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Whereas most previous studies on (super-)gang effects examined cases where two weaker 
constraints jointly beat another stronger constraint (Albright 2012; Shih 2017; Breiss & Albright 
2022), this paper addresses gang effects that arise from multiple violations of a single constraint, 
which Jäger & Rosenbach (2006) referred to as counting cumulativity. The super-additive version 
of counting cumulativity is the focus of this paper; cases where multiple violations of a weaker 
constraint not only overpower a single violation of a stronger constraint, but also surpass the 
mere multiplication of the severity of its single violation. I report two natural language examples 
where a morphophonological alternation in a compound is suppressed by the existence of 
marked segments in a super-additive manner: laryngeally marked consonants in Korean 
compound tensification and nasals in Japanese Rendaku. Using these two test cases, this paper 
argues that these types of super-additivity cannot be entirely captured by the traditional MaxEnt 
grammar; instead, a modified MaxEnt model is proposed, in which the degree of penalty is 
scaled up by the number of violations, through a power function. This paper also provides 
a computational implementation of the proposed MaxEnt model which learns necessary 
parameters given quantitative language data. A series of learning simulations on Korean and 
Japanese show that the MaxEnt learner is able to detect super-additive constraints and find the 
appropriate exponent values for those, correctly capturing the probability distributions in the 
input data.
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1 Introduction
A gang effect has been traditionally defined as a cumulative constraint interaction in which two 
weaker constraints jointly beat another stronger constraint (Guy 1997; Pater 2009; Albright 
2012; Shih 2017). Counter to traditional Optimality Theory (Smolensky & Prince 1993) where 
constraints are strictly ranked, Harmonic Grammar (Legendre et al. 1990) can capture gang effects 
without any stipulation, through linear interaction between weighted constraints. Consider the 
tableaux in (1). In (1)-a and (1)-b, the candidate that violates either ℂ2 or ℂ3 wins since violating 
ℂ1 is more fatal. In (1)-c, however, the candidate that violates both ℂ2 and ℂ3 loses because the 
summation of ℂ2 and ℂ3 outweighs ℂ1.

(1)	 Gang effect

	 a.	 w(ℂ1) > w(ℂ2)

ℂ1 ℂ2 ℂ3 
 1.5 1 1 ℋ

☞ a1  –1  –1.0

a2 –1   –1.5

	 b.	 w(ℂ1) > w(ℂ3)

 ℂ1 ℂ2 ℂ3 
 1.5 1 1 ℋ 

☞ a3   –1 –1.0

a4 –1   –1.5

	 c.	 w(ℂ2) + w(ℂ3) > w(ℂ1)

 ℂ1 ℂ2 ℂ3
 1.5 1 1 ℋ

a5  –1 –1 –2.0

☞ a6 –1  –1.5

It was reported that the mere addition of constraint weights often cannot capture the cumulative 
effect correctly because forms with two marked structures occur even less in natural languages 
than what grammar predicts by multiplying the probabilities of two separate forms with one 
marked structure each (Albright 2012; Shih 2017; Breiss & Albright 2022). For example, Albright 
(2012) showed that some combinations of relatively marked structures are strongly underattested 
in both Lakhota and English. More specifically, singly marked structures are somewhat tolerated 
in the lexicon but doubly marked structures are not, appearing even more rarely than expected. 
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This super-gang effect calls for an additional penalty for combinations of markedness on top of 
the sum penalty of dispreferred subparts (Albright 2012). Shih (2017) convincingly showed that 
super-gang effects can be captured by adding a weighted conjoined constraint in the grammar; 
the addition of the conjoined constraint significantly improves the grammar’s fit when modeling 
quantitative natural language patterns. Breiss & Albright (2022), through a series of artificial 
language experiments, investigated the relationship between the strength of an individual 
restriction and how it gangs up with other violations. They found that violations are more likely 
to super-gang up with each other if individual restrictions are weaker, or in other words, have 
more exceptions. They concluded that a MaxEnt grammar, although best fitting among the 
contemporary frameworks, can capture these super-gang effects only if very specific weighting 
conditions are met; the interacting constraints should be both low-weighted.

Jäger & Rosenbach (2006) distinguish two types of cumulativity. Ganging-up cumulativity is 
what most previous works refer to as “gang effects”. As described earlier in (1), it is characterized 
as a case in which two weaker constraints jointly overcome another stronger constraint. Counting 
cumulativity refers to cases where multiple violations of a single weaker constraint overpower a 
single violation of a stronger constraint. In (2)-a, the candidate which violates ℂ1 loses because 
violating ℂ1 is more severe than violating the weaker constraint ℂ2. However, in (2)-b, the 
candidate that incurs multiple violations of ℂ2 loses because a single violation of ℂ1 is outweighed 
by multiple violations of ℂ2.

(2)	 Counting cumulativity
	 a.	 w(ℂ1) > w(ℂ2)

 ℂ1 ℂ2
 1.5 1 ℋ

☞ a1  –1 –1.0

a2 –1  –1.5

	 b.	 w(ℂ2) × 2 > w(ℂ1)

 ℂ1 ℂ2
 1.5 1 ℋ

a3  –2 –2.0

☞ a4 –1 –1.5

This paper focuses on the super-additive version of this counting cumulativity, which I call 
super-additive counting cumulativity; multiple violations of a weaker constraint overpower not 
only a single violation of a stronger constraint, but also go beyond what is predicted by simply 
multiplying the severity of a single violation of itself. For example, as I will show in §3, an OCP 
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constraint against a pair of laryngeally marked consonants in Korean gangs up in a super-additive 
manner so that one violation is negligible whereas multiple violations are severe. Throughout 
the paper, I use the term super-additive cumulativity to refer only to this specific type of gang 
effect. I report two examples of super-additive counting cumulativity in natural language to 
show that these effects can be well captured using MaxEnt Harmonic Grammar (Hayes & Wilson 
2008) if the penalty is scaled up by the number of violations (n), through a power function (f(n) 
= nb, where b > 1). I also provide a computational implementation of this framework, called 
the Power Function MaxEnt Learner, which automatically detects constraints that show super-
additive counting cumulativity and learns the appropriate b value.

The remainder of the paper is organized as follows. Through an illustration of a toy example 
of a super-additive counting cumulativity in §2, I first show that these effects cannot be entirely 
captured in MaxEnt Harmonic Grammar (Hayes & Wilson 2008). I further show that the super-
additivity is better predicted by a MaxEnt grammar provided that a power function is incorporated 
into the violation assessment method. I also introduce the Power Function MaxEnt Learner, 
which will be used later in the paper to fit the natural language patterns that show super-additive 
counting cumulativity. In §3, I investigate a super-additive cumulativity of laryngeally marked 
consonants in Korean compound tensification, a productive morphophonological process. I 
analyze the pattern by employing two OCP constraints that are sensitive to the position of a word 
boundary and to whether the marked structure is derived, and vary in counting cumulativity. In 
§4, I examine the effects of nasals on blocking Rendaku, a well-known compounding process in 
Japanese that is similar to Korean compound tensification. Various restrictions in the Rendaku 
process are attributed to gradient similarity-avoidance effects in Japanese, which are formally 
analyzed in the paper as a set of OCP constraints on different natural classes and with varying 
degrees of counting cumulativity. For each example in §3 and §4, I present learning simulations 
on the quantitative data acquired from a survey and dictionaries to show that the MaxEnt model 
detects super-additive constraints and learns appropriate parameters to successfully predict the 
frequency distributions of the data. I summarize the paper in §5.

2 Super-additive counting cumulativity
I start by defining terms that are used in the paper in §2.1. In §2.2, I present a toy dataset with 
super-additive counting cumulativity and compare three different violation assessment methods 
to see how each captures the data. I first analyze the toy data with a conventional penalty 
assessment method where the product of the constraint weight and the number of violations 
is summed over all the constraints. I show that super-additivity cannot be entirely captured in 
a conventional MaxEnt Grammar. In §2.3, I take an alternative approach, a constraint family 
model, and discuss how it fails to capture monotonicity of such patterns wherein more violations 
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incur more severe penalties. In §2.4, I introduce the power function model in which the degree 
of penalty is scaled up according to the number of violations, through a power function. In 
§2.5, I introduce a MaxEnt implementation of the power function model, called the Power 
Function MaxEnt Learner, with a focus on how it differs from the conventional MaxEnt learner. I 
present two learning simulations to show the capacity of this learner. I first fit a dataset without 
super-additive counting cumulativity using the Power Function MaxEnt Learner; I show that 
the learner successfully lets all the b values stay at 1. Subsequently, I fit the super-additive 
data illustrated in §2.2, showing that the learner is able to detect the super-additive constraint 
and adjust the parameters accordingly, producing precise frequency matching. I conclude the 
section by explaining how the property of the power function guarantees a monotonic increase 
in weights with more violations.

2.1 Terminology
Various terms regarding the topic of constraint interaction have been used in the literature. In 
this section, I will introduce these terms and determine which of these will be used in the paper.

Ganging and cumulativity have been used interchangeably to refer to an existence of some 
interaction between multiple violations, either from one constraint or more. As opposed to 
traditional Optimality Theory (Smolensky & Prince 1993) in which constraints are strictly ranked, 
Harmonic Grammar (Legendre et al. 1990) and its variations assume that constraints can be 
ganging or cumulative with each other. I use the terms cumulative and cumulativity in this paper.

Linearity and additivity have both been used in the literature, to refer to types of cumulativity in 
constraint interaction. According to Breiss & Albright (2022), these terms regard the relationship 
between the actual probability of doubly-marked structures and the predicted probability of 
those that is computed by multiplying probabilities of two separate singly-marked structures. 
They also briefly comment on how linearity is only subtly different from additivity and choose 
to use the term linearity in keeping with previous literature. Linearity, super-linearity, and sub-
linearity refer to cases where the observed probability is equal to, lower than, or higher than the 
predicted probability, respectively.

As mentioned in §1, this paper focuses on super-additive counting cumulativity, cases where 
multiple violations of a single constraint overpower a mere multiplication of one violation. As it 
will be explained in more detail in §2.5, in the conventional MaxEnt grammar, the probability of 
a certain phonological form x is computed by exponentiating its harmony, the weighted sum of x’s 
constraint violations (Goldwater et al. 2003; Hayes & Wilson 2008). Because of this exponentiating 
process, the linear increase in the harmony domain can affect probability in a super-linear 
manner; nevertheless, simply adding constraint violations is insufficient in some cases, as I will 
report in the paper. Thus, I use the terminology of additivity in the paper. Specifically, I use the 
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term super-additivity to refer to cases where a monotonic increase in constraint violation cannot 
fully capture the amount of decrease in the probability domain.

2.2 Conventional MaxEnt Grammar
Tableau (3) illustrates an example that exhibits a super-additive counting cumulativity, 
motivated by a Korean dataset that will be introduced later in §2. The weights of the constraints 
and predicted probabilities are computed by the Maxent Grammar Tool (Hayes et al. 2009). 
Violation of ℂ1 will always be incurred by candidate (ii) and will be constant over the inputs. 
Violation of ℂ2 will always be incurred by candidate (i), with a monotonic increase. The Korean 
dataset in §3 will not include inputs like (d) because the majority of Korean native nouns are 
monosyllabic or disyllabic and therefore not long enough to incur three violations of ℂ2. Even 
if the word length allows, a co-occurrence of three laryngeally marked consonants is highly 
disfavored, reported in Park (2020) as phonotactic learning simulation results using the existing 
Korean native monomorphemic nouns. However, the input (d) is still included for the purpose 
of demonstration because the expected probability of nonce forms like (3)-d-i is most certainly 
zero.

(3)	 Conventional MaxEnt grammar: bad fit

 ℂ1 ℂ2  
Observed 0.7 0.6 ℋ p

a./input1/ 
i. .62 winner 0 0 .66
ii. .38 loser –1 –0.7 .34

b./input2/ 
i. .60 winner  –1 –0.6 .52
ii. .40 loser –1 –0.7 .48

c./input3/ 
i. .04 loser  –2 –1.2 .38
ii. .96 winner –1 –0.7 .62

d./input4/ 
i. 0 loser  –3 –1.8 .26
ii. 1 winner –1  –0.7 .74

Comparing (3)-a and (3)-b, a single violation of ℂ2 lowers the observed frequency of the winner 
only marginally and does not reverse the choice of winner. Multiple violations of ℂ2 can reverse 
the winner, however, as seen in (3)-c and (3)-d. This is a clear case of counting cumulativity, 
where multiple violations of a weaker constraint ℂ2 overpower a single violation of the more 
powerful constraint ℂ1. The weighting condition for these two constraints is summarized in 
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(4). The notation w(ℂ) refers to the weight of the constraint ℂ and n refers to the number of 
violations.

(4) Weighting schema for the counting cumulativity of ℂ2

w(ℂ2)×n > w(ℂ1) > w(ℂ2), where n ≥ 2

Taking a closer look at the observed probability distributions of (3)-c and (3)-d, the losing 
candidates with multiple violations of ℂ2 barely occur between the two possible outputs. This 
shows that ℂ2 is cumulative in a super-additive manner; multiple violations of ℂ2 surpass a mere 
multiplication of the severity of its single violation.

The weights of the constraints, computed by the Maxent Grammar Tool (Hayes et al. 2009), 
satisfy the weighting condition given in (4); one violation of ℂ2 (0.6) weighs less than one violation 
of ℂ1 (0.7), which in turn weighs less than two or three violations of ℂ2 (1.2, 1.8). However, 
the probabilities of the candidates predicted by the weighted constraints do not successfully 
match the input distributions. To reproduce the observed pattern of super-additivity, a grammar 
must satisfy the two following conditions. First, one violation of ℂ2 should weigh low enough 
to correctly capture the marginal frequency difference between the winners of (3)-a and (3)-b. 
Second, multiple violations of ℂ2 should weigh high enough to capture the extreme gang-effect 
in (3)-c and (3)-d. However, this weighted grammar meets neither of these conditions because 
w(ℂ2) is stuck in the middle; the candidate (3)-b-i was penalized too much for violating ℂ2 once 
(predicted 52%, while 60% observed) while (3)-c-i was not penalized enough for incurring 
multiple violations of ℂ2 (38% predicted, while 4% observed).

The simulation illustrates that there is no way for a traditional MaxEnt grammar to satisfy 
the two conditions: w(ℂ2)×1 being low enough while w(ℂ2)×2 and w(ℂ2)×3 high enough. This 
is because the disparity between one and multiple violations is wide, but w(ℂ2) is fixed and 
violations are assessed only linearly. Under this linear strategy, multiple violations are merely 
doubly or triply penalized, which is not enough to capture the super-additivity.

2.3 Alternative: constraint family
The observed pattern of super-additive counting cumulativity can be captured by a constraint 
family where a separate self-conjoined constraint is responsible for each number of violations. 
For the toy data, ℂ2 was replaced by a set of constraints in (5), whose weights were computed 
using the MaxEnt Grammar Tool (Hayes et al. 2009), as presented in (6).

(5) (ℂ2)1: Penalize exactly one violation of ℂ2.
(ℂ2)2: Penalize exactly two violations of ℂ2 (=ℂ2&ℂ2).
(ℂ2)3: Penalize exactly three violations of ℂ2 (=ℂ2&ℂ2&ℂ2).
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(6)	 Constraint family model: good fit

 ℂ1 (ℂ2)1 (ℂ2)2 (ℂ2)3 

Observed 0.5 0.1 3.7 13.3 ℋ p

a./input1/ i. .62 winner     –1.0 .62

ii. .38 loser –1    –0.5 .38

b./input2/ i. .60 winner  –1   –0.1 .60

ii. .40 loser –1    –0.5 .40

c./input3/ i. .04 loser   –1  –3.7 .04

ii. .96 winner –1    –0.5 .96

d./input4/ i. 0 loser    –1 –13.3 0

ii. 1 winner –1    –0.5 1

The constraint family provides precise frequency matching, which is expected; there is a separate 
constraint responsible for every number of violations, and the weight can be adjusted to cater to 
each input and its candidate distribution.

In this approach, however, constraints that stand for greater numbers of violations are not 
guaranteed to have higher weight. For example, a constraint family can predict a language 
in which violating w(ℂ2)3 is less severe than w(ℂ2)1 but more severe than w(ℂ2)2, which is 
highly unnaturalistic and unattested (e.g., w(ℂ2)1 > w(ℂ2)3 > w(ℂ2)2). A de Lacian approach 
of stringency hierarchy (de Lacy 2002), where each constraint penalizes n or fewer marked 
structures, will not have this problem since candidates with one violation will also violate other 
constraints in the hierarchy such as *TwoOrFewer, *ThreeOrFewer, and so forth. Even this 
approach, however, only guarantees weak monotonicity; as Jäger & Rosenbach (2006) point 
out, a stringency hierarchy will predict a language where the probability of the candidates (6)-i 
is constant at 62% up to 3 violations of ℂ2, decreases to 60% at 4 violations, remains constant 
until 6 violations and approaches 0% with more. Thus, this line of approaches disregards the 
nature of super-additive counting cumulativity wherein more violations lead to the strictly lower 
probability of the offending candidate, as Zymet (2014) notes.

In the same vein, a constraint family also dismisses learners’ abilities to make predictions about 
larger violations that are not evidenced in the existing lexicon. For example, the Korean native 
lexicon has very few monomorphemic nouns with two marked consonants, as briefly mentioned in 
§2.2; however, they know that tensifying a compound formed with these nouns is extremely unlikely.

2.4 Power function
A power function is a function of the form f(a) = ab where the independent variable a is raised 
to a constant power b. I substitute the number of ℂ2 violations n(ℂ2) with n(ℂ2)b (b > 1) to 
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scale-up the penalty, following Zymet (2014) (scaling of penalty was also used in Coetzee 2009; 
Pater 2009; Kimper 2011; McPherson & Hayes 2016; Hayes 2017). Here, note that the number 
of violations is still the same but its contribution to harmony is scaled up. For example, one 
violation will indicate a severity of 1b while two violations and three violations will indicate 2b 
and 3b, respectively. Since 1b always equals 1 for any b, application of the power function on the 
number of violations does not affect the severity of a single violation. If the b value is greater 
than 1, the penalty is enlarged for multiple violations. Thus, the parameter b is adjusted to 
serve different degrees of super-additivity; larger b can be used to capture more extreme super-
additivity.

With a b value less than 1, the number of violations n is scaled down; nb = 1 when b = 0 and 
nb < 1 when b is a negative value. In fact, Zymet (2014) exploits a negative power function, in 
order to capture distance-based decay patterns where the weight of a single constraint is scaled 
down according to the distance between the interacting segments.

2.5 Power Function MaxEnt Learner
This section outlines the MaxEnt implementation that automatically learns parameters for the 
power function model introduced in §2.4. In the conventional MaxEnt grammar, harmony 
of a certain phonological form x is defined as the weighted sum of x’s constraint violations 
(Goldwater et al. 2003; Hayes & Wilson 2008), shown in (7). Here, N is the number of the 
constraints, wi is the weight of the ith constraint, ni(x) is the number of times that x violates the 
ith constraint.

(7) ⋅∑N
i ii=1

x = w n x( ) ( )ℋ

The learner of the power function model is crucially different in harmony calculation since the 
number of violations n(x) is exponentiated by b, as seen in (8). Here, bi is the exponent of the ith 
constraint. The other components of the learning algorithm remain unchanged from the standard 
MaxEnt learning algorithm (Hayes & Wilson 2008).

(8) ⋅∑ i
N b

i ii=1
x w n x( )= ( )ℋ

The learner’s goal is to find the set of weights that minimizes the negative log likelihood of 
the training data. Therefore, I formalize learning as minimizing the standard loss function, 
the sum of the negative log likelihood. For optimization, batch gradient descent is used. The 
weights for all constraints are initialized at 0 and the b values for constraints are all initialized 
at 1. From there, each iteration, gradients of the loss function with respect to a given set of 
weights and b values are determined using the Python library Autograd, which efficiently 
computes partial derivatives of given functions. Constraint weights as well as the b values 
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are updated based on these gradients, with a learning rate of 0.1 for weights and 0.01 for bs. 
Notably, with the current set up for bs, in which bs are initialized at 0 and incremented only 
slowly with a lower learning rate of 0.01, a more conservative assumption about the grammar 
can be made; that is, every constraint has a linear increase in penalty by default as in regular 
MaxEnt grammar and only small changes can be made from that initial assumption when the 
data evidences otherwise (e.g., the existence of super-additivity). If any b values go below 1 
after an update, they are automatically reset as 1, because b must be above 1 in order to scale 
up the number of violation. Similarly, if any weights go below 0 after an update, they are reset 
as 0. After each update, the loss function is calculated again with the updated parameters. 
The learner is programmed to terminate whenever the loss function increases rather than 
decreases.

I first fit a dataset without super-additivity in which a linear increase in the number of 
violations results in a fairly gradual decrease in observed probabilities using the Power Function 
MaxEnt Learner. In (9), for each input, the observed probability of the candidate (i) gradually 
decreases with larger violations of ℂ2; the data portrays cases where the counting cumulativity 
of ℂ2 is no more than additive. The observed probabilities in this tableau are adjusted from (3) 
for demonstration but this type of gradual decrease/increase in probabilities that arises from 
violating a scalar constraint is well attested in linguistics (English genitive variation in Jäger & 
Rosenbach (2006), distance decay in Latin and other languages in Zymet (2014) and Stanton 
(2016), and Tommo So vowel harmony in McPherson & Hayes (2016)).

(9)	 Counting cumulativity without super-additivity: good fit

 ℂ1 ℂ2  
 W 0.5 0.4  
observed b  1 1 ℋ p

a./input1/ 
i. .62 winner  0 0 .62

ii. .38 loser –1 –0.5 .38

b./input2/ 
i. .52 Winner  –1 –0.4 .52

ii. .48 loser –1 –0.5 .48

c./input3/ 
i. .40 loser  –2 –0.8 .41

ii. .60 winner –1 –0.5 .59

d./input4/ 
i. .32 loser  –3 –1.2 .31

ii. .68 winner –1  –0.5 .69

The Power Function MaxEnt Learner converged after 815 iterations and was able to successfully 
detect that increasing the b for ℂ2 is not necessary; for both constraints, the b values stayed at 1, 
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as shown in (9). Moreover, the learner was able to exactly replicate the weights and the predicted 
probabilities optimized by the MaxEnt Grammar Tool (Hayes et al. 2009).

Subsequently, the dataset with super-additivity (3) was fitted using the Power Function MaxEnt 
Learner. The learner converged after 50,134 iterations. As seen in (10), only the exponent for ℂ2 
increased to 4.5 whereas the exponent for ℂ1 stayed at 1, which shows that the learner is able to 
detect the super-additive constraint given the input data and let b rise only for that constraint. 
Crucially, it is necessary for the learner to see at least three different levels of scalar violations in 
the input data in order to determine whether the constraint is super-additive. For example, with 
(10), the difference between zero and one violation is compared to the difference between one and 
two violations; since the second step is steeper than the first step in reducing the probability, the 
learner can confirm that an increased b value of ℂ2 would be beneficial in this case. The parameters 
in (10) show that the power function approach enables the grammar to reflect the crucial aspects 
of the super-additive counting cumulativity; a single violation of ℂ2(0.2) is outweighed by a single 
violation of ℂ1(0.5), which in turn is outweighed by multiple violations of ℂ2(0.2 × 24.5 = 4.5).

(10)	 Output of the Power Function MaxEnt Learner: good fit

 ℂ1 ℂ2

 w 0.5 0.2  
 observed b 1 4.5 ℋ p

a./input1/ 
i. .62 winner  0 0 .63

ii. .38 loser –1 –0.5 .37

b./input2/ 
i. .60 winner  –14.5 –0.2 .59

ii. .40 loser –1 –0.5 .41

c./input3/ 
i. .04 loser  –24.5 –3.7 .04

ii. .96 winner –1 –0.5 .96

d./input4/ 
i. 0 loser  –34.5 –23.0 0

ii. 1 winner –1  –0.5 1

The power function model gives precise frequency matching with an addition of only one 
parameter on top of a single baseline constraint, which is more parsimonious than a family of 
constraints in §2.3. Moreover, by relying on the nature of the mathematical concept, the weight 
is guaranteed to monotonically and strictly increase as the number of violation increases (b > 1).

2.6 Summary
I illustrated a toy example of super-additive counting cumulativity and evaluated three different 
models: linear assessment, constraint family, and power function. In §2.2, it was shown that 
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the conventional way of assessing violations cannot properly capture super-additivity. In §2.3, 
a set of self-conjoined constraints provided a good fit to the toy data; but these constraints can 
be arbitrarily weighted, in which case the observed monotonicity is not guaranteed. In §2.4 and 
§2.5, a grammar with exponentiated penalties showed a good fit to the toy example. With a 
slight modification to the traditional MaxEnt model, the Power Function MaxEnt Learner fits the 
parameters that are necessary for the power function model. More importantly, the mathematical 
nature of the power function guarantees more violations to be penalized more severely, when the 
exponent b is larger than 1.

3 Case study 1: laryngeally marked consonants in Korean compound 
tensification
As the first real-life example that exhibits a super-additive cumulativity, Korean compound 
tensifcation is investigated in this section. I introduce the phenomenon in §3.1. In §3.2, I analyze 
the observed pattern using a set of OCP constraints that are sensitive to the position of a word 
boundary and whether the offending structure is derived or not. The observed super-additivity is 
attributed to the counting cumulativity of a specific OCP constraint. In §3.3, I report a learning 
simulation using the Power Function MaxEnt Learner and show that the suggested method 
correctly captures the observed super-additive pattern.

3.1 Compound tensification and laryngeal OCP
Korean features a distinction between plain consonants (/p/, /t/, /s/, /c/, /k/) and laryngeally 
marked consonants, which include tense (/p’/, /t’/, /s’/, /c’/, /k’/) and aspirated (/ph/, /th/, /ch/, 
/kh/), for obstruents. In a compound composed of two nouns, WA and WB, if the initial onset of WB 
is a plain obstruent, it often undergoes tensification. Tensification is required for some compounds 
(/san/ ‘mountain’ + /pul/ ‘fire’ [sanp’ul] ‘wild fire’) while not allowed in others (/sil/ ‘thread’ + 
/panci/ ‘ring’ [silpanci] ‘thread ring’), and there are some compounds that are variably realized 
as either tensified or non-tensified form (/pul/ ‘fire’ + /kituŋ/ ‘pillar’ [pulkituŋ] ∼ [pulk’ituŋ] 
‘firestorm’). Zuraw (2010), Ito (2014), and Kim (2017) showed that the tensification probability 
of a given compound can be predicted by the interaction of various phonological and non-
phonological factors, such as frequency, word length, branching structure, and etymology. These 
authors unanimously reported that tensification is less likely for a compound with a laryngeally 
marked consonant in it, as in /khoŋ/ ‘bean’ + /ki.rɯm/ ‘oil’ [khoŋ.ki.rɯm], *[khoŋ.k’i.rɯm] 
‘soybean oil’ and /tol/ ‘stone’ + /to.k’i/ ‘ax’ [tol.to.k’i], *[tol.t’o.k’i] ‘stone ax’. Considering that 
the compounding process derives another laryngeally marked consonant in WB, the blocking effect 
of a laryngeally marked consonant arises from laryngeal co-occurrence restrictions (Ito 2014), or 
the OCP constraint on the acoustic feature [long VOT] (Gallagher 2011). Please refer to Gallagher 
(2011) in particular on the grouping of aspirated and tense consonants as a single natural class.
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Examining phonological factors that contribute to the likelihood of tensification in Korean 
compounds, Kim (2017) collected a large-scale pronunciation data by conducting a survey 
on Seoul Korean speakers. The survey material consists of 304 native noun-noun compounds, 
whose WB initial onset is a lax obstruent, which are collected from the two data sources: Korean 
Usage Frequency (Kang & Kim 2009) and the major Korean dictionary (National Institute of 
Korean Language 1999). In the survey questionnaire, the two components of each compound 
were given in separate parentheses with the morpheme boundary symbol ‘+’ in between. For 
each compound, two possible pronunciation forms written in standard Korean orthography, one 
with and the other without tensification, were given as options. The link for the Google Docs 
document was sent to 21 participants, who were undergraduate or graduate students of two 
universities in Seoul (Seoul National University and Yonsei University). They were asked to 
choose their pronunciations of the word that can be compounded by the two given nouns. The 
survey generated 6,384 datapoints in total (21 * 304). The overall rate of compound tensification 
was 57% (3,644/6,384).

Kim (2017) showed that the laryngeal co-occurrence restrictions in compound tensification 
exhibit different patterns depending on the position (in WA or WB) and the number of laryngeally 
marked consonants, as summarized in Table 1.

location context consonants tensification 

WB plain/sonorant .60 3,447/5,754

one tense .31 112/357

one aspirated .31 85/273

WA plain/sonorant .58 2,809/4,830

one tense .62 521/840

one aspirated .56 308/546

WA two marked Cs .04 6/168

Table 1: Tensification rate according to the type/number of consonant in WA and WB.

First, the presence of a single laryngeally marked consonant in WB significantly lowers the 
tensification rate. Unlike the strong effect of a marked consonant in WB, there need to be two 
marked consonants in WA in order to exhibit sigificant OCP effects; the presence of a single 
laryngeally marked consonant is not significantly different from the complete absence of any 
marked consonant on tensification, whereas the presence of two marked consonant in WA lets the 
tensification rate plunge. If a laryngeally marked consonant is considered a tensification blocker, 
the effect of two in WA goes beyond doubling the effect of one in WA; two laryngeally marked 
consonants in WA gang up in a super-additive manner and block tensification.
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Analyzing the significance of OCP effects, I constructed a mixed effects logistic regression 
model using the glmer function from the lme4 package (Bates et al. 2018) in R (Team et al. 
2013). The dependent variable was the occurrence of tensification (binary: no tensification 
(ref), tensification) and the independent variables were the number of marked consonants in WB 
(backward difference coded: zero, one) and the number of marked consonants in WA (backward 
difference coded: zero, one, two). The model also included random slopes and random intercepts 
for participants and compounds. The model is shown in Table 2.

β SE(β) z P

(Intercept) –3.11 0.51 –6.02 <0.001

0 vs. 1 marked consonant in WB –3.75 0.62 –5.99 <0.001

0 vs. 1 marked consonant in WA  0.00 0.39 0.00 0.99

1 vs. 2 marked consonants in WA –5.32 1.17 –4.53 <0.001

Table 2: Regression model for the Korean survey results.

In the model reported in Table 2, the coefficients indicate how strongly each factor contributes 
to decreasing or increasing the likelihood of tensification. The model reflects all the observed 
OCP effects: (i) a single laryngeally marked consonant in WB significantly reduces the likelihood 
of tensification, (ii) the presence of one marked consonant in WA has no effect on tensification 
and is not significantly different from the absence of marked consonant, and (iii) the presence of 
two marked consonants in WA significantly dampens tensification. Moreover, model comparison 
using the anova() function revealed that the number of marked consonants in WA makes 
significant improvements (χ2(2) = 24.3, p < 0.001).

3.2 Analysis: word boundary and counting cumulativity
This section provides a formal analysis of Korean compound tensification. I first introduce 
constraints that are responsible for the occurrence of tensification. And then, I analyze the 
OCP pattern observed in §3.1: one laryngeally marked consonant in WB suffices to block 
tensification while more than one in WA is needed to clearly show the blocking effect. This is 
attributed to different markedness thresholds in different morphological domains: word and 
compound.

Traditionally, tensification in Korean compounds has been considered a way of helping a 
compound be perceived as consisting of two elements (Kim-Renaud 1974; Chung 1980; Ahn 
1985). Tensification of the initial segment of WB has been formally described in the literature as 
an insertion of a stop segment such as /s/ or /t/ at the compound juncture, which would allow an 
automatic process of post-obstruent tensification, or an insertion of a floating feature that would 
allow tensification of the following segment, such as [constricted glottis] or [tense]. Among 
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many, following the recent study of Ito (2014), I assume in the paper that a floating [tense] 
feature is inserted at the compound juncture. Regarding the realization of this [tense] feature, 
I adopt RealizeMorpheme (Kurisu 2001), which requires that the floating [tense] be realized 
on some segment. This [tense] feature cannot dock onto the WA final coda, because codas are 
unreleased and hence cannot be tensified in Korean (Kim-Renaud 1974); the [tense] feature 
docks onto the WB initial onset segment. While RealizeMorpheme encourages tensification, Id 
(tense) prevents WB initial onset segments from undergoing tensification, as demonstrated in 
(11). The weights in the tableau are computed by the MaxEnt Grammar Tool (Hayes et al. 2009).

(11)	 Compound tensification triggered by RealMorph and blocked by Id (tense)

RealMorph Id (tense)  
/pul/ + /kituŋ/ 0.5 0  ℋ p

a. pul+k’ituŋ .62 –1  0 .62

b. pul+kituŋ .38 –1   –0.5 .38

An offending structure (a co-occurrence of two laryngeally marked consonants) is treated 
differently depending on whether a word boundary intervenes or not. First, considering that 
the site of tensification is the initial onset of WB, the reason for the stronger OCP effect in WB is 
that a co-occurrence of two laryngeally marked consonants is significantly less preferred within 
a single morpheme. This strong OCP effect in WB can be captured by a trigram that penalizes an 
offending structure with a preceding word boundary, defined in (12). In the constraint definition, 
T represents a laryngeally marked consonant and + represents a boundary.

(12) *+TT: Assign a violation mark for every subsequence of a word boundary followed by 
a laryngeally marked consonant followed by another laryngeally marked consonant.

On the other hand, a laryngeally marked consonant in WA cannot block tensification as strongly 
because a co-occurrence of two marked consonants is better tolerated in a compound. This can 
be captured by a similar trigram (13), which penalizes an offending structure with an intervening 
word boundary.

(13) *T+T: Assign a violation mark for every subsequence of a laryngeally marked 
consonant followed by a word boundary followed by another laryngeally marked 
consonant.

The constraint *+TT should be weighted highly enough to capture the clear OCP effect in WB 
while *T+T should be weighted lowly enough to allow two marked consonants to still co-occur 
over a word boundary. The OCP pattern of Korean compound tensification corroborates the 
observation that some phonological restrictions that hold within a morpheme can be loosened or 
even lifted at morpheme boundaries (Martin 2011; Gallagher et al. 2019).
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The tensification-blocking effect of two laryngeally marked consonants in WA is attributed to 
the counting cumulativity of *T+T violations, as summarized in (14). A single violation of *T+T 
is outweighed by the tensification-triggering constraint (RealizeMorpheme), which is in turn 
outweighed by multiple violations of *T+T. Sample tableaux and the weights of the constraints 
that are computed by the MaxEnt Grammar Tool (Hayes et al. 2009) are shown in (15) and (16). 
The example in (15), /kochu/ ‘chili’ + /kirɯm/ ‘oil’, represents cases where a marked segment in 
WA does not block tensification. The example in (16), /k’ochi/ ‘skewer’ + /kui/ ‘roast’, represents 
cases where two marked consonants in WA block tensification. In these tableaux, the input 
frequencies are not accurately matched with these weights although they satisfy the weighting 
condition laid out in (14), because two violations of *T+T are more severe than simply doubling 
the severity of one violation, indicating that *T+T cumulates in a super-additive manner.1

(14) Counting cumulativity of *T+T
w(*T+T)×n > w(RealizeMorpheme) > w(*T+T), where n≥2

(15)	 A single violation of *T+T is weaker than RealizeMorpheme

 RealMorph *T+T Id (tns)  
/kochu/ + /kirɯm/  0.5 0.4 0 ℋ p

a. kochu+k’irɯm .62 –1 –1 –0.4 .52

b. kochu+kirɯm .38 –1 –0.5 .48

(16)	 Two violations of *T+T are stronger than RealizeMorpheme

 RealMorph *T+T Id (tns)
/k’ochi/ + /kui/ 0.5 0.4 0 ℋ p

a. k’ochi+k’ui .04 –2 –1 –0.8 .41

b. k’ochi+kui .96 –1 –0.5 .59

	 1	 One of the reviewers asked if the common alternative, tier-based local constraints, as opposed to constraints against 
offending subsequences, could be an option here. The observed pattern can certainly be reproduced by an alternative 
approach. For example, I can suppose a tier on which only the actively interacting segments, laryngeally marked 
consonants and the morpheme boundary, are visible. If I attend to substrings on this tier, the difference between the 
candidate (15)-a and the candidate (16)-a will have to be made by introducing another constraint *TT+T, which 
penalizes (16)-a and not (15)-a. The candidate (16)-a would then incur one violation of *TT+T on top of one viol-
ation of *T+T, rather than incurring two violations of *T+T. While the weight of *T+T would capture the small 
OCP effect and the weight of *TT+T would capture the maximized OCP effect, successfully reproducing the observed 
input distributions, grammars with these constraints are not guaranteed to give *TT+T greater weight than *T+T, 
which can lead to typological pathologies like the one described in §2.3. By contrast, if I attend to subsequences and 
assign multiple violation of one constraint for the candidate (16)-a, the weights are guaranteed to monotonically 
increase with more violations, under my proposed power function approach.
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The constraint *T+T is super-additive only if it is violated by a derived pair of laryngeally 
marked consonants. Consider tableau (17).

(17)	 Multiple violations of *T+T not fatal if violated by old pairs

RealMorph *T+T  Id (tns)

/khoŋ / + /kuks’u/ 0.5 0.4 0  ℋ p

a. khoŋ+k’uks’u .20 –2 –1 –0.8 .52

b. khoŋ+kuks’u .80 –1 –1 –0.9 .48

Tableau (17), represented by the example /khoŋ/ ‘bean’ + /kuks’u/ ‘noodle’, illustrates cases 
where WA and WB both include a laryngeally marked consonant. The candidate with tensification 
(17)-a still occurs 20% of the time, contrary to (16)-a almost never occurring, although it violates 
*T+T twice for having two pairs of laryngeally marked consonants over the word boundary: 
kh+k’ and kh+s’. This is because the underlying T+T subsequence, kh+s’, is tolerated and 
does not contribute to the super-additivity of *T+T violations. In contrast, the two T+T pairs 
included in (16)-a, k’+k’ and ch+k’, both contribute to the super-additivity since both include a 
derived tense consonant k’. Since underlying T+T subsequences behave differently than derived 
ones, I replace *T+T with *T+TO and *T+TN, as seen in the re-evaluation of the same example 
from (17), presented in (18). In the tableau, RM represents RealizeMorpheme. Whereas *T+TN 
is violated by the derived T+T subsequence, *T+TO is violated by the subsequences that are 
already present in the fully faithful candidate, which are defined as a candidate without violating 
any faithfulness constraints (Comparative markedness; McCarthy 2003).2 While there is no 
evidence that *T+TO is super-additive, *T+TN is clearly super-additive.

(18)	 *T+TN violated by derived subsequences and *T+TO by old subsequences

RM *T+TN  Id (tns) *T+TO

/khoŋ/ + /kuks’u/ 0.5 0.4 0 0.3 ℋ p

a. khoŋ+k’uks’u .20 –1 –1 –1 –0.7 .18

b. khoŋ+kuks’u .80 –1 –1 –0.8 .82

Making a similar distinction for *+TT is well motivated by the lexical statistics of Korean 
monomorphemic words. As mentioned earlier, *+TT needs to be weighted highly to capture 
the significant blocking effect of a marked consonant in WB. However, some combinations of 
laryngeally marked consonants are actually overrepresented in Korean monomorphemic lexical 

	 2	 Among other frameworks that deal with derived environments, I use this specific approach of Comparative Marked-
ness for the simplicity and the ease of presentation.
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items. For example, Ito (2014) examined the distribution of consonant types in the onsets of 
initial and peninitial syllables in Korean simplex nouns. The result showed that the co-occurrence 
of two tense consonants is overrepresented in the lexicon. Kang & Oh (2016) conducted a similar 
study with the entire Korean lexicon where the same tendency was found. Underlying TT pairs 
are either tolerated or even overrepresented tautomorphemically whereas deriving a new tense 
consonant is avoided in the presence of another marked consonant within a monomorphemic 
word. This supports a replacement of *+TT with *+TTN and *+TTO, where *+TTN is violated 
by derived TT pairs and *+TTO is violated by underlying TT pairs that are already present in the 
fully faithful candidate, which is essentially the input. In the paper, *+TTO is not included in the 
analysis because the dataset used here has no compound with two underlying marked consonants 
in WB; *+TTO is vacuously satisfied by all the compounds.

3.3 Learning super-additive counting cumulativity
In this section, I fit the Korean data using the Power Function MaxEnt Learner. I first summarize 
the necessary constraints. Then, I present the result of the learning simulation on the Korean 
data. I show that incorporating the power function into violation assessment allows accurate 
frequency matching of the input data. I also show that the Power Function MaxEnt Learner is 
able to raise b only for the super-additive constraint and let it remain at 1 for the others.

As mentioned above, I assume that RealizeMorpheme (Kurisu 2001) requires the inserted 
[tense] feature to be phonologically realized, by the association to the initial onset consonant of 
WB. In contrast, Ident (tense) requires that the specification for the [tense] feature of the input 
segments be identical to that of the output segments.

The laryngeal co-occurrence patterns are captured by a set of two OCP constraints, which 
penalize derived marked pairs with a preceding or intervening word boundary, as defined again 
in (19) and (20). The counterpart constraints *T+TO and *+TTO are excluded in the analysis as 
these constraints are not decisive in predicting candidate distributions; *+TTO is never violated 
in the entire dataset as mentioned above and *T+TO is violated by either all candidates or no 
candidates for each input.

(19)� *+TTN: Assign a violation mark for every subsequence of a word boundary followed by 
a laryngeally marked consonant followed by another laryngeally marked consononant 
that is not present in the input.

(20)� *T+TN: Assign a violation mark for every subsequence of a laryngeally marked 
consonant followed by a word boundary followed by another laryngeally marked 
consonant that is not present in the input.

The Korean data was fitted using the Power Function MaxEnt Learner. The weights of the 
constraints were all initialized at 0. The update to a constraint’s weight was the negative of the 
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learning rate (0.1) times the gradient that was computed by Autograd each iteration. The b 
values for each constraint were also all initialized at 1. The update to a constraint’s exponent b 
was the negative of the learning rate (0.01) times the gradient that was computed by Autograd 
each iteration. The learner converged after 39,587 iterations. The resulting set of weights and 
exponents are shown in (21). In the inputs and outputs, T represents a syllable with a laryngeally 
marked consonant whereas σ represents a syllable without one. The other factors that could 
potentially be relevant to the likelihood of tensification, such as the word length and the position 
of laryngeally marked segments, were not significant in the statistical analysis above and were 
disregarded in this paper. For instance, the input in (21)-d represents words of any length, which 
is either 3 or 4 syllables long in the data, whose WB underlyingly has a single laryngeally marked 
segment.

In the tableau, only the exponent for the super-additive constraint *T+TN increased to 4.5 
whereas those for all the other constraints stayed at 1, which shows that the learner is able to 
detect the super-additive constraint given the input data and let b rise only for that constraint. 
With these weights and powers, the grammar reproduced the observed pattern closely.

(21)	 Output of the Power Function MaxEnt Learner: good fit

*+TTN RM Id (t) *T+TN

W 1.7 0.7 0.2 0.2  

b 1 1 1 4.5 ℋ p

a. /σσ/+/σσ/
σσ+Tσ .62 –1 –0.2 .64

σσ+σσ .38 –1 –0.7 .36

b. /Tσ/+/σσ/
Tσ+Tσ .62 –1 –14.5 –0.3 .60

Tσ+σσ .38 –1  –0.7 .40

c. /Tσ/+/σT/ Tσ+TT .20 –1 –1 –14.5 –2.0 .21

Tσ+σT .80  -1 –0.7 .79

d. /σσ/+/σT/
σσ+TT .25 –1  –1 –1.9 .24

σσ+σT .75  –1 –0.7  .76

e. /TT/+/σσ/ 
TT+Tσ .04   –1 –24.5 –4.1 .04

TT+σσ .96 –1 –0.7  .96

f. /TT/+/σT/ 
TT+TT 0 –1 –1 –24.5 –5.8 .01

TT+σT 1  –1 –0.7  .99

The fact that one violation of *T+TN has no effect of blocking tensification is reflected in the 
very low weight of *T+TN (w = 0.2). Also, the large disparity between one and two violations of 
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*T+TN is reflected in its exponent 4.5. With these parameters, the weighted grammar correctly 
captures the super-additive counting cumulativity of *T+TN: one violation of *T+TN (w = 
0.2) is outweighed by the tensification triggering constraint (w = 0.7), which in turn is much 
outweighed by multiple violations of *T+TN (w = 0.2 * 24.5 = 4.5).

3.4 Summary
In this section, I investigated super-additivity of laryngeally marked consonants in Korean 
compound tensification, a process whereby the initial onset of WB can be tensified when 
compounded. The tensification likelihood of a given compound can be partially predicted a 
number of phonological factors, one of which is the presence of another marked consonant, 
motivated by laryngeal co-occurrence restrictions. Co-occurrences of marked consonants are 
tolerated differently in different morphological domains (word and compound); whereas a single 
laryngeally marked consonant in WB blocks tensification, there must be two marked consonants 
in WA to block the process. The observed OCP patterns were captured by multiple OCP constraints 
that are sensitive to the position of the word boundary and the input-output mappings, one of 
which (*T+TN) was super-additive and therefore responsible for the super-additive cumulativity 
of a marked consonant in WA. The Power Function MaxEnt Learner was able to detect this 
constraint as super-additive and adjusted the parameters, successfully matching the frequencies 
of the input data.

4 Case study 2: nasals in Japanese Rendaku
As another case of super-additive counting cumulativity, nasals in Japanese Rendaku are 
investigated in this section. I provide a brief introduction of the process in §4.1. I describe 
the compound databases that I use and report some tendencies found in the data in §4.2. In 
§4.3, I give a phonological analysis of the observed pattern using OCP constraints that operate 
on different natural classes, one of which cumulates super-additively. In §4.4, I use the Power 
Function MaxEnt Learner to fit the Japanese data. I summarize the section in §4.5.

4.1 Background: Rendaku and Lyman’s Law
In a compound composed of two elements (WA and WB) in Japanese, if the second element begins 
with a voiceless obstruent (/t/, /s/, /k/, /h/), it often voices (/jama/ ‘mountain’ + /kata/ ‘area’ 
→ [jamagata] ‘mountain area’). It is a tendency that can be predicted by various phonological 
and non-phonological factors, extensively studied in previous literature (Itô & Mester 1986; 
Kawahara & Sano 2014b, and many others).

One of the best known factors is the presence of a voiced obstruent in WB; if WB already 
contains a voiced obstruent (/b/, /d/, /z/, /g/), Rendaku is almost always blocked (/jama/ 
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‘mountain’ + /kazi/ ‘fire’ → [jamakazi] *[jamagazi] ‘mountain fire’). This is related to Lyman’s 
Law (Lyman 1894), which states that a stem must not contain more than one voiced obstruent. 
This pattern has been formally accounted for through the OCP effect or co-occurrence restrictions 
on the voice feature (Itô & Mester 1986).

4.2 Corpus study
I employ two complementary compound databases for investigating various phonological 
restrictions of Rendaku in this paper. The main database that I use, Irwin et al. (2020), 
is a collection of all 35,328 Rendaku candidate compounds that are found in two major 
dictionaries, Kenkyūsha (Watanabe et al. 2008) and Kōjien (Shinmura 2008). Here, 
Rendaku candidate compounds refer to the compounds whose WB begins with a voiceless 
obstruent and does not include a voiced obstruent. The database provides the compounds’ 
pronunciations that can be retrieved from either or both of those two dictionaries and I work 
with the pronunciation data sourced from the Kenkyūsha dictionary in this paper. I included 
compounds whose pronunciations in Kenkyūsha are either specified as “+”, meaning 
Rendaku is exhibited, or “–”, meaning Rendaku is not exhibited. I excluded compounds 
whose pronunciations are not available in Kenkyūsha or annotated as “+–”, meaning that 
both Rendaku and non-Rendaku pronunciations are possible, in order to treat Rendaku 
application as a binary variable.

As I am investigating phonological restrictions of Rendaku, I excluded items that could 
potentially be affected by other factors that have been reported to dampen Rendaku. Irwin et 
al. (2020) not only includes noun-noun compounds but also those that are comprised of verbs 
or adjectives; I excluded compounds that are only comprised of verbs as these rarely undergo 
Rendaku (Okumura 1955; Vance 2008; Irwin 2012). Irwin et al. (2020) includes compounds with 
elements from any of the Japanese lexical strata: Yamato (native), Sino-Japanese, or foreign. I 
only included compounds whose WB is from the native stratum, as it has been reported that WB 
from either the Sino-Japanese or the foreign stratum can resist Rendaku (Vance 2007; Irwin 
2005; 2011). It has been noted in the literature that Rendaku is only applicable to elements on 
the rightmost branch of the morphological tree (Right Branching Condition; Itô & Mester 1986; 
Otsu 1980). I included compounds where WB is written with exactly one Kanji character in 
order to eliminate the effect of the Right Branching Condition. For example, compounds with /
kanamono/ (金物) ‘hardware’ or /tatemono/ (建物) ‘building’ as the second noun were excluded. 
It is not the perfect metric for determining the monomorphemicity of a word because there are 
simplex words that can be written with two Kanji characters, as Tanaka (2017) points out, but 
it definitely guarantees that WB is monomorphemic and the initial segment of WB belongs to the 
right branch of the compound.
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I also excluded coordinate compounds, as they are known to systematically avoid Rendaku 
application (Okumura 1955). Lastly, I only include compounds whose WB is three moras or 
longer. The process above resulted in an ideal dataset for investigating phonological restrictions 
on Rendaku. The data includes 2,130 items, of which 1,772 underwent Rendaku (83%).

Since compounds with a voiced obstruent in WB are already excised from the main database 
Irwin et al. (2020), I obtained another database: Rosen (2018). This database consists of 645 
Yamato compounds with an initial voiceless obstruent in WB, whose total moraic count does not 
exceed four. Rosen (2018) and the equivalent subset of Irwin et al. (2020), which is restricted 
to 4,519 Yamato noun-noun compounds that fall within the same length limit (<5μ), are highly 
comparable in terms of the Rendaku probabilities under different phonological conditions; (i) 
no voiced obstruent in WB: 78% vs. 75%, (ii) no nasal in WB: 75% vs. 72%, (iii) one nasal in WB: 
85% and 87%, and Rosen (2018) include no compounds with two nasals in WB. Therefore, I use 
the counts and Rendaku probability obtained from Rosen (2018) for the category of compounds 
with one voiced obstruent in WB. With these items included in the extracted Irwin et al. (2020) 
dataset, the overall Rendaku probability shows a slight decrease (79%; 1,772 out of 2,246), as 
none of these 116 added items undergo Rendaku.

The Rendaku probability depends on the type and number of context consonants, as 
summarized in Table 3. First, the most influential factor in Rendaku, the effect of Lyman’s Law, 
was confirmed in the corpus data; the presence of one voiced obstruent in WB can categorically 
block Rendaku. Unlike the strong effect of voiced obstruents, it has been described in the literature 
that the presence of a nasal in WB does not block Rendaku (Rice 2005), as in /kaza/ ‘wind’ + 
/kuruma/ ‘car’ → [kazaguruma] ‘windmill’. This traditional observation was confirmed in the 
corpus data; for the 2,129 compounds that do not contain any voiced obstruents, the presence of 
a single nasal is different from the absence of nasals in Rendaku by only 4.4%. However, two or 
three nasals in WB can heavily dampen Rendaku, as in /touzoku/ ‘thief’ + /kamome/ ‘seagull’ 
→ [touzokukamome] ‘pomarine jaeger (a type of seabird)’ and /hito/ ‘one’ + /tsumami/ ‘knob’ 
→ [hitotsumami] ‘easy victory’. If we regard a nasal consonant as a Rendaku blocker, the effect 
of two blockers goes beyond merely doubling the effect of one; two nasals in WB cumulate in a 
super-additive manner and block the application of Rendaku.3

	 3	 One of the reviewers asked if two liquids and two approximants also can contribute to blocking Rendaku. The current 
dataset does not allow a clear investigation of these effects due to the lack of relevant data but it is likely that those 
effects exist. First, of 51 compounds with two /r/s in WB, only 7 (14%) undergo voicing; but all of these examples 
can be explained away by either having a verb as WB or having a tautomorphemic WB, violating the Right Branching 
Condition. Second, while there were no compounds with two approximants in WB in the current database, the recent 
nonceword study by Kawahara & Kugamai (2021) found a significant super-additive cumulativity of two approxi-
mants in blocking Rendaku. Moving forward, I focus on the nasals in the paper because of the insufficient data and 
leave investigating the effects of other sonorants to future study.
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Database Voiced 
obstruent

Nasal Rendaku 

Irwin et al. 
(2020)

0 .83 1,772/2,129

 0 .85 1,339/1,580

1 .80 418/520

>2 .52 15/29

Rosen (2018) 1 0 0/116

Table 3: Rendaku rate according to the type/number of consonant in WB.

Analyzing the significance of the observed nasal effects, I constructed a logistic regression 
model using the glm function from the lme4 package (Bates et al. 2018) in R (Team et al. 2013). 
The occurrence of Rendaku was the dependent variable (binary: no Rendaku (ref), Rendaku) 
and the number of nasals in WB (backward difference coded: zero, one, two or more) was the 
independent variable. The result is shown in Table 4.

β SE(β) z p

Intercept 1.06 0.13 8.10 <0.001

0 nasal vs. 1 nasal –0.30 0.13 –2.32 <0.05

1 nasal vs. 2 nasals –1.34 0.38 –3.46 <0.001

Table 4: Regression model for the Rendaku database.

In the model, a negative coefficient means that the factor contributes to dampening Rendaku 
and the larger absolute value means that the effect is stronger. As can be seen in Table 4, the 
presence of a single nasal significantly reduces the likelihood of Rendaku application but the 
presence of two nasals exerts an even bigger effect in reducing Rendaku probability. Note that 
the regression model here is based on the extracted database (2,130 items), in which potential 
effects of the known confounding factors, such as Right Branching Condition, are removed. I ran 
another regression model with a larger database, which includes all the 2,130 compounds used 
in the model 4 as well as 312 compounds that had to be excluded due to their polymorphemic 
WB (= 2,442 items in total). The model is reported in Table 5.

β SE(β) z p

Intercept 0.26 0.15 1.69 <0.1

0 nasal vs. 1 nasal –0.32 0.11 –2.79 <0.01

1 nasal vs. 2 nasals –1.23 0.33 –3.75 <0.001

Right Branching Condition 0.82 0.13 6.07 <0.001

Table 5: Regression model with Right Branching Condition as an extra predictor.
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As can be seen, the effect of Right Branching Condition is clearly present, which is compatible 
with the traditional description on Rendaku: Rendaku is more likely with a monomorphemic 
WB. However, this model also reveals that the nasal effects are still significant even if the 
Right Branching Condition is included in the model. Moreover, model comparison using the 
anova() function also showed that the addition of the number of nasals in WA makes significant 
improvements to the fit to the data (χ2(2) = 27.86, p < 0.001). This confirms that the Rendaku-
dampening effect of two nasals in WB is robust in the lexicon of Japanese.

Kumagai (2017a) is the first study that reports the significant Rendaku-blocking effect 
of a sequence of nasals, discovered through a nonce word experiment. A larger nonce word 
experiment was recently carried out by Kawahara & Kugamai (2021), re-examining the Rendaku-
blocking effect of two nasals. The general trend in their result is compatible with the nonceword 
study of Kumagai (2017a) and my corpus data; Rendaku probability was indeed lowered by two 
nasals but not by one. However, the effect of two nasals was not statistically significant in their 
experiment. Hopefully future research will explain why the nasal effect was not significant in the 
experiments of Kawahara and Kugamai.

4.3 Analysis: similarity avoidance and counting cumulativity
In this section, I first introduce constraints that are responsible for the occurrence of Rendaku. 
Then, I give a formal analysis of the patterns described in §4.2. I explain why a single nasal would 
still tolerate the application of Rendaku whereas a single voiced obstruent and multiple nasals 
would significantly lower the Rendaku probability in WB, by making a connection to previously 
established similarity avoidance effects in Japanese; higher similarity between surface segments 
is more strongly avoided. I define OCP constraints that operate on different natural classes, one 
of which is responsible for the super-additive cumulativity of nasals.

Similar to the Korean compound tensification case, it is assumed that the compound juncture 
marker [+voice] is inserted between two nouns when they form a compound. The constraint 
RealizeMorpheme is responsible for the [+voice] feature to be realized (Kurisu 2001), by the 
association to the initial onset consonant of WB, whereas Ident (voice) blocks voicing.

The resistance to Rendaku increases if the Rendaku process results in a co-occurrence of more 
similar segments. Table 6 illustrates how the presence of a single nasal, two nasals, and a voiced 
obstruent in WB differently contribute to the overall similarity between consonants with the 
application of Rendaku. If /tene/ undergoes Rendaku, it results in a co-occurrence of consonants 
that agree in one feature out of two. This degree of similarity (50%) is presumably tolerable since 
Rendaku still applies in this case. However, if /tege/ underwent Rendaku, it would generate two 
overlapping feature pairs, which is a total identity in this case (100%). Likewise, the application 
of Rendaku on /teneme/ would result in 4 overlapping feature pairs out of 6 possible pairs 
(67%; [+voice]×3, [+sonorant]×1). In the last two cases, the degree of similarity would be 
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intolerably high if Rendaku applied and therefore Rendaku does not take place. The number of 
overlapping features is not a perfect way of measuring similarity since some features are more 
perceptually salient than others (Kawahara 2007) but I use this metric for the simplicity of 
analysis since more overlapping features definitely guarantee a higher similarity.

UR  
Rendaku 

/tene/  
[dene] 

/tege/  
*[dege] 

/teneme/ 
*[deneme]

consonant tier d n d g d n m

voice + + + + + + +

sonorant – + – – – + +

Table 6: Feature specification of hypothetical Rendaku-applied WB forms.

The effect of similarity avoidance on Rendaku applicability has been frequently brought up in 
the literature. Kawahara & Sano (2014b) showed through a nonce word experiment that Rendaku 
is both blocked and triggered by an output constraint that bans a co-occurrence of two identical 
CV morae; Rendaku is less likely if it creates a total identity of two consecutive morae over 
the boundary (/iga/+/kaniro/ → [igakaniro], *[igaganiro]) and more likely if it underlyingly 
contains two identical CV morae (/ika/+/kaniro/ → [ikaganiro], *[ikakaniro]). By the same 
token, Kawahara & Sano (2014a) showed that Rendaku is more likely to be blocked if it results in 
two consecutive identical CV morae in WB (WA+/tadanu/ → [WAtadanu], *[WAdadanu]). Thus, 
the application of Rendaku is a way of either resolving or preventing identity at the moraic level. 
Moreover, there is a growing body of experimental studies proving that the similarity avoidance 
effect is gradient and that higher similarity tends to be more strongly avoided. Sano (2013) 
showed that identity at the segmental level (e.g. CiVz.CjVz) is avoided but total identity (CiVz.CiVz) 
is even more strongly avoided in Japanese verbal inflection. Kumagai (2017b) chose subsidiary 
features for a similarity measure and argued that the Rendaku-blocking effect strengthens when 
more features overlap. For example, a nonce compound /nise/ + /haϕɯra/ ([nisebaϕɯra]) 
has a higher chance of Rendaku application, compared to /nise/ + /hamara/ ([nisebamara]), 
because [b… ϕ] shares [+lab] whereas [b…m] also shares [–continuant] on top of [+lab].

In order to capture the different Rendaku-blocking effects of nasals and voiced obstruents, I 
employ OCP constraints that are defined over two sets of segments: voiced consonant and voiced 
obstruent. As stated by the gradient similarity-avoidance effects, the strength of these constraints 
depends on the homogeneity of the natural class the constraint is defined over; voiced obstruents 
([bdzg]) are more homogenous than voiced consonants ([bdgzmnjwr]), and the OCP constraint 
on voiced obstruents is stronger.

First, the OCP constraint that bans a co-occurrence of two voiced consonants is defined in 
(22). In the constraint definition, C ̬is used to represent any consonant that is voiced ([+voice, 
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+consonantal]). This constraint is responsible for blocking Rendaku application with a nasal 
in WB. The weights computed by the MaxEnt Grammar Tool (Hayes et al. 2009) are shown 
in sample tableaux (23)–(24). Throughout the section, tableaux with abstract inputs will be 
presented in order to show the overall trend in the lexicon instead of the behavior of individual 
items. Since this paper only focuses on the effects of WB consonants on Rendaku, the first element 
of the compound is represented as an abstract form WA. The second element is represented by 
three consecutive CV moraic units, or light syllables (e.g., CVCVCV). For the simplicity, syllables 
with a voiced obstruent will be represented by D, syllables with a nasal will be represented by N, 
syllables with neither will be represented by σ.

(22) *+CC̬:̬ Assign a violation mark for every subsequence of a word boundary followed by 
a voiced consonant followed by another voiced consonant.

(23)	 One violation of *+CC̬ ̬allows Rendaku application most of the time

RealMorph *+CC̬̬ Id (voice)  
WA + /σNσ/ 1.7 0.5 0 ℋ p

a. WA + DNσ .80  –1 –1 –0.5 .78

b. WA + σNσ .20 –1   –1.7 .22

(24)	 Multiple violations of *+CC̬ ̬dampen Rendaku application

 RealMorph *+CC̬ ̬ Id (voice)  
WA + /σNN/ 1.7 0.5 0 ℋ p

a. WA + DNN .52  –3 –1 –1.5 .70

b. WA + σNN .48 –1 –1 –2.2 .30

The Rendaku-applied candidate (23)-a violates *+CC̬ ̬ once for containing a subsequence of 
voiced consonants, such as [d…n], and occurs 80% of the time. Considering that the compounds 
with no nasal in the corpus data underwent Rendaku 85% of the time as reported in Table 3, 
*+CC̬ ̬must be low-weighted enough to allow the candidate (23)-a to occur as almost frequently 
as candidates with no violation of *+CC̬.̬ Multiple violations of *+CC̬,̬ however, can be more 
fatal, as shown in (24). Candidate (24)-a violates *+CC̬ ̬three times for having three distinctive 
pairs of segments that are [+voice, +consonantal]: such as [d…n1], [d…n2], and [n1…n2]. 
Compared to candidate (23)-a occurring 80% of the time, candidate (24)-a occurs only 52% of 
the time because three violations of *+CC̬ ̬is more severe than simply tripling the severity of one 
violation, indicating that *+CC̬ ̬is cumulative in a super-additive way.
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The weighting condition between *CC̬ ̬ and RealizeMorpheme to capture the observed 
counting cumulativity is summarized in (25). The weights in the tableaux, computed by the 
MaxEnt Grammar Tool (Hayes et al. 2009), do not satisfy this weighting condition; the current 
weighted grammar inaccurately predicts that the Rendaku-applied candidate (24)-a occurs 70% 
of the time.

(25) Counting cumulativity of *+CC̬̬
w(*+CC̬)̬×n > w(RealizeMorpheme) > w(*+CC̬)̬, (n ≥ 3)

The categorical Rendaku-blocking effect of a voiced obstruent is captured by the constraint 
defined in (26). In the definition, D is used to represent any segment that is [+voice, –sonorant]. 
Thus, this constraint will penalize co-occurrences of [bdzg]…[bdzg] in WB. A sample evaluation 
is provided in (27).

(26) *+DD: Assign a violation mark to every subsequence of a word boundary followed by a 
voiced obstruent followed by another voiced obstruent.

(27)	 No Rendaku applied when WB has one voiced obstruent

 *+DD RealMorph Id (voice)  
WA + /σDσ/ 14.2 1.7 0 ℋ p

a. WA + DDσ 0  –1  –1 –14.2 0

b. WA + σDσ 1  –1  –1.7 1

Unlike the Korean case where the OCP constraint needed to be sensitive to whether the 
offending structure is derived, Japanese does not require *+CC̬ ̬ to be separated into *+CC̬N̬ 
and *+CC̬O̬ because the constraint *+CC̬ ̬ is consistently inert in both dynamic alternations 
and static phonotactic restrictions of Japanese; as we just observed, a single nasal in WB does 
not inhibit Rendaku, which implies that *+CC̬ ̬ is not powerful enough to work against the 
morphophonological alternation. Moreover, it is violated fairly frequently in existing words, as 
there are stems where two nasals freely co-occur (/mono/ ‘object’).

4.4 Learning super-additive counting cumulativity
In this section, I present the result of a learning simulation on the Japanese data to show that 
incorporating the power function into violation assessment enables the grammar to accurately 
match the frequencies of the data with super-additive counting cumulativity. I also show that 
the Power Function MaxEnt Learner is able to detect the super-additive constraint and raise the 
b value only for that constraint, while letting b remain as 1 for the others.
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As mentioned above, I adopt RealizeMorpheme (Kurisu 2001) and Ident (voice) as the 
constraints that are responsible for the application of Rendaku. Different Rendaku-blocking 
effects of nasals and voiced obstruents in WB are captured by a set of OCP constraints: *CC̬ ̬and 
*DD.

The Japanese database was fitted using the Power Function MaxEnt Learner. Weights 
and exponents of the constraints were initialized and updated the same way as in the Korean 
simulation. The learner converged after 13,280 iterations. The resulting set of weights and 
exponents, as well as the fit of the grammar to the data are reported in (28). As mentioned 
above, tableau (28) is only showing the phonological contexts of WB. To reiterate, D represents 
a light syllable with a voiced obstruent, N represents a light syllable with a nasal consonant, and 
σ represents a light syllable with neither in the input and output forms. Similarly to the Korean 
case study, other phonological factors, such as the position of Rendaku blocking segments, 
were disregarded here. Thus, for example, input (28)-b represents the cases where a trimoraic/
trisyllabic WB underlyingly has a single nasal consonant.

(28)	 Output of the Power Function MaxEnt Learner: good fit

 *+DD RM *+CC̬̬ Id(v)
w 8.5 1.8 0.3 0.1

 b 1 1 1.6 1 ℋ p

a.+/σσσ/
+Dσσ .85 –1 –0.1 .85

+σσσ .15  –1   –1.8 .15

b.+/σNσ/
+DNσ .80  –11.6 –1 –0.4 .80

+σnσ .20  –1   –1.8 .20

c.+/σNN/
+DNN .52  –31.6 –1 –2.0 .52

+σNN .48  –1 –11.6  –2.1 .48

d.+/σDσ/ 
+DDσ 0 –1 –11.6 –1 –8.9 0

+σDσ 1  –1  –1.8 1

The Power Function MaxEnt Learner successfully detected the super-additive constraint, *+CC̬,̬ 
and raised the exponent for that constraint only. The adjusted exponents and the weighted 
constraints correctly capture the crucial aspects of the observed Rendaku patterns. First, the 
nearly inviolable restriction of Lyman’s Law is reflected by the high weight of *+DD. Second, 
RealizeMorpheme (w = 1.8) outweighs a single violation of *+CC̬ ̬(w = 0.3), which reflects 
the observation that a single nasal does not severely reduce Rendaku application. In turn, three 
violations of *+CC̬ ̬(w = 0.3*31.6 ≈ 2), which are incurred by a WB with two nasals undergoing 
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Rendaku, outweigh RealizeMorpheme, correctly capturing the stronger Rendaku-dampening 
effects of multiple nasals. With these parameters, the grammar successfully reproduced the 
observed frequency distributions.

4.5 Summary
In this section, the effects of nasals on blocking Rendaku were examined. The presence of one 
voiced obstruent in the second element significantly blocks voicing due to Lyman’s Law (Lyman 
1894), which states that stems must not contain more than one voiced obstruent. Nasals show a 
super-additive counting cumulativity in blocking the voicing process; whereas one nasal in the 
second noun only slightly lowers the likelihood of Rendaku, two nasals cumulate in a super-
additive manner and significantly dampen Rendaku application. The observed patterns were 
attributed to a gradient similarity-avoidance effect in Japanese, which is formally analyzed by a 
set of OCP constraints that operate on different natural classes with varying degrees of counting 
cumulativity. I presented a learning simulation on the quantitative data and showed that the 
Power Function MaxEnt Learner successfully detected the super-additive constraint and matched 
the input distributions.

5 Conclusions
This paper investigated a type of cumulativity observable in natural languages, called super-
additive counting cumulativity, where multiple violations of a weaker constraint go beyond a mere 
multiplication of its own severity. I demonstrated through a toy example that the super-additivity 
in counting cumulativity cannot be entirely captured by the traditional MaxEnt grammar where 
violations are assessed linearly. Instead, a slight modification was made to the conventional 
violation assessment method to accommodate this specific case; a power function f(a) = ab was 
applied to the number of violations in order to scale up the penalty (b > 1). The advantage of 
the power function model is best recognized when compared to the alternative, a constraint 
family model; whereas a constraint family employs a set of self-conjoined constraints that can 
be all independently and arbitrarily weighted, the power function model internalizes counting 
cumulativity by relying on the nature of the mathematical concept, in which the weights are 
guaranteed to increase strictly and monotonically with a larger number of violations.

I reported two natural language examples that show super-additive counting cumulativity. 
In a compounding process of Korean and Japanese, the initial onset of the second element 
undergoes an alternation. The presence of marked consonants inhibits the likelihood of this 
alternation, motivated by OCP constraints, in a super-additive manner; the presence of one only 
has negligible effects whereas the presence of two significantly dampens the alternation process. 
The negligible effect of one violation was analyzed in Korean as the morpheme-internal restriction 
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being weakened over a morpheme boundary (e.g., w (*+TT) > w (*T+T)), and in Japanese as a 
weaker co-occurrence restriction on a natural class that is less homogeneous (e.g., w (*+DD) > 
w (*+CC̬)̬). In the analysis, I associated these weaker constraints with super-additivity, which is 
why multiple violations of these can block the process.

This paper also has provided an implementation of the modified MaxEnt model which learns 
exponents and weights of the constraints. Learning simulations on the quantitative data obtained 
from a survey and a corpus show that the implemented MaxEnt learner successfully detected 
super-additive constraints and raised the exponents only for those constraints. With the adjusted 
parameters, the MaxEnt model was able to reproduce the probabilistic candidate distributions.
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