strings) is being explored as well. The 
remainder of this section provides an overview of two important classes of subregular languages: 
the Strictly Local (SL) languages that form the basis of the SL functions developed by Chandlee 
(2014) and Chandlee et al. (2014; 2015),1 as well as the Tier-based Strictly Local (TSL) languages 
developed by Heinz et al. (2011) that form the basis of the TSL functions explored in this paper.

 1 Chandlee (2014) first defined SL functions in the context of phonology, but local functions themselves have preced-
ent in the literature (see Berstel 1982; Vaysse 1986; Lind & Marcus 1995; Sakarovitch 2009).
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SL languages can be defined positively or negatively, although negative definitions may be 
more intuitive to phonologists working in constraint-based frameworks like Optimality Theory 
(OT: Prince & Smolensky 2004) since they function like inviolable markedness constraints. From 
the negative perspective, SL languages ban particular contiguous sequences of up to a fixed 
length, excluding any string that contains one or more illegal contiguous sequences. When all 
the banned sequences are of length k or shorter, we say that the language is Strictly k-Local 
(SLk). Many phonotactic patterns can be described as an SLk language. For example, in Japanese 
the alveolar fricative [s] cannot occur immediately before the high front vowel [i]. Not only 
is the sequence *[si] absent from the language’s lexicon, but there are alternations that occur 
specifically to avoid it. One such alternation occurs when a verb root ending in /s/ is put into 
the past tense, as illustrated by the comparison of /hos-u/ → [hosu] ‘dry-npst’ and /hos-ita/ → 
[hoɕita] ‘dry-pst’. This aspect of Japanese phonotactics can be captured by an SL2 language that 
bans the sequence *[si], preventing strings such as *[hosita] from surfacing. The TSL languages 
augment the SL languages with intuitions from autosegmental phonology — originally developed 
by Goldsmith (1976) for the analysis of tonal phenomena — in order to describe non-local 
phonotactic restrictions. While the specifics of autosegmental analyses can differ, the approach 
can be distilled down to the following. First, a phonological form consists of multiple connected 
levels of representation called ‘tiers’. Second, a given phonological element (e.g., a feature or 
segment) can be present on one tier but absent on another. Third, material that is non-local on 
one tier may be local on another. Finally, only material that is local on the relevant tier matters 
when enforcing a pattern. This intuition that non-local configurations can be rendered local with 
the right representational choices forms the foundation of the TSL languages and functions at the 
center of this paper.

Despite the wide-ranging interest in tiers and their utility, it is only recently that their expressive 
power has been explored in the context of formal language theory (Heinz et al. 2011; Jardine & 
Heinz 2016; McMullin 2016; McMullin & Hansson 2016; Jardine & McMullin 2017; Lambert & 
Rogers 2020). From this perspective, a tier is a subset of the alphabet,2 and a Tier-based Strictly 
k-Local (TSLk) language is a language that is SLk once all non-tier elements have been erased. The 
result of erasing the non-tier elements from a string is often called the projection of that string 
onto the given tier. More sophisticated methods of projection that consider surrounding local 
material in addition to segment identity have been explored (Graf & Mayer 2018; Mayer & Major 
2018; De Santo & Graf 2019), although we limit ourselves in this paper to the maximally simple 
means of projection where a segment’s identity is the only determining factor. A TSL language 
can then be said to ban a given string if that string’s projection onto the specified tier contains 
any impermissible contiguous sequences.

 2 In formal language theory the alphabet is the set of symbols that strings can be built from. In the context of phonology 
the alphabet is typically the segment inventory, but can also include boundary symbols, structural bracketing, etc.



5

Consider the pattern of liquid harmony in Bukusu, where sequences of [⋯r⋯l⋯] are not 
permitted (Odden 1994; Hansson 2010a). Data for this pattern are provided in (1), which show 
that the applicative suffix appears as [-ira] if the nearest leftward liquid is [r], else it appears as 
[-ila]. The pattern can be expressed as a TSL2 language banning the sequence *[rl] on the liquid 
tier T = {r, l}. Forms like *[rumila] are excluded, since projecting them to the liquid tier yields 
the illegal string *[rl]. Note that such a language model does not actually describe the apparent 
process of liquid harmony, just its result.

(1) Bukusu liquid harmony (Odden 1994)
a. xam-ila ‘milk-appl’
b. lim-ila ‘cultivate-appl’
c. kar-ira ‘twist-appl’
d. rum-ira ‘send-appl’

A good question to ask at this point is how an autosegmental analysis of liquid harmony compares 
to the TSL analysis just presented. Both make a distinction between a representational level 
where the whole phonological string is present and a representational level where only the liquid 
consonants are present. Also in both approaches, the prohibition against a contiguous sequence 
of [–lateral][+lateral] is enforced on the less-inclusive level of representation containing just 
liquids. Where the approaches differ concerns the way these levels of representation are defined. 
An autosegmental approach might postulate, for example, that there is a tier containing all 
and only the instances of the feature [±lateral]. Assuming that only liquid consonants can be 
specified for the feature [±lateral], the entities present on this [±lateral] tier will then always 
correspond to an [l] or [r] in the full phonological string. For its part, the TSL approach arbitrarily 
stipulates that there is a representational level including all and only the instances of [l] and 
[r]. While inspired by the autosegmental approach, the TSL perspective does not follow it to 
the letter, allowing us to gain insight into the formal underpinnings of the structures of long-
distance phonology with minimal theoretical commitments. Although the tier of a TSL language 
can in principle be an arbitrary set of segments, TSL analyses are by no means incompatible 
with approaches that define tiers according to perceptual similarity (as in the Agreement by 
Correspondence framework; see e.g. Rose & Walker 2004 and Hansson 2010a) or according 
to feature geometry (Clements & Hume 1995). Many of the tiers used in the computational 
literature (and in our analyses below) happen to form a natural class relative to typical feature 
theories, and one can of course decide to limit themselves only to similarity-driven or feature-
definable tiers, but there is formally no such requirement. However one chooses to restrict the 
types of tiers that are possible, that choice will not change the fact that TSL languages over 
those tiers still model the intuition that a non-local pattern can hold locally at an appropriate 
representational level. Despite their name, the TSL languages do not themselves provide a theory 



6

of possible tiers; rather, they provide a model of the effect that a tier (motivated or not) has upon 
the assessment of locality.

2.2 Strictly Local functions
To model phonological processes we need to shift our focus from languages to functions that map 
input strings to output strings. While it is not as well understood as the subregular hierarchy of 
languages, the analogous subregular hierarchy of functions has seen many developments in recent 
years (Heinz 2018). Particularly important to this paper are the Input Strictly Local (ISL) functions 
and the Output Strictly Local (OSL) functions, which adapt the notion of strict locality to input-
output maps (Chandlee 2014; Chandlee & Heinz 2018; Chandlee et al. 2018). Various equivalent 
characterizations of these functions exist. This paper will make use of their automata-theoretic 
characterization, representing processes with finite-state transducers (FSTs) that meet particular 
criteria. For the full details of this characterization see Chandlee (2014), Chandlee et al. (2014), 
and Chandlee et al. (2015).

A (one-way) FST produces an output string incrementally by reading an input string one 
element at a time in a single direction. Such a machine consists of a finite set of states (which can 
be thought of as a primitive sort of memory) and a finite set of transitions between these states 
(which include the machine’s instructions for what to write at each step). The machine begins in 
a designated initial state, and traverses a path through the state space by following transitions 
in response to the input that it reads. Figure 1 presents a visual diagram of an FST. States 
are represented with circles, with the initial state marked with an unlabeled incoming arrow. 
Transitions are represented with labelled arrows between states; a label ‘a:b’ is an instruction to 
take that transition when reading ‘a’ from the input and write ‘b’ to the output. The transducer in 
Figure 1 operates over the input alphabet {a, b}, transforming all odd-numbered positions to ‘a’ 
and all even-numbered positions to ‘b’. For example it maps /bab/ to [aba] and maps /aabbabbb/ 
to [abababab].

ISL and OSL FSTs have particular conditions on the state set and transitions. States in an 
ISLk FST correspond to strings of up to k – 1 input symbols, whereas states in an OSLk FST 
correspond to strings of up to k – 1 output symbols. Transitions in an ISLk FST always go to the 

Figure 1: A simple finite-state transducer.
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state matching the most recent k – 1 symbols that have been read from the input string, whereas 
the transitions in an OSLk FST always go to the state that matches the most recent k – 1 symbols 
that have been written to the output string. Additionally, ISL and OSL FSTs are required to be 
deterministic, meaning that there is one transition per input element per state.

As a concrete example of these restrictions, consider the transducers in Figure 2, both of 
which compute the rule of post-nasal voicing in the Puyu Pungo dialect of Quechua (Orr 1962; 
Rice 1993). The transducers operate over simplified alphabets where ‘V’ represents a vowel, ‘N’ 
represents a nasal consonant, ‘T’ represents a voiceless obstruent, and ‘D’ represents a voiced 
obstruent. Data for the pattern are provided in (2).

(2) Post-nasal voicing in Puyu Pungo Quechua (Orr 1962; Rice 1993)
a. [sinik-pa] ‘porcupine-gen’ [kam-ba] ‘you-gen’
b. [sat͡ʃa-pi] ‘jungle-loc’ [hatum-bi] ‘big.one-loc’
c. [wasi-ta] ‘house-obj’ [wakin-da] ‘others-obj’

In ISL and OSL transducers, the initial state corresponds to the empty string, which we write as 
λ. For maximum clarity, we write the labels of input-oriented FSTs between forward slashes (e.g., 
/X/) and the states of output-oriented FSTs between square brackets (e.g., [X]). Structurally, 
the crucial difference between the ISL and OSL analysis concerns the ‘T:D’ transitions that leave 
the ‘N’ states. These are depicted with dashed lines in the figures. This transition ends up in the 
/T/ state of the ISL transducer, but ends up in the [D] state of the OSL transducer. Despite the 
difference in structure, the FSTs compute the same function in this particular case (i.e., they are 
extensionally equivalent).

Figure 2: An ISL2 FST (left) and an OSL2 FST (right) computing post-nasal voicing. ISL state 
labels are enclosed in slashes and OSL labels are enclosed in square brackets. The transition that 
differs across the transducers is dashed and in bold.

λ
λ
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2.3 Long-distance processes are not Strictly Local
As mentioned at the outset, long-distance processes cannot be modeled by tracking only recent 
input/output as the SL functions do. Consider, for example, the sibilant harmony found in Aari 
and shown in (3). The perfective suffix /-s/, which stays faithful in (3a), surfaces instead as 
[-ʃ] when preceded (at any distance) by a lamino-postalveolar sibilant, as shown in (3b–f). The 
process is ‘asymmetric’ in that underlying /ʃ/ does not analogously become [s] when preceded 
by an alveolar fricative (Hansson 2010a: p. 357).

(3) Progressive long-distance sibilant harmony in Aari (Hayward 1990)
a. /baʔ-s-e/ baʔse ‘bring-perf-3sg’
b. /ʔuʃ-s-it/ ʔuʃʃit ‘cook-perf-1sg’
c. /ʧ’a̤ː q-s-it/ ʧ’a̤ː qʃit ‘swear-perf-1sg’
d. /ʒaʔ-s-it/ ʒaʔʃit ‘arrive-perf-1sg’
e. /ʃed-er-s-it/ ʃederʃit ‘see-pass-perf-1sg’
f. /ʒa̤ː g-er-s-e/ ʒa̤ː gerʃe ‘sew-pass-perf-3sg’

Figure 3 demonstrates what goes wrong when we attempt to model such a process as OSL for 
k = 2. For readability we use ‘s’ to represent [+ant] sibilants, ‘ʃ’ for [–ant] sibilants, and ‘&’ as 
a placeholder for all non-sibilant segments. According to the generalization, an input /s/ may be 
mapped in two different ways. Compare (3a) /baʔ-s-e/ → [baʔse] to (3e) /ʃed-er-s-it/ → [ʃederʃit]. 
In both cases, the FST will be in the state [&] when the underlying /s/ is read since the last 
element produced was a non-sibilant ([ʔ] in 3a and [r] in 3e). The output forms show, however, 
that these two /s/’s must be outputted differently, meaning the transducer would need both an 
‘s:s’ and an ‘s:ʃ’ transition out of this state. These two transitions are depicted in Figure 3 with 

Figure 3: Failed attempt to model Aari sibilant harmony with a OSL2 transducer.

λ
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dashed lines. The requirement of determinism prevents the FST from including both of these 
transitions.

The problem, of course, is due to the long-distance nature of the process. The crucial 
distinction between (3a) and (3e) is that the former does not contain a prior sibilant but the 
latter does. That distinction cannot be made by an FST that only remembers the previous output 
segment. And since long-distance processes apply regardless of the number of intervening 
segments, simply increasing the locality window will not suffice. As such, we must pursue other 
means for characterizing long-distance phonological processes.

3 Subsequential functions
To capture long-distance phenomena, we will require a class of functions that has greater generative 
capacity than the SL functions, but how high must we climb in computational power? Early work 
from Johnson (1972) and Kaplan & Kay (1994) established that phonological processes fit into 
the class of regular relations. These are the relational analogue to the regular languages within the 
Chomsky hierarchy (Chomsky 1956) that was described briefly in Section 2.1, and they can be 
defined as relations computable by some FST (among other converging definitions). Specifically, 
the above-mentioned work proved that every re-write rule of the shape ‘A → B/C_D’ (where A, 
B, C, and D are regular languages) can be computed by an FST provided it does not reapply to 
its own structural change. Additionally, the regular relations are closed under composition (i.e., 
if f(w) and g(w) are regular then f(g(w)) is regular) so any ordered series of such re-write rules 
also computes a regular relation.

Using regular relations as a model of long-distance phonology is attractive for a number of 
reasons aside from the fact that the region subsumes the attested range of processes. For instance, 
the regular region requires relatively low computational power. Moreover, it excludes a type 
of process known as majority rules harmony which is widely regarded as being pathological 
(Lombardi 1999; Baković 2000; Heinz & Lai 2013; Finley 2017). In a majority rules process, 
determining the outcome requires comparing the number of occurrences of one segment type 
versus another within the same underlying form. For example, in majority rules backness vowel 
harmony, a stem would surface containing only front vowels if front vowels are more numerous 
than back vowels in the underlying form, but would surface containing only back vowels if back 
vowels are more numerous than front vowels in the underlying form. Human phonology does 
not seem to track relative frequency in this way, so the fact that the regular hypothesis excludes 
majority rules behaviour is a welcome result.

More recently, long-distance phonological processes have been argued to instantiate 
subsequential functions. These are functions that can be computed by a deterministic FST, making 
them a proper subclass of the regular relations (every subsequential process is regular, but not 
every regular process is subsequential). As support for using the subsequential functions to 
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model long-distance phonology, several types of unidirectional processes have been shown to 
be subsequential, namely vowel harmony (Gainor et al. 2012; Heinz & Lai 2013), consonant 
harmony (Luo 2017), and consonant dissimilation (Payne 2017). A further argument in favour 
of the subsequential hypothesis parallels the discussion of majority rules harmony above; a 
pathological process which Wilson (2003; 2006) calls sour grapes vowel harmony—adapting a 
term from Padgett (1995)—is regular but not subsequential (Heinz & Lai 2013). In a sour grapes 
process, a harmony-triggering segment will spread its harmonic feature to other segments only 
if it can affect all possible targets; if any one of these targets would resist being changed, the 
spreading never gets initiated. In other words, the potential harmony trigger first looks ahead 
to see whether it can affect everything, and preemptively gives up if it sees any antagonistic 
elements down the line. Human phonology does not seem to have such unbounded lookahead 
capabilities, and so the fact that the subsequential hypothesis excludes sour grapes behaviour 
is a welcome result (but see Section 6.3 for some counterexamples in the form of unbounded 
circumambience). That being said, we contend that the subsequential functions do not accurately 
represent the functioning of long-distance processes, since two pathological behaviours can result 
from the freedom afforded to what states may represent in a subsequential FST.

The first pathology is what we call minimum distance requirements, where a trigger affects a 
target only if it is some set distance or further from the target. An example of such a system would 
be strictly beyond-transvocalic dissimilation, where two segments dissimilate only when they are 
separated by at least a vowel and a consonant; no dissimilation occurs across just a vowel (i.e., 
transvocalic contexts). McMullin (2016) and McMullin & Hansson (2019) ran a series of artificial 
grammar learning experiments, finding that strictly beyond-transvocalic patterns of liquid 
harmony and dissimilation are not reliably acquired in an experimental setting. Even when given 
unambiguous training data, participants tended to either infer a more typical unbounded pattern 
or else not infer any pattern. We accordingly propose that phonological processes should be 
prevented from containing minimum distance requirements like those in a beyond-transvocalic 
system. The subsequential hypothesis fails in this regard, since states in a subsequential FST can 
represent arbitrary configurations such as “n or more syllables away from the most recent x”, and 
so minimum distance requirements are readily enforceable by a subsequential FST.

The FST in Figure 4 provides a concrete demonstration of how beyond-transvocalic dissimila-
tion is subsequential. For ease of interpretability we consider only inputs with perfect consonant-
vowel alternation, although this assumption does not crucially affect the discussion. The rule 
computed by the transducer is expressed in (4), where V represents a vowel, C represents a 
consonant other than [l], and {CV}+ represents a string of one or more CV syllables. To see how 
this transducer computes first-last harmony, consider the input /lolokol/. Starting in state 0, we 
produce [l] upon reading word-initial /l/ bringing us to state 1. Next we read /o/ which produces 
[o] and brings us to state 2. On the following step, we read another /l/ but this is not separated 
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from the previous one by a beyond-transvocalic distance and is produced faithfully as [l], moving 
us back to state 1. The next input elements are /o/, /k/ and /o/ which together produce [oko] 
and move us to state 4. After that comes another /l/ but this time we are separated from the 
previous /l/ by a beyond-transvocalic distance. Accordingly, we dissimilate and produce [r], so 
the full mapping is then /lolokol/ → [lolokor]. Once state 4 is reached, the machine can only 
cycle between states 4 and 5, so if any more instances of /l/ are read in this situation, all of these 
will dissimilate to become [r].

(4) l → r / lV{CV}+____

The second pathology is what we call modulo counting, where sequences of segments get collected 
into groups of equal size. An example of such a system would be transvocalic harmony that is 
sensitive to the parity of potential harmony targets (see also McMullin (2016) and McMullin & 
Hansson (2016) who discuss how this pathology falls out of certain constraint-based models). 
In a transvocalic sibilant harmony system, sibilants agree in anteriority specifically if they are 
separated by at most a single vowel. When there is a sequence of multiple such sibilants, we 
expect the anteriority value of the first sibilant to be inherited by all sibilants in the chain. 
Essentially, the value gets passed from each sibilant to the next, skipping over one vowel on 
each pass. In the parity-sensitive system, however, the chain of sibilants will organize itself into 
non-overlapping pairs, with each first member of a pair passing its value to the second member 
of the pair. Furthermore, there is no interaction between sibilants in different pairs. As a result, 
the system permits disharmonic sequences so long as the disharmony straddles a ‘pair boundary’. 
For example, we would expect that /saʃaʃasasa/ maps to [sasasasasa] but it will instead map 
to [siasiaʃjaʃjaska], where pair membership is marked with subscripts. Unlike for the minimum 
distance pathology, there are to our knowledge no experiments that investigate the learnability 

Figure 4: A subsequential FST that computes beyond-transvocalic liquid dissimilation.
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of modulo counting patterns like parity-sensitive harmony. Nonetheless, we believe that it is safe 
to consider modulo counting pathological for segmental phenomena.3

The FST in Figure 5 provides a concrete demonstration of how parity-sensitive harmony is 
subsequential. To improve the transducer’s readability, we consider a segment inventory of only 
vowels and sibilant fricatives and consider only inputs with perfect consonant-vowel alternation. 
Neither of these assumptions crucially affect the discussion. The rule computed by the transducer 
is expressed in (5), where V represents a vowel, S represents a sibilant and {}2n represents an 
even number of instances (including 0) of some sequence. To see how this transducer computes 
parity-sensitive transvocalic harmony, consider the input /soʃoʃoso/. Reading the first sibilant-
vowel syllable produces [so] bringing us to state 2. The next sibilant-vowel pair syllable must 
harmonize since it forms a pair with the previous one, so we write [so] for /ʃo/. Doing so returns 
us to state 0, which means that the following syllable starts a new pair so /ʃo/ is free to surface 
faithfully bringing us to state 4. Finally, the fourth syllable forms a pair with the previous one, so 
we write [ʃo] for /so/. This gives us the full mapping /soʃoʃoso/ → [sosoʃoʃo].

(5) � +
�

−→
�

α
�

�

2n

�

+
α

�

The above pathologies suggest that subsequential functions are not fully emblematic of possible 
phonological computations. Interestingly, the weaker class of Tier-based Strictly Local functions 

 3 A reviewer points out that the parity-sensitive example looks like a pattern applying only within a prosodic foot. 
The example is thus not unequivocally pathological, but it remains that subsequential functions can perform modulo 
counting for any positive integer, and can do so without any regard for prosodic boundaries.

Figure 5: A subsequential FST that computes parity-sensitive transvocalic harmony.
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(defined below in Section 4) avoids these two pathologies. Since TSL functions can model most 
attested non-local processes (as we discuss in detail in Section 5) without generating the two 
pathologies just described, we will propose that the TSL functions act as a better characterization 
of long-distance phonology than the subsequential functions.

4 Tier-based Strictly Local functions
To address the inability of SL functions to model long-distance processes, recent formal work 
(Burness & McMullin 2019; Hao & Andersson 2019; Hao & Bowers 2019; Andersson et al. 2020) 
has aimed to instead extend the TSL languages to functions, although to date there has not been 
a thorough investigation of their empirical coverage. Intuitively, TSL functions are simply SL 
functions that operate with reference to a tier.4 As we did for the SL functions above, we will 
illustrate TSL functions using FSTs and describe their properties primarily from an informal 
perspective. For various formal definitions (automata-theoretic and otherwise) of TSL functions, 
readers are directed to the works cited above.

In FST representations of ITSLk and OTSLk functions,5 each state is a record of the most 
recent k – 1 tier segments that were read from the input string or written to the output string, 
respectively. We illustrate with a simplified version of long-distance sibilant harmony, similar 
to that of Aari shown above in (3). Specifically, an input string /⋯ʃ⋯s⋯/ maps to [⋯ʃ⋯ʃ⋯] 
and /⋯s⋯ʃ⋯/ maps to [⋯s⋯ʃ⋯]. The left-hand FST in Figure 6 models this process as an ITSL2 

 4 A word of caution: the image of a TSL function (i.e., the language formed by collecting all of its possible outputs) is 
not necessarily a TSL language, just as the image of an SL function is not necessarily an SL language (Chandlee 2014). 
The Karajá pattern analyzed in Section 5.4 is a TSL function that does not produce a TSL language.

 5 These functions are not to be confused with the ITSL and OTSL languages of Graf & Mayer (2018), Mayer & Major 
(2018), and De Santo & Graf (2019). The acronyms ITSL and OTSL consistently refer to the function classes  throughout 
the rest of this article.

Figure 6: An ITSL2 FST (left) and an OTSL2 FST (right) computing patterns of sibilant harmony.

λ λ
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function, whereas the right-hand FST is OTSL2. Throughout, we generally use ‘?’ to represent 
non-tier segments. Non-tier segments are mapped faithfully in the two functions here, so their 
transitions are loops and the FSTs can only change state upon reading/writing a tier segment.6

As with SL FSTs, the crucial difference between ITSL and OTSL FSTs is whether the transitions 
go to the state corresponding to their input or output side. This difference can be observed in 
the figures for a transition like ‘s:ʃ’, which goes to state /s/ in the ITSL2 FST and state [ʃ] in the 
OTSL2 FST. This differing behavior of the two FSTs is exemplified in (6) and (7), which show the 
respective paths and outputs through both FSTs for the hypothetical input /ʃasas/.

(6) Path through the ITSL FST (Figure 6 left side) for the input /ʃasas/
Input: ʃ a s a s
Path: λ ⟹ /ʃ/ ⟹ /ʃ/ ⟹ /s/ ⟹ /s/ ⟹ /s/
Output: ʃ a ʃ a s

(7) Path through the OTSL FST (Figure 6 right side) for the input /ʃasas/
Input: ʃ a s a s
Path: λ ⟹ [ʃ] ⟹ [ʃ] ⟹ [ʃ] ⟹ [ʃ] ⟹ [ʃ]
Output: ʃ a ʃ a ʃ

Importantly, the two pathologies described in Section 3 are excluded from both the ITSL and 
OTSL classes precisely because local tier-based computation makes them impossible to generate. 
To impose a minimum distance requirement for the triggering of a process using a TSL function, 
the trigger and intervening material must be on the provided tier else they could not affect the 
state of the transducer. For example, if we were to try computing strictly beyond transvocalic 
dissimilation with an ITSL function, the tier would need to be the entire input alphabet. There 
is, however, a finite maximum of material that can factor into the state label. Consequently, the 
trigger will eventually be pushed out of this window and forgotten. Continuing with the ITSL 
attempt at beyond transvocalic dissimilation, suppose that k = 5 and we are on the last steps 
of reading /kolo-l/, /loko-l/, and /lokoko-l/. In the first, the state label will be /kolo/ and so 
we do not apply dissimilation since the preceding /l/ is not far enough away. In the second, the 
state label will be /loko/ and so we do apply dissimilation since the preceding /l/ is far enough 
away. In the third, the state label will be /koko/ and so we do not apply dissimilation since we 
(erroneously) do not see any preceding /l/. TSL functions are subject to a maximum distance limit 
if they wish to impose a minimum distance requirement, a constraint that does not apply to 
subsequential functions.

 6 This is not enforced by the formal definitions of ITSL/OTSL, which only dictate what states are present and where 
transitions go. Formally speaking, non-tier input segments do not necessarily need to map faithfully, nor do non-tier 
output segments need to be the result of a faithful mapping.
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As for the other pathology, a TSL function can perform some modulo counting if it has a 
sufficiently high maximum length for its state labels. For example, let us try modelling parity-
sensitive sibilant harmony using an ITSL4 transducer whose tier is T = {s, ʃ}. Suppose that we are 
on the last steps of reading /soso-ʃ/, /sososo-ʃ/ and /sosososo-ʃ/. In the first, the state label /ss/  
has an even number of sibilants and so we do not harmonize with the most recent one. In the 
second, the state label /sss/ has an odd number of sibilants and so we harmonize with the most 
recent one. In the third, the state label /sss/ leads us to (falsely) believe that there is an odd number 
of preceding sibilants, and so we harmonize. State labels in a TSL transducer will eventually 
become saturated and cannot subsequently become unsaturated, so the modulo counting can 
only be enforced up to a particular multiple, a constraint which does not apply to subsequential 
functions. By virtue of being able to model attested long-distance phonological processes (see 
Section 5) while ruling out two arguably non-phonological behaviours, the TSL functions offer a 
more natural characterization of long-distance phonology than the subsequential functions.

Finally, it is worth commenting at this point on how the TSL approach to patterns like sibilant 
harmony compares to an autosegmental analysis, in which instances of the feature [±anterior] are 
dominated by [+sibilant] nodes, and spreading is a matter of reassociation. For their part, TSL 
functions are agnostic about why {s, ʃ} form a tier to the exclusion of other segments and why the 
tier segments affect certain segments the way they do. While the operations being computed by 
the transducer can be interpreted as the result of a spreading rule, the transducer does not directly 
represent the reasons behind tier membership and tier influence in any way. It simply represents 
the map from one string to another. It is important to remember though that the overarching goal 
of computationally-oriented work in phonology is to characterize the mathematical properties of 
the maps, and not necessarily their underlying causes. Regardless of one’s preferred theoretical 
mechanism for accomplishing something like sibilant harmony, the fact remains that it is a TSL 
function. The next sections will show how most other long-distance phonological maps also fall 
within either the class of ITSL functions, the class of OTSL functions, or both.

5 Expressivity of Tier-based Strictly Local functions
5.1 Transparency
A well-studied aspect of long-distance phonological processes is the non-participation or 
transparency of material between the trigger and target (see, e.g., Archangeli & Pulleyblank 2007; 
Gafos & Dye 2011; Rose & Walker 2011; Finley 2017). Consider the Turkish pattern of backness 
harmony, where suffix vowels take on the backness value of the rightmost vowel in the base 
(Clements & Sezer 1982; Nevins 2010). Consonants do not participate and are ‘skipped over’ 
when determining appropriate suffix allomorphs.7 Data for the pattern are provided in (8), where 

 7 Note that some analyses argue that the consonants are not actually skipped over (e.g., Waterson 1956).
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the plural suffix alternates between front [-ler] and back [-lar] and the genitive suffix alternates 
between front [-in] and back [-ɯn].

(8) Turkish backness vowel harmony (Nevins 2010: 28–29)
a. [ip-ler] ‘rope-pl’ [ip-ler-in] ‘rope-pl-gen’
b. [el-ler] ‘hand-pl’ [el-ler-in] ‘hand-pl-gen’
c. [pul-lar] ‘stamp-pl’ [pul-lar-ɯn] ‘stamp-pl-gen’
d. [son-lar] ‘end-pl’ [son-lar-ɯn] ‘end-pl-gen’

An OTSL2 transducer for this process is depicted in Figure 7. The tier for this function is all 
and only the output vowels, though for reasons of space, the transducer collapses all the front 
vowel states and the all back vowel states together. The transitions are also collapsed such that a 
transition labelled ‘[αbk]:[βbk]’ means that an input vowel specified as [αback] gets mapped to 
its [βback] equivalent (with all other features unchanged). Turkish allows disharmonic bases, and 
some suffixes do not alternate, instead remaining faithful and starting a new domain of harmony, 
so we assume that harmony can only affect segments with missing backness values, marking 
under-specification as [0bk].8 The transducer models the intuition that a vowel underspecified 
for [±back] will take on the [±back] value of the closest specified vowel to its left. Consonant 
transparency is captured in this transducer by the fact that reading and producing a consonant 
never causes a change of state.

 8 We are able to account for such morpheme-specific information in this way since a function’s input and output 
 alphabets are not required to be the same.

Figure 7: An OTSL2 transducer that produces Turkish backness harmony.

λ

0



17

The transparency of consonantal segments in vowel harmony is a matter of some debate. 
Some researchers adopt a “local spreading” approach where the harmonic feature spreads 
onto and through consonants via coarticulation, (e.g., Ní Chiosáin & Padgett 2001; Jurgec 
2011) rather than skipping them. Transparent segments would then be those for which the 
harmonizing feature does not carry any perceptual or contrastive force. Support for this 
idea comes from research on the reportedly transparent vowels of Hungarian. Like Turkish, 
Hungarian has backness harmony, although the non-low front vowels [i] and [e] are unaffected 
by the harmony and neither trigger nor block it (Gafos & Dye 2011). Phonetic studies reveal, 
however, that instances of [i] and [e] between two back vowels are produced slightly back, 
albeit to a sub-phonemic and likely imperceptible level (Benus et al. 2004; Gafos & Benus 2006; 
Benus & Gafos 2007).

Some other harmony processes, however, are not fully amenable to a spreading analysis. 
For example, the usual [d] of the perfective suffix /-idi/ in Yaka becomes nasal if there is a 
nasal obstruent in the root (Hyman 1995; Walker 2000; Rose & Walker 2004; 2011; Archangeli 
& Pulleyblank 2007; Jurgec 2011). The root in (9a) contains no nasal consonant, so the suffix 
surfaces faithfully. Compare this to the roots in (9b–c) which do have a nasal consonant. No 
matter whether this nasal consonant is in the adjacent syllable (9b) or several syllables away 
(9c), it forces the suffix to harmonize and surface as [-ini]. This harmony for the feature [±nasal] 
occurs across vowels and voiceless obstruents without nasalizing them to any extent (Rose & 
Walker 2004). We must instead allow nasality to skip over them, which we can do by excluding 
them from an appropriate OTSL function’s tier.

(9) Yaka nasal consonant harmony (Hyman 1995)
a. /tsub-idi/ [tsub-idi] ‘roam-perf’
b. /tsum-idi/ [tsum-ini] ‘sew-perf’
c. /nutuk-idi/ [nutuk-ini] ‘lean on-perf’

Transparency in the Yaka pattern is no more or less difficult to describe using a TSL function than 
transparency in Turkish or Hungarian vowel harmony. This is because the TSL class places no 
limits on which collections of segments can act as a tier. As we mentioned earlier in Section 4, 
the TSL functions are agnostic as to why the tier takes a particular shape. We believe that it 
is good practice to try and define tiers relative to a feature theory, but also believe that the 
possibility of arbitrary tiers is advantageous since it is not always possible to derive a segment’s 
tier membership from external factors (e.g., the shape of the phoneme inventory). For example, 
the low vowel /a/ undergoes tongue root harmony in Kinande (Cole & Kisseberth 1994; Gick 
et al. 2006) while it resists and blocks tongue root harmony in Pulaar (Archangeli & Pulleyblank 
1994), even though there are no relevant differences between the languages that can explain this 
discrepancy (Rose & Walker 2011).



18

5.2 Parasitic harmony
Another behaviour that has received plenty of attention in the phonological literature is so-called 
parasitic harmony, where the source and target interact on one dimension only when they agree 
along another. The most prominent cases of parasitic harmony involve rounding harmony 
depending on vowel height. Take for instance the Kachin dialect of Khakass. Suffix high vowels 
in this language become round if the nearest leftward vowel is also high (Korn 1969; Kaun 1995). 
The data in (10) show a [+high] suffix vowel harmonizing with [+high] vowels (a and b) but 
failing to harmonize with [–high] vowels (c and d). As the additional data in (11) show, a [–high] 
suffix vowel never harmonizes, even if the preceding vowel is also [–high].

(10) Kachin Khakass rounding harmony in [+high] suffixes (Korn 1969: 102–103)
a. /kyn-ni/ [kyn-ny] ‘day-acc’
b. /kuʃ-tɯn/ [kuʃ-tun] ‘of the bird’
c. /ød-ir/ [ød-ir] ‘to kill’
d. /ok-tɯn/ [ok-tɯn] ‘of the arrow’

(11) Kachin Khakass lack of harmony in [–high] suffixes (Korn 1969: 102–103)
a. /kyn-ge/ [kyn-ge] ‘to the day’
b. /kuzuk-ta/ [kuzuk-ta] ‘in the nut’
c. /tʃør-gen/ [tʃør-gen] ‘who went’
d. /pol-za/ [pol-za] ‘if he is’

Let us consider how the OTSL2 transducer in Figure 8 models the pattern. The tier includes all 
vowels, so the machine is always in the state corresponding to the most recently produced vowel. 

Figure 8: An OTSL2 transducer that produces Kachin Khakass parasitic rounding harmony.

λ



19

For readability, the two [+high, +round] states are collapsed together, as are the states for the 
six remaining vowels. While in a [+high, +round] state (i.e., the [y] or [u] state), reading /i/ 
will produce [y] and reading /ɯ/ will produce [u]. The same vowels are produced faithfully 
while in any other state. By coordinating the work of the tier and the work of the transitions, we 
can ensure that (i) only high vowels are ever affected by vowel harmony and (ii) they are only 
so affected when the preceding vowel is also high.

5.3 Blocking
Rounding harmony in Khalkha Mongolian is very similar to rounding harmony in Kachin Khakass 
but also exhibits blocking effects. As in Kachin Khakass, rounding harmony is parasitic on height, 
in this case requiring the target and trigger to both be non-high (Svantesson et al. 2005; Nevins 
2010; Gafos & Dye 2011). The harmony causes alternations in a variety of suffixes, such as the 
comitative, data for which are shown in (12).

(12) Khalkha Mongolian rounding harmony (Nevins 2010: p. 139)
a. [nar-tai] ‘sun-com’
b. [ɔd-tɔi] ‘star-com’

Note that there is a simultaneous process of advanced tongue root (ATR) harmony; our analysis 
abstracts away from this additional process. The high front vowel /i/ is transparent to rounding 
harmony (Nevins 2010): it does not become rounded when preceded by a round vowel of any 
height, but also does not prevent rounding from reaching a following [–high] vowel. This is 
shown in (13) using words with the accusative and reflexive suffixes.

(13) Khalkha Mongolian transparency of /i/ (Svantesson et al. 2005: p. 50)
a. [poːr-ig-o] ‘kidney-acc-refl’
b. [xɔːlʒ-ig-ɔ] ‘food-acc-refl’
c. [mʊːr-ig-a] ‘cat-acc-refl’
d. [suːlʒ-ig-e] ‘tail-acc-refl’

The other high vowels /u/ and /ʊ/, however, do prevent rounding from reaching a following 
[–high] vowel, as can be seen from the words in (14) where the causative suffix comes between 
a root and the perfective suffix.

(14) Khalkha Mongolian blocking by /u, ʊ/ (Nevins 2010: p. 137)
a. [tor-oːd] ‘be.born-perf’
b. [tor-uːl-eːd] ‘be.born-caus-perf’
c. [ɔr-ɔːd] ‘enter-perf’
d. [ɔr-ʊːl-aːd] ‘enter-caus-perf’
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Blocking is handled straightforwardly in TSL functions by including blockers on the tier. For 
example, the Khalkha pattern can be modelled by the OTSL2 transducer in Figure 9 whose tier 
contains all and only the rounded vowels. To keep the transducer legible we abstract away from 
distinctions along the ATR and length dimensions (e.g., the distinction between [o] and [ɔː]) and 
ignore the parallel process of ATR harmony. The vowel [o] is included on the tier because it triggers 
rounding harmony and the vowel [u] is included because it blocks rounding harmony. The vowels 
[i] and [e] (as well as consonants) are excluded from the tier because they neither trigger nor block 
rounding harmony. Reading the mid vowel /e/ while in the [o] state will produce [o], no matter 
how many consonants or instances of [i] have been produced since the [o] that put us in the [o] 
state. If at any point we produce a blocker [u], we move to the [u] state, out of which all transitions 
are faithful. Rounding harmony can only apply again if a new instance of [o] is produced.

Segmental blocking effects are not limited to vowel harmony. Although rare, a few cases of 
long-distance consonantal phenomena exhibit blocking effects. These include sibilant harmony 
in Slovenian (Jurgec 2011), sibilant harmony in Kinyarwanda (Walker & Mpiranya 2006; Walker 
et  al. 2008), sibilant harmony in Imdlawn Tashlhiyt (Elmedlaoui 1995; Hansson 2010b) and 
liquid dissimilation in Georgian (Fallon 1993; Odden 1994). Blocking can also be morphologically 
or lexically driven. We mentioned earlier in Section 5.1 that some suffix vowels in Turkish are 
invariant, like the vowel in the nominalizer suffix /-gen/ which is always [–back] (Nevins 2010: 
pp. 33–34). The /e/ in /-gen/ acts as a blocker in the sense that it stops the spread of [+back] by 
remaining [–back], but differs from the cases of blocking above by actively causing all following 
vowels to take on [–back]. As we showed, one way of ensuring this kind of behaviour in a 
TSL function is to make a distinction between input vowels unspecified for some feature and 
input vowels pre-specified for the same feature; the former will take on a value for the empty 
feature based on the most recent tier element (i.e., based on the current state), but the latter will 
maintain the specification that they already have.

Figure 9: An OTSL2 transducer that computes rounding harmony with blocking.
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5.4 Icy targets
The last type of segment we discuss from the TSL perspective is what Jurgec (2011) calls an icy 
target. These segments act much like a blocker in that they prevent harmony beyond themselves, but 
differ from blockers in that they undergo the harmony that they block. An instance of iciness comes 
from the Macro-Jê language Karajá, which has a regressive ATR harmony process that spreads 
[+ATR] (Ribeiro 2003; Rose & Walker 2011; Walker 2012). Underlyingly [–ATR] high vowels are 
the icy targets: an underlying [+high, +ATR] vowel will trigger harmony, while an underlying 
[+high, –ATR] vowel will undergo harmony but then block its spread (Ribeiro 2003). In other 
words, derived [+high, +ATR] vowels cause harmony to halt. Compare the examples in (15a–b), 
in which harmony spreads throughout the word, with those in (15c–d), which contain icy targets.

(15) Karajá ATR harmony (Ribeiro 2003)
a. /brɔrε-dĩ/ [brore-ni] ‘deer-similar.to’
b. /bεdɔ-dĩ/ [bedo-ni] ‘filhote-similar.to’
c. /krɔbi-dĩ/ [krɔbi-ni] ‘monkey-similar.to’
d. /kɔɗʊ-dĩ/ [kɔɗu-ni] ‘turtle-similar.to’
e. /kɔlʊkɔ-dĩ/ [kɔluko-ni] ‘cajá (tree species)-similar.to’

Our analysis abstracts away from the local nasal displacement that derives [-ni] from /-dĩ/; it 
is challenging to implement multiple processes with a single TSL function, but see Section 6.1 
for extensions to the TSL class designed with this issue in mind. The pattern is sensitive to the 
[±ATR] value that each vowel has in the input string and so an ITSL2 function is required. To 
keep the transducer in Figure 10 legible, we use only the following subset of the Karaja vowel 
inventory: /i/, /i/, /u/, /ʊ/, /e/, /ε/, /o/, and /ɔ/. Limiting the inventory does not significantly 
affect the analysis. Because the process is regressive, the input string is read from right to left. 
The FST’s tier includes underlyingly [+ATR] vowels alongside /i/, /ʊ/. Crucially, /ε/ and /ɔ/ 
must be excluded from the tier so that reading them while in the [+ATR] state does not move 
us to the [–ATR] state. While it might feel odd to let non-tier elements be mapped unfaithfully, 
doing so does not violate the definition of an ITSL function in any way.9

Compare this to the transitions originating in the [+ATR] state for the inputs /i/ and /ʊ/ 
which do belong on the tier and thus do lead to the [–ATR] state. As a result, [+ATR] harmony 
can affect and pass over/through an underlyingly [–ATR] mid vowel, whereas it can affect but 
not pass over/through an underlyingly [–ATR] high vowel.

It is worth noting that, despite using an input-oriented function, we are generating what 
looks like iterative output-oriented application. Such “iterative” application is possible with an 

 9 The definition of an ITSL function requires only (i) that the tier be a subset of the input alphabet and (ii) that the 
 corresponding transducer’s current state represent the most recent tier elements. This definition places no require-
ments on the output edges of transitions, and indeed, the output alphabet could in principle be entirely disjoint from 
the input alphabet, making all transitions “unfaithful”.
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ITSL function when non-icy targets are off the input tier and do not prevent the trigger from 
remaining in memory (i.e., remaining in the state label). For another example, while we present 
Turkish vowel harmony as OTSL in Section 5.1, it can equally be computed by an ITSL function 
provided that affix vowels are underspecified and provided that underspecified vowels are off the 
tier. In fact, the ITSL transducer looks exactly the same as the OTSL transducer in Figure 7 aside 
from changing “[]” to “//” in the state labels.

5.5 Double, (non-)initial, and (non-)final triggers
All of the long-distance patterns discussed so far share one striking thing in common: they are all 
TSLk for k = 2. This is not surprising when we consider the typical interpretation of long-distance 
processes. Long-distance harmony is usually construed as the feature value of one segment 
spreading in some direction to affect other eligible segments, so it makes sense that a window 
of length 2 is sufficient in the tier-based context, since it lets us remember the most recent 
“relevant” element. Long-distance dissimilation can also generally be reduced to the influence 
of the most recent relevant element. The prominence of k = 2 is also interesting with regards to 
learnability. Burness & McMullin (2019) showed that while any OTSLk function can be learned 
efficiently from positive data when the tier is known in advance, only the OTSL2 functions can be 
efficiently learned by their algorithm from positive data when the tier is not known in advance.10 
Nonetheless, there are several behaviours that require a value of k > 2 for various reasons.

 10 This of course does not mean that learning tiers is impossible when k > 2, only that no method currently exists for 
doing so efficiently. Whether or not such tiers can be efficiently learned is a topic of ongoing research.

Figure 10: An ITSL2 transducer that produces Karajá ATR harmony.
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A first example is the rounding harmony in one variety of Oroqen. Some sources analyze 
the harmony as only being triggered by a sequence of two rounded vowels (Zhang et al. 1989; 
Li 1996; Zhang 1996; Zhang & Dresher 1996; Walker 2001; Walker 2014). The data in (16) 
show the definite article suffix becoming round when preceded by two round vowels, but not 
when preceded by a single round vowel (even if this vowel is long). Note that the language also 
contains a process of ATR harmony, hence the alternation between [ɔ] and [o]. An alternative 
analysis of the same data comes from Dresher & Nevins (2017), who analyze the harmony as 
triggered specifically by non-initial vowels. They analyze the process in this way because the 
Russian loanword [kinɔ] ‘film’ causes rounding harmony in the definite object suffix /-wa/ 
giving us [kinɔ-wɔ] instead of *[kinɔ-wa] as predicted by the double-trigger analysis (Dresher & 
Nevins 2017). There also exists a plural suffix /-nOr/ for kinship terms that is always round, and 
this suffix causes rounding harmony regardless of the rounding in preceding vowels, giving us 
[ǝtʃǝxǝ-nɔr-wɔ-t] ‘paternal.uncle-pl-def-acc’ instead of *[ǝtʃǝxǝ-nɔr-wa-t], for example (Dresher 
& Nevins 2017). This again is expected under the non-initial trigger analysis, but not under the 
double trigger analysis.

(16) Oroqen rounding harmony (Walker 2001)
a. /ɔlɔ-wa/ [ɔlɔ-wɔ] ‘fish-def.obj’
b. /tʃoŋko-wa/ [tʃoŋko-wo] ‘window-def.obj’
c. /mɔː-wa/ [mɔː-wa] ‘tree-def.obj’

Interestingly, both the double trigger analysis and non-initial trigger analysis can be implemented 
as an OTSL function if we set k to be greater than or equal to 3. The states in a TSLk transducer 
are labelled with sequences of up to length k – 1. Accordingly, until enough tier elements have 
been encountered, the transducer can be in a state labelled with fewer than k – 1 segments, but it 
will cycle through states labelled with k – 1 elements once that number is reached. For example, 
an OTSL3 transducer with the alphabet {V, C} and the tier {V} will enter the state ‘V’ upon 
producing its first vowel, and will not move to the state ‘VV’ until a second vowel is produced. 
After that point it will remain in the state ‘VV’, never returning to the state ‘V’. This is illustrated 
in Figure 11. When implementing the double-trigger analysis as an OTSL3 function, we would 
ensure that rounding harmony is only enforced out of a state whose label consists of two round 

Figure 11: Example of state labels shorter than the maximum.
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vowels. Similarly, when implementing the non-initial trigger analysis as an OTSL3 function we 
would ensure that rounding harmony is only enforced when the state label contains two vowels 
and the rightmost of these is round.

Similar to how the right-hand vowel of a two-vowel state label in a progressive TSL3 function 
is necessarily non-initial, a one-vowel state would necessarily reflect the first vowel when all 
vowels are on the tier. With k = 3, then, we can also model non-iterative harmony that is 
triggered specifically by the first or last vowel in a word. In Megisti Greek, regressive non-iterative 
backness and rounding harmony is triggered only by the last vowel in a word (van Oostendorp 
& Revithiadou 2005; McCollum & Kavitskaya 2018). Harmony preceding a final back vowel is 
shown in (17a) and harmony before a final front vowel is shown in (17b). The example in (17c) 
shows that the harmony does not extend past the penultimate vowel.

(17) Megisti Greek non-iterative backness harmony Triggered only by final vowels 
(van Oostendorp & Revithiadou 2005)
a. /sits-a/ [sutsa] ‘fig.tree-nom.f’
b. /filak-s-e/ [filekse] ‘guard-3sg.pst’
c. /anofli/ [anefli] ‘lintel’

Trigger status is purely positional in this pattern and has nothing to do with stress placement 
(McCollum & Kavitskaya 2018), so we cannot rely on a dichotomy between stressed and unstressed 
vowels to derive the restriction on triggers. A TSL analysis of this pattern (or its mirror image) 
needs a tier of all vowels and k = 3. A state labelled with a single vowel will then correspond to 
having seen only the first vowel in a left-to-right machine and correspond to having only seen 
the last vowel in a right-to-left machine. Restricting harmonic transitions so that they can only 
come from these states will limit triggers to the desired word edge.

Values of k higher than 2 can thus account for certain behaviours not captured by the TSL2 
functions, such as double triggering and some instances of positional triggering. Not all instances 
of positional triggering, however, can be analyzed in the way outlined above. For example, 
suffixes in the Eastern Meadow dialect of Mari harmonize with the initial vowel in backness across 
all other vowels (Vaysman 2009; Walker 2011).11 This particular process cannot be modelled by 
inflating k since it is iterative and there is no way to exclude non-initial vowels from the tier by 
identity alone, so the initial vowel will eventually be pushed out of the memory window (i.e., the 
state label of the FST). We conjecture that positional triggering of this kind requires something 
like the structure-sensitive tier projection methods explored for formal languages by Graf & 
Mayer (2018), Mayer & Major (2018), and De Santo & Graf (2019), which consider surrounding 
material in addition to segment identity.

 11 We thank an anonymous reviewer for bringing this pattern to our attention.
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6 Limitations of Tier-based Strictly Local functions
As shown in the previous sections, the TSL functions can model a range of non-local processes, 
including those with blocking. They are not, however, sufficient to capture all such processes that 
are attested in the literature. This section presents three phenomena that TSL functions cannot 
model—multiple simultaneous processes, bidirectional application, and two-sided contexts—
along with extensions to the TSL functions that might circumvent the relevant inadequacies.

6.1 Multiple processes
The Tamashek dialect of Tuareg contains a process of long-distance regressive sibilant harmony 
and a process of long-distance regressive labial dissimilation (Heath 2005; McMullin 2016). 
The sibilant harmony can be seen in words where the causative prefix /s-/ is followed non-
locally by another sibilant, whereupon it takes that other sibilant’s values for anteriority, voicing, 
and pharyngealization as shown by the data in (18) from Heath (2005: p. 442). Note that the 
language has considerable vowel allophony, and we write ‘V’ where Heath (2005) does not 
provide the surface vowel quality.

(18) Tamashek sibilant harmony (Heath 2005; McMullin 2016)
causative /s-/
-s-VŋŋV- ‘cook’
-s-VsVfVr- ‘treat (patient)’
-sʕ-VsʕuhV- ‘strengthen’
-ʃ-VluʃV- ‘clean sand from’
-z-VjVzzV ‘scrutinize’

The labial dissimilation can be seen in words where a prefix /m/ (such as in the mediopassive) 
is followed non-locally by a labial consonant other than /w/, whereupon the prefix /m/ will 
dissimilate to [n]. Data for this process is shown in (19) from Heath (2005: p. 472).

(19) Labial dissimilation: mediopassive /m-/
-m-VrtVj- ‘become mixed’
-n-VkmVm- ‘be squeezed’

That both processes can occur simultaneously is demonstrated by the word in (20) from Heath 
(2005: p. 462), which contains the causative and mediopassive prefixes together.

(20) Both prefixes/processes
ɑ-zʕ-ǝnː-ǝt-ǝlmǝzʕ ‘spitting saliva’

The combination of sibilant harmony and labial dissimilation cannot, however, be computed by 
a single TSL function. Consider what happens when we try with an OTSL2 function whose tier 
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consists of all sibilants and labial consonants. Producing a sibilant will push the most recent 
labial consonant (if any) out of the k – 1 window, and producing a labial consonant will push 
the most recent sibilant (if any) out of the k – 1 window. At any given point, then, we can only 
know how to correctly map an input /s/ or only know how to correctly map an input /m/, but 
not both. Increasing k does not eliminate the issue, since any number of sibilants/labials can in 
principle occur between two labial/sibilant consonants.

A further difficulty for TSL functions posed by Tamashek Tuareg is that long-distance regressive 
labial dissimilation is overridden by a local process of regressive nasal place assimilation. An 
input /m/ fails to dissimilate specifically when it is immediately followed by an oral labial stop, 
in order to avoid a heterorganic cluster. This can be seen in a word like (21) from Heath (2005: 
p. 476) where the reciprocal prefix /Vm-/ comes immediately before a /b/.

(21) Local blocking of dissimilation, reciprocal /Vm-/
-æm-bæbbɑ- ‘carried each other’

We are faced with a paradox if we attempt to model this interaction as a single TSL function. In 
order to know when an input labial needs to dissimilate we need to ignore everything that is not 
a labial consonant, but in order to know when an input labial needs to obey place assimilation 
we cannot ignore anything.

Whether such interactions between multiple local and/or long-distance processes are 
problematic for using TSL functions as a model of long-distance phonology depends on whether 
we are trying to study properties of individual processes/maps or properties of entire phonological 
systems. The latter perspective is explored by Chandlee & Heinz (2018) and Chandlee et al. 
(2018) in the context of formal language theory and automata theory. In an appendix to their 
article, Chandlee et al. (2018) prove that the ISL functions are not closed under composition (i.e., 
given two ISL functions f(w) and g(w), the single function equivalent to f(g(w)) is not guaranteed 
to be ISL),12 and yet the main body of their article shows that certain opaque rule interactions 
such as counterfeeding and counterbleeding can nevertheless be modelled using a single ISL 
function, suggesting that overall phonological systems might generally obey strict locality. In a 
similar vein, preliminary work by Burness & McMullin (2020) explores how to combine multiple 
TSL functions into a single function based on insights from research by Aksënova & Deskmukh 
(2018) and McMullin et al. (2019) into phonotactic patterns that operate over multiple tiers. 
The particular subclass of multi-tiered functions that Burness & McMullin (2020) argue for lets 
each input element separately depend on its own set of tiers, provided that the set forms a 
strict superset-subset hierarchy. Further work is needed, however, to assess the degree to which 

 12 Although Chandlee & Lindell (under review) conjecture that closure is guaranteed when neither of the functions 
being combined contains a “null cycle” where infinite deletion is possible.
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tier-based strict locality is obeyed by phonological systems overall. On this note, a reviewer 
observes that the interaction between dissimilation and assimilation in Tamashek Tuareg is 
similar to a minimum distance requirement, suggesting that tier-based computation may avoid 
certain pathologies only at the level of an individual process.

6.2 Bidirectional application
One aspect of long-distance patterns is tacitly assumed above, namely that they tend to apply in 
a single direction. This seems to be the norm, but there are patterns that apply in both directions, 
typically from the root outwards. Take for instance vowel harmony in Degema, where prefixes 
and suffixes take on the [±ATR] specification of the root (Archangeli & Pulleyblank 2007; Kari 
2007). The data in (22) show both parts of a circumfix alternating to match the root’s value for 
[±ATR]. The combination of regressive harmony to prefixes and progressive harmony to suffixes 
gives the impression of a harmony system that begins from the centre. TSL functions obligatorily 
start at either the left or right edge of the input, so even if we make a distinction between root 
and affix vowels by having the latter be unspecified for [±ATR] in the input, we will only 
correctly treat either the prefixes or the suffixes.

(22) Degema ATR harmony (Kari 2007)
a. [ɓól] ‘hold’ [u-ɓó1ꜜ-əḿ] ‘holding’
b. [gɛń] ‘look’ [ʊ-gɛńꜜ-ám] ‘looking’
c. [ɗúm] ‘create’ [o-ɗúmꜜ-əḿ] ‘creator’
d. [hɔŕ] ‘sharpen’ [ɔ-hɔŕꜜ-ám] ‘sharpener’

A deceptively simple solution presents itself: why not apply the same TSL function once going 
from left to right, then a second time going from right to left? The first pass will fill in the 
missing [±ATR] value on suffixes and the second pass will fill in the missing [±ATR] values for 
prefixes. A similar idea of decomposing a single bidirectional process into an ordered pair of 
opposite-direction subsequential functions is how Heinz & Lai (2013) account for stem-controlled 
vowel harmony, though they caution against freely composing subsequential functions due to 
a theorem from Elgot & Mezei (1965). The theorem states that running a first subsequential 
transducer in one direction and then a second subsequential transducer in the reverse direction 
can describe any regular function. This happens because the first transducer can “annotate” 
the input string to give the opposite-direction transducer information about distant upcoming 
material. Heinz & Lai (2013) accordingly suggest that when we need to split a single process 
into two parts, the first transducer’s output alphabet must be equal to its input alphabet (which 
is then the input alphabet to the second transducer), and must not be allowed to produce an 
output longer than the input. These restrictions prevent some of the annotation necessary for 
producing truly regular functions, and functions describable in this manner are known as the 
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weakly deterministic functions. Since we argue that the TSL functions are a more natural model of 
long-distance phonology than the subsequential functions, it would be interesting to see whether 
we can model bidirectional processes as a pair of opposite-direction TSL functions without the 
use of intermediate encoding.13 We leave a thorough investigation of this possibility for future 
research.

6.3 Two-sided contexts
ISL functions are able to model two-sided contexts since they can wait up to a finite number 
of steps before transforming an input element. This ability is not in general available to ITSL 
functions, so a challenge for the TSL models is that there do exist patterns that can be interpreted 
as being affected by non-local information in one direction as well as bounded information in 
the other. Consider the lowering harmony in C’Lela, where suffix high vowels become mid 
if they are preceded by a non-high vowel in the root (Dettweiler 2000; Pulleyblank 2002; 
Archangeli & Pulleyblank 2007; Michel 2009; Jurgec 2011). When there is more than one 
vowel following the triggering root vowel, the harmony only affects the very last one, which 
will always be in word-final position thanks to the syllabic structure of C’Lela (Jurgec 2011: p. 
186). The data in (23) show that the class membership suffix /-i/ will lower to [e] when it is 
the only suffix following a non-high root vowel, but will be unaffected when it is followed by 
another suffix vowel.14

(23) C’Lela lowering harmony (Dettweiler 2000)
a. /zis-i/ [zis-i] ‘long-cl’
b. /rek-i/ [rek-e] ‘small-cl’
c. /zis-i-ni/ [zis-i-ni] ‘long-cl-adjm’
d. /rek-i-ni/ [rek-i-ne] ‘small-cl-adjm’

The basic facts of lowering are simple enough to account for with an ITSL2 or OTSL2 function: 
the tier consists of non-high vowels, and input high vowels will be output as non-high while in 
a non-high state. Accounting for the fact that targets are only lowered in word-final position, on 
the other hand, lies outside the powers of the TSL class. In order to confirm that an input vowel 
is word-final, we need to postpone its output until we read the next input element: if anything 
except the word boundary follows, it is not word-final. A paradox ensues: the lowering requires 
a tier with only non-high vowels, while determining whether the vowel is word-final requires a 
tier with everything. The multi-tiered functions of Burness & McMullin (2020) seem well-suited 

 13 A reviewer also makes the interesting observation that the tier projection of a TSL function can only delete a segment 
or reproduce it exactly, precluding the ability to add information.

 14 Dettweiler (2000) was unable to determine the exact meaning of of the suffix /-ni/, and so treats it as an adjective 
marker of uncertain status.
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to resolving this paradox, since a local tier is by necessity a strict superset of any tier used to 
keep track of non-local information. Another possibility, as suggested by a reviewer, would be to 
appeal to structure-sensitive tier projection (Graf & Mayer 2018; Mayer & Major 2018; De Santo 
& Graf 2019)

Related to hybrid local/non-local cases like C’Lela lowering harmony is what Jardine (2016) 
calls unbounded circumambience, where the application of a process depends on potentially 
non-local information in both directions simultaneously. Take for instance Tutrugbu vowel 
harmony, as analyzed by McCollum & Essegbey (2018) and McCollum et al. (2020). Root vowels 
that are [+ATR] spread this value leftwards to prefix vowels, and when all prefix vowels are 
of the same height, the harmony will reach the left word edge (McCollum & Essegbey 2018; 
McCollum et al. 2020), as seen in (24a) for a string of [+high] prefixes and (24b) for a string 
of [–high] prefixes. Roots are underlined for clarity, and tone is not indicated to keep [i] and 
[i] visually distinct.

(24) Conditional blocking by low vowels in Tutrugbu ATR harmony (McCollum et al. 2020)
a. /bʊ-ti-ʃe/ [bu-ti-ʃe] ‘1pl-neg-grow’
b. /ka-ba-ʃe/ [ke-be-ʃe] ‘2sg-fut-grow’
c. /ka-ti-ba-ʃe/ [ke-ti-be-ʃe] ‘cl-neg-fut-grow’
d. /i-ba-di-wu/ [i-ba-di-wu] ‘1sg-fut-itv-climb’

The behaviour of strings of prefixes with different heights depends on the height of the leftmost 
vowel. Harmony spreads to all prefix vowels when the leftmost vowel is [–high] as seen in 
(24c), but harmony is blocked by [–high] vowels when the leftmost vowel is [+high] as seen 
in (24d), although harmony still spreads up until that [–high] blocker (McCollum & Essegbey 
2018; McCollum et al. 2020). The outcome of an input [–high] vowel can therefore depend 
simultaneously on non-local information to its left (the height of the leftmost vowel) and non-
local information to its right (the ATR specification of the root), creating clear instances of 
unbounded circumambience. Jardine (2016) hypothesized that unbounded circumambient 
processes were not weakly deterministic according to Heinz & Lai’s (2013) definition, although 
O’Hara & Smith (2019), Smith & O’Hara (2019), and Lamont et al. (2019) show that loopholes 
in the definition can be exploited to model several unbounded circumambient patterns.15 We 
similarly conjecture that cases of unbounded circumambience like the one in Tutrugbu could be 
modeled as a pair of opposite-direction single-tiered or multi-tiered functions without the need 
for abstract intermediate encoding, although we leave to future research the task of determining 
the limits on such composition that would prevent the modelling of fully regular processes.

 15 The alternative definition of weak determinism under development by Meinhardt et al. (2020) is an attempt to 
 eliminate such loopholes.
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7 Conclusion
Long-distance phonological processes are traditionally modelled using segmental tiers, and 
we have shown how such a tier can be incorporated into the structure of a Strictly Local (SL) 
function. The resulting Tier-based Strictly Local (TSL) functions are computational reflections 
of key insights from autosegmental phonology, readily capturing key behaviours exhibited by 
long-distance processes (such as the transparency of intervening material) that lay outside the 
modelling capabilities of the SL functions. TSL functions are computationally more powerful 
than SL functions, although they are less powerful than the subsequential functions, which were 
previously offered as a hypothesized upper bound on phonological complexity. Some pathological 
patterns can be characterized as a subsequential function but not as a TSL function, and so we 
argued that the TSL functions may be a better characterization of the computational mechanisms 
utilized by human phonology. That being said, the TSL functions have difficulty modelling two-
sided contexts, bi-directional application, and the simultaneous application of multiple local 
and/or non-local dependencies. These difficulties can be alleviated through function composition 
and/or the addition of more tiers, although work is still ongoing to determine the limits that 
ought to be imposed on these powerful tools.
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Abbreviations
1 = first person, 2 = second person, 3 = third person, acc = accusative, adjm = adjective 
marker, appl = applicative, cl = classifier, def = definite, com = comitative, f = feminine, 
fut = future, gen = genitive, ger = gerundive, itv = itive, loc = locative, m = masculine, 
neg = negative, nmzr = nominalizer, nom = nominative, npst = non-past, obj = object, 
perf = perfective, pl = plural, poss = possessive, pst = past, refl = reflexive, sg = singular
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