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A large array of nominal measurement structures can give rise to proportional readings, i.e., readings 
which specify the proportional relation of two measurements. Two key questions in the analysis 
of such readings is (a) whether nominal measurement structures are (or can be) in some sense 
inherently proportional or whether proportionality comes to be part of the meaning of nominal 
measurement via some external factor, like the manipulation of a contextual standard, the choice 
of a proportional measure function, or the presence of a relative modifier, and (b) to what extent 
it is possible to attribute proportionality to a single source across different nominal measurement 
structures. This paper addresses these questions by investigating the proportional readings of three 
nominal measurement structures in Greek (comparatives, juxtaposed measurement structures, 
and partitive measurement structures) as they arise in the presence of precise proportions 
specified by percentages like n tis ekato ‘n percent’. We argue that even in the presence of such  
relative modifiers, it is necessary to assume a second source of proportionality. We provide  
novel evidence for the necessity of proportional measure functions for both comparatives and 
juxtaposed measurement structures. Partitives are the only case at hand that seems to necessitate 
inherent proportionality. Moreover, a unified analysis of precise proportions is shown to be possible 
as long as we move away from a standard analysis of differential comparatives.
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1 Introduction
This paper investigates the distribution of proportional readings in nominal measurement structures 
in Greek. Proportional readings specify the proportional relation of two measurements. In the 
cases we are mostly interested in in this paper the relation is expressly specified by a percentage, 
i.e. a phrase of the form n percent in English or n tis ekato ‘n percent’ in Greek (where n a number). 
The first structure under investigation is the case of comparatives where percentages appear as 
differential measure phrases, as in (1). We will show that (1) is three-way ambiguous. Next to 
a reading in which the percentage specifies the proportional relation of two cardinalities, it also 
supports two additional readings in which the underlying measures are themselves proportional.

(1) Exthes proslavame peninta tis ekato perisoterus fitites
yesterday hired.1pl fifty the.dat hundred.dat more.pl.acc student.pl.acc
apo oti simera.
from rel today
‘We hired fifty percent more students yesterday than we did today.’

Next, we will move to juxtaposed nominal measurement structures, as in (2), and partitive 
measurement structures, as in (3). The structures in (2) and (3) differ on the types of 
proportional readings they exhibit, a difference that is morpho-syntactically conditioned. As 
described first for the German equivalents of (2) and (3) in Ahn & Sauerland (2015; 2017), 
whereas the juxtaposed structure in (2) supports a reverse proportional reading according to 
which the percentage specifies the proportional relation of the number of students we hired to 
the total number of people we hired, the partitive structure in (3) only gives rise to a forward 
proportional readings which specifies the proportional relation between the number of students 
we hired to the total number of students.

(2) Exthes proslavame peninta tis ekato fitites.
yesterday hired.1pl fifty the. dat hundred.dat students.acc
‘Thirty percent of the people we hired yesterday were students.’

(3) Exthes proslavame (to) peninta tis ekato ton fititon /
yesterday hired.1pl the fifty the. dat hundred.dat the.gen students.gen
apo tus fitites.
from the students.acc
‘We hired thirty percent of the students yesterday.’

This paper asks the question to what extent it is possible to unify the analyses of not only the data 
in (1)–(3), but also with structures that do not contain proportional modifiers like percentages. 
The crucial ingredient of the analyses we consider pertains to the locus of proportionality in the 
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grammar of nominal measurement structures. An obvious candidate for the locus of proportionality 
in (1)–(3) is the percentage itself. Indeed, Ahn & Sauerland (2015; 2017) and, more recently, 
Pasternak and Sauerland (2022) propose analyses of juxtaposed and partitive structures in which 
proportionality only comes into play via the meaning of the proportional modifier. Based on 
recent work in Solt (2018), Bale & Schwarz (2020), and Bale (2022), we argue that the best 
candidate for a unified analysis of proportionality in nominal measurement is a proportional 
μ-based analysis, i.e. an analysis that (also) locates proportionality in the specification of the 
underlying measures. We argue that differential comparatives like (1) provide novel evidence 
for the necessity of such an analysis and extend this type of analysis to juxtaposed and partitive 
structures. The need for such a reanalysis of juxtaposed and partitive structures does not only 
stem from a desire for analytical parsimony, however. Next to other considerations, we show 
that the availability of reverse proportional readings correlates with the availability of some of 
the readings of the corresponding differential comparatives, a correlation that follows naturally 
if proportionality in the two structures has the same origin (i.e. is located in the measures 
themselves) and the typology of proportional measure functions is taken into consideration. We 
notice, however, that our first attempt at such an analysis leads to an over-generation problem. 
We argue that the cause of this problem does not lie with the proportional μ-based analysis, 
but rather with the entry for percentages we have been assuming to this point. We propose a 
modification of the analysis of differential comparatives that solves the overgeneration problem, 
captures the observed correlation between readings, and allows us to assume a single entry for 
proportional modifiers in all cases.

The paper is organized as follows. Section 2 presents an overview of existing literature on 
proportionality in the nominal domain. Section 3 presents the different readings of percentages 
in differential comparatives and proposes an analysis based on proportional measure functions. 
Section 4 presents Greek juxtaposed measurement structures and proposes an analysis in terms 
of proportional measure functions. Section 5 does the same for partitive measurement structures. 
Section 6 concludes.

2 Proportionality in the nominal domain
This section presents a short excursion of the literature on proportionality in nominal measurement 
structures. We do not aim to provide an exhaustive overview of all relevant data and the analyses 
that have been proposed. Rather, we focus on the data that are more directly linked to the 
cases that are the main interest of the paper. In doing so, we present (a) the available analytical 
options as it pertains to the locus of proportionality in the grammar of nominal measurement, 
(b) the basic ingredients that any analysis must include, and (c) the existing alternatives that we 
pitch our own analysis against.
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2.1 Forward and reverse proportionality
Proportional readings in the nominal domain have mainly been discussed in the literature on 
the basis of examples with many and few. It is known since at least Westerståhl (1985a) that 
next to a cardinal reading, as in, e.g., (4a) (Partee 1989), which requires that the cardinality of 
the faculty children who attended the party is below a contextually determined standard, few 
(and many) can give rise to a proportional reading, as in, e.g., (4b) (Partee 1989), according 
to which the ratio of the cardinality of egg-laying mammals who suckle their young to the 
cardinality of all egg-laying mammals is below a contextually determined standard. Next to this 
forward proportional reading, however, proportional uses are also known to give rise to a reverse 
proportional reading (Westerståhl 1985b), as in, e.g., (4c) (Herburger 1997) according to which 
the proportion of the cardinality of cooks who applied to the cardinality of all applicants lies 
below a contextual standard.

(4) a. There were few faculty children at the 1980 picnic. cardinal
b. Few egg-laying mammals suckle their young. forward proportional
c. Few cooks applied. reverse proportional

The simplest way to capture the various uses of few/many is to assume a three-way lexical 
ambiguity, as in (5) and (6), where n is a contextually determined cardinality and p a contextually 
determined proportion. The difference between forward and reverse proportional readings, then, 
depends on whether it is the restrictor or the scope of few/many that appears in the denominator 
of the fraction.

(5) a. ⟦ fewCARD ⟧ = λRet λSet. |R∩S| < n
b. ⟦ fewF_PROP ⟧ = λRet λSet. |R∩S|⁄|R|< p
c. ⟦ fewR_PROP ⟧ = λRet λSet. |R∩S|⁄|S|< p

(6) a. ⟦ manyCARD ⟧ = λRet λSet. |R∩S| > n
b. ⟦ manyF_PROP ⟧ = λRet λSet. |R∩S|⁄|R|> p
c. ⟦ manyR_PROP ⟧ = λRet λSet. |R∩S|⁄|S|> p

Many attempts have been made to reduce the number of entries and avoid lexical ambiguity 
as much as possible. Such analyses have particularly focused on deriving reverse proportional 
readings on the basis of manyCARD/fewCARD or manyF_PROP/fewF_PROP, since the entries in (5c) and 
(6c) seems to be counterexamples to the Conservativity Hypothesis of Keenan & Stavi (1986). 
One strategy that has been used to that effect is to drop the assumption that the locus of 
proportionality is the quantifier itself and assume that (reverse) proportionality is the result 
of manipulating the contextual standard. As pointed out by Westerståhl (1985b) (cf. Bale & 
Schwarz 2020) proportional readings can then be derived on the basis of the cardinal entries in 
(5a)/(6a) as shown in (7) and (8).
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(7) a. ⟦ few ⟧ = λRet λSet. |R∩S|< n where n ≔ p × |R|
b. ⟦ few ⟧ = λRet λSet. |R∩S|< n where n ≔ p × |S|

(8) a. ⟦ many ⟧ = λRet λSet. |R∩S|> n where n ≔ p × |R|
b. ⟦ many ⟧ = λRet λSet. |R∩S|> n where n ≔ p × |S|

Another possibility has recently been proposed in Bale & Schwarz (2020), one that places 
proportionality in the meaning of measure functions. In degree semantics, the job of relating 
individuals to their measurement in some dimension is done by measure functions (Cresswell 
1976; von Stechow 1984; a.o.), which map entities in the domain of individuals to degrees in some 
dimension of measurement DIM. The entries for few/many can be rewritten as in (9), where the 
measure function μ measures the supremum of the intersection of the two sets in some dimension 
of measurement. Crucially, the value of the measure function is not constant, but is rather 
determined by context. In the case of cardinal readings, the function measures cardinality, i.e. it 
counts the number of atoms in a given set by counting the atomic parts of the supremum of the set.

(9) a. ⟦ few ⟧c = λd λRet λSet. μc(⊔ (R∩S) ≤ d
b. ⟦ many ⟧c = λd λRet λSet. μc(⊔ (R∩S) ≥ d

(10) μ = λx. |x|

To derive proportional readings, proportionality is built in the measure function itself (cf. 
Solt 2018). Degrees in the scope of a proportional measure function represent the ratio of two 
measurements, as in (11) (Bale 2022, based on Bale & Schwarz 2020).1,2 The measured individual 
in the numerator is always the argument of the measure function.

(11) Given a non-proportional measure μ that maps a domain E into the dimension DIM, and 
given a contextually determined degree d* that is a member of DIM, there is an associated 
proportional measure *

% ( * 0)d dm >  such that for any ( )*
% *, ( ) xd

dx E x mmÎ = .

Forward and reverse readings differ on what is measured in the denominator. The forward 
proportional reading of (4b) is derived by setting the degree d*to the cardinality of the sum of 

 1 As shown in Bale & Schwarz (2020), proportional measure functions satisfy known constraints on contextually 
resolved measure functions, like the Monotonicity constraint (Schwarzschild 2006).

 2 Like all the measure functions discussed in this paper, proportional measure functions are what in Measurement 
Theory are called ratio functions (or scales). As such, they have a non-arbitrary zero value in their range (even if no 
individual in their domain is mapped to zero) and operations like multiplication, division, addition, and subtraction 
are all meaningful. See Sassoon (2010), Lassiter (2017) for detailed discussion. To confirm that statements about the 
ratios of proportions are felicitous consider, for example, the examples in (i) under their proportional interpretations.

(i) a. Twice as many cooks applied this year as last year.
b. Two times more cooks applied this year than last year.
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egg-laying mammals, as in (12a), and the reverse proportional reading of (4c) by setting the 
degree d*to the cardinality of the sum of applicants, as in (12b).3

(12) a. μ = λx. |x|⁄|⊔ EGG-LAYING.MAMMALS|
b. μ = λx. |x|⁄|⊔ APPLICANTS|

As Bale & Schwarz’s (2020) show the account can be straightforwardly extended to proportional 
readings of other measurement constructions, as in, e.g., proportional readings in comparatives. 
For example, (13) has a proportional reading according to which what is compared are two 
proportions; the proportion of the number of cooks that applied to our program to the total 
number of applicants in our program and the proportion of the number of cooks that applied to 
your program to the total number of applicants in your program.4

(13) More cooks applied to our program than to yours.

Since the comparative obviously does not have a standard-related interpretation, an analysis 
along the lines of (7)/(8) is unavailable. Whereas (13) can be analyzed using both a lexical 
analysis along the lines of (5)/(6), or an analysis based on proportional measure functions, Bale 
& Schwarz (2020) use examples like (14) in order to exclude a lexical analysis. Next to a cardinal 
reading, (14), also supports a reading in which what is compared is the density of road signs in 
the two routes. If so, (14) can be true even if the number of road signs on Rte 101 is less than the 
number of road signs on Rte 104.

(14) There are more road signs on Rte 101 than on Rte 104.

Bale & Schwarz (2020) propose to capture this reading by means of the proportional measure 
functions in (15), where the value in the denominators represent the number of miles that constitute 
the length of the two routes. The crucial point here is that the degrees in the denominators in 
(15) are not retrievable from the sentence in (14), excluding a lexical analysis. An analysis in 
terms of proportional measure functions is thus shown to be independently necessary and can be 
extended to (13), assuming that the relevant proportional measures are as in (16).

(15) a. μ1 = λx. |x|⁄|MILES.OF.RTE.101|
b. μ2 = λx. |x|⁄|MILES.OF.RTE.104|

(16) a. μ1 = λx. |x|⁄|APPLICANTS.TO.OUR.PROGRAM|
b. μ2 = λx. |x|⁄|APPLICANTS.TO.YOUR.PROGRAM|

 3 Here and throughout, we use small capitals to abbreviate predicates of individuals.
 4 Similar examples can be constructed with fewer. For reasons of space, we only discuss more in what follows.
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As discussed initially in Solt (2018), an analysis in terms of proportional measure functions can 
also be extended to capture known differences between the proportional readings generated by 
different nominal measurement structures. As known since at least Partee (1989), the presence of 
partitive of affects the available readings. Consider, for example, the examples in (17), which, as 
Bale & Schwarz (2020) and Bale (2022) show, lack the proportional reading available in (13) and 
(14). As discussed above, e.g., (13) can give rise to a proportional reading which measures the 
proportion of cooks that applied to the total number of applicants. With the addition of partitive 
of in (17a), however, this reading disappears. The only available reading is what we will call a 
partitive proportional reading, which measures the proportion of cooks that applied to the sum 
of some plurality of cooks. Similarly, in (17b), the comparative can only be taken to compare the 
number of the road signs on the two routes, not their density.

(17) a. More of the cooks applied to our program than to yours.
b. More of the road signs appear on Rte 101 than on Rte 104.

One might think that to derive the available readings of (17), it is enough that partitive of 
introduces an underspecified measure function and requires that the measured entity is a sub-
aggregate of the denotation of its nominal complement, as in (18). This entry is, indeed, capable 
of deriving readings with simple non-proportional measures, like cardinality. The problem, 
however, is that non-partitive proportional readings can sneak in if the measure function in (18) 
is resolved to proportional measure functions like the ones in (15) and (16).

(18) ⟦ of ⟧ = λx λd λy. y ≤ x & μc (y) ≥ d

To solve this issue, Bale (2022), building on Solt (2018), proposes that a key ingredient in deriving 
the distribution of readings is to assume that partitivity is encoded in the measure function itself. 
This is achieved by restricting partitive measurement to domain-restricted measure functions, 
defined in (19) (Bale 2022: (12), based on Solt 2018). This ensures that the measure functions 
in partitives will have a maximum degree in their range, which is equal to the measure of the 
nominal complement in the relevant dimension.

(19) For all entities x and y, all measure functions μ, and all dimensions DIM, μDIM;x is defined if 
and only if y ≤ x. When defined, μDIM;x(y) = μDIM(y) (i.e., the same value as the unrestricted 
version of the measure function).

The key step in eliminating the effects of proportional measure functions is to furthermore 
assume that partitive of also encodes a type of proportionality, as in (20) (Bale 2022: (14)). 
Partitives encode the proportion of the degree of the measured individual to the maximum or 
minimum degree in the range of the relevant measure function. LIMITa is function from measure 
functions to degrees that can be set to either LIMITt, in which case it returns the greatest degree 



8

in the range of measure function, or to LIMITb, in which case it returns the least degree in the 
range of the measure function.

(20) ⟦ ⟧ = λx λd λy.       (  
      (       

  

As Bale (2022) shows this entry nullifies the effects of proportional measure functions. It would 
take us to far to show this for every possible combination of measure function and LIMIT function. 
To illustrate, consider the main clause in example (17a), assuming that μ is resolved to the 
function in (16a) and the LIMIT function is set to LIMITt.5 If so, the degree predicate denoted 
by the main clause of the comparative in (17a) is the one in (21), where z the applicants to our 
program.

(21) λd         . T .  UR.  R GR        (  
      (       

  

The measure in the denominator is only defined if the cooks who applied to our program are a 
sub-aggregate of the applicants, which is true. By the definition of domain-restricted functions, 
this measure is equivalent to the non-restricted measure μDIM(y). Given the choice of proportional 
measure, this measure equals #

#

(y)
(z)

m

m
. Moving to the denominator, LIMITt returns the maximum 

degree in the range of μDIM;z. Since we are dealing with a restricted function, this is equal to 
μDIM;z(z), which, in turn, given the choice of proportional measure function, is equal to #

#

(z)
(z)

m

m
. (21) 

can thus be rewritten as in (22).

(22) λd         . T .  UR.  R GR  
  (  

  (  ⁄
  (  

  (  ⁄
  

By factoring out the denominator values, (22) is equivalent to (23), which is nothing more than a 
regular partitive proportional meaning based on a non-proportional measure. Bale (2022) shows 
how this result generalizes to all proportional measure functions.

(23) λd         . T .  UR.  R GR    (  
  (  

  

What we have seen so far is that there exist, in principle, at least three possible analytical 
options when it comes to the grammar of proportionality and its interaction with the grammar of 
measurement. One possibility is to locate proportionality in the meaning of a certain functional 
element, the same one that also introduces measurement. We will refer to this as a lexical analysis. 
A second option, available for at least examples with standard-related interpretations, is to 

 5 LIMITt is the only available option in these cases, since LIMITb would return zero and lead to undefinedness. We 
deviate from Bale (2022) on this point. See section 5.2. for discussion.
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introduce proportionality by manipulating a contextual standard in a certain way. We will refer 
to this as a standard-based analysis. The third option, the one argued in Bale & Schwarz (2020) 
to be able to be extended in all cases discussed here, is to link proportionality not simply with 
the functional element introducing measures, but with the measures themselves; whereas the 
meaning of the measure-introducing functional element remains constant, proportional readings 
are available because the measures themselves can be proportional. We will refer to this as a 
proportional μ-based analysis.

2.2 Proportionality with percentages
More recently proportional readings have also been discussed on the basis of nominal 
measurement structures with relative modifiers. Ahn & Sauerland (2015, 2017) identify another 
case of a reverse proportional reading in cases with explicitly relative/proportional modifiers 
like percentages. The German example in (24) receives a reverse proportional reading according 
to which the proportion of students who work here to the total number of workers equals thirty 
percent. The availability of the reading is morpho-syntactically conditioned. Whereas reverse 
proportionality is available with the juxtaposed nominal structure in (24), it is not available 
with the proper partitive in (25). The example in (25) can only give rise to a forward/partitive 
proportional reading.

(24) Dreißig Prozent Studierende arbeiten hier.
thirty percent students.nom work here
‘Thirty percent of the workers here are students.’

(25) Dreißig Prozent der Studierenden arbeiten hier.
thirty percent the.gen students.gen work here
‘Thirty percent of the students work here.’

Ahn & Sauerland provide an account of these cases that places proportionality solely in the meaning 
of the relative modifier, as in (26). The difference between (24) and (25) is driven by the different 
syntax of the relevant measurement constructions and independent properties of the relevant 
measurement constructions. In the most recent and more thorough investigation of these data, 
Pasternak & Sauerland (2022), treat the relative modifier n percent as a degree quantifier, as in (27). 
Whereas MAX⁡(D) returns the maximal degree for which the degree predicate is true, MAX⁡(dom(D)) 
returns the maximal degree for which the predicate returns a defined value (true or false).6

 6 This captures the familiar constraint from the adjectival domain (see Kennedy & McNally 2005 and references 
therein) that percentages and other relative modifiers are only felicitous with closed scale adjectives, as shown in (i).

(i) a. The glass is 75% full.
b. #John is 75% tall.
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(26) ⟦ ⟧ λ λ  (      
 (    

   

(27) ⟦ ⟧ λ     (  
    (   (    

 
   

Importantly for current purposes, the modifier is the only place where proportionality comes into 
place in these analyses. We will refer to this type of analysis as a modifier-based analysis. Let us briefly 
present the modifier-based analysis of Pasternak & Sauerland (2022). We start with what Pasternak 
& Sauerland (2022) calls the juxtaposed structure in (24), for which they assume the syntactic 
structure in (28). As in much relevant literature (starting with Schwarzschild 2006), a functional 
element, here DEG, is taken to be responsible for combining bare nominals with degree heads, by 
introducing an underspecified measure function. The determiner that heads the DP is interpreted as 
an existential quantifier. The assumption throughout is that μc is resolved to the cardinality function.

(28)

(29) ⟦ DEG ⟧c = λPet λd λx. P(x) & μc(x) ≥ d

(30) ⟦ NP2 ⟧c = λd λx. STUDENTS(x) & μc(x) ≥ d

(31) ⟦ ⟧ λ     (  
    (   (    

  
   

(32) ⟦ ∃ ⟧c = λPet λQet. ∃x [P(x) & Q(x)]

To resolve the type-mismatch between the meanings of NP1 and NP2, NP1 undergoes Quantifier 
Raising, as in (33). The percentage now composes with the degree predicate in (34). But this 
raises a different problem, since MAX⁡(dom(D)) is not defined for this predicate, since there is no 
maximal degree of cardinality.

(33)
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(34) ⟦ vP2 ⟧c = λd ∃x. STUDENTS.WHO.WORK.HERE(x) & μc(x) ≥ d

This is where focus comes in. Assuming that NP1 is focused, simultaneously achieves two 
things: (a) MAX⁡(dom(D)) is now defined due to the presuppositions introduced by focus, and (b) 
MAX⁡(dom(D)) returns exactly the right degree required to get a reverse proportional reading; 
i.e. the cardinality of the individuals who work here. While focus on NP1 retains the same 
ordinary interpretation in (34), it generates the focus semantic value in (36), where P ranges 
over predicates of individuals. Focus is also taken to introduce the presupposition that at least 
one of the focus alternatives is true. This presupposition is introduced by the head FPRE, which 
presupposes the truth of the grand disjunction of the focus value of the propositional constituent 
it attaches to, as in (37) (Pasternak & Sauerland 2022: (85), based on Abusch 2010). Assuming 
that among the alternatives to StudierendeF is a very weak predicate which is vacuously true (like 
human or animate), the presupposition of the degree predicate vP3 is as in (38) (introduced as a 
definedness condition). This presupposition renders MAX⁡(dom(D)) defined, since the maximal 
degree for which the degree predicate is defined will be the cardinality of the individuals who 
work here. Feeding this predicate to the percentage will generate the required reading, since it 
will equate the ratio of the cardinality of students who work here to the cardinality of people 
who work here to thirty percent.

(35)

(36) ⟦ vP3 ⟧F = { λd ∃x. P(x) & WORK.HERE(x) & μc(x) ≥ d }

(37) ⟦ FPRE X ⟧ is defined only if ⋁⟦ X ⟧F is true.
Where defined, ⟦ FPRE X ⟧ = ⟦ X ⟧.

(38) ⟦ vP2 ⟧c = λd: ∃x. INDIVIDUAL(x) & WORK.HERE(x) & μc(x) ≥
d. ∃x. STUDENTS(x) & WORK.HERE(x) & μc(x) ≥ d

Notice that in this analysis focus is necessary to generate the right reading. Pasternak & Sauerland 
(2022) claim that this is an empirically desirable result. Not only is focus on NP1 claimed to be 
necessary to generate the reverse proportional reading in German, but different focus structures 
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are claimed to have truth-conditional effects. So, whereas the sentence in (39), with broad focus 
on NP has the same reading as (24) (with the addition of the contribution of westfälische in the 
ordinary meaning), narrow focus on the adjective, as in (40), affects the value of the denominator.

(39) Dreißig Prozent [westfälische Studierende]F arbeiten hier.
thirty percent westphalian.nom students.nom work here
‘Thirty percent of the workers here are Westphalian students.’

(40) Dreißig Prozent [westfälische]F Studierende arbeiten hier.
thirty percent westphalian.nom students.nom work here
‘Thirty percent of the students who work here are Westphalian.’

We move next, briefly, to what Pasternak and Sauerland call the genitive structure in (25), which 
is assigned the syntactic structure in (41). The structure is essentially treated as a partitive, 
with the quirk that Pasternak & Sauerland prefer having the relevant partitive functional head 
shift the interpretation of Prozent from a quantifier over degrees to something that measures 
individuals. The key component of the meaning of MEAS for current purposes is that it requires 
(a) the measured individual to be a sub-aggregate of the denotation of the nominal complement 
of Prozent MEAS and (b) the relevant measure function to be domain-restricted.7 This will ensure 
that MAX⁡(dom(D)) is the cardinality of the plurality of the students as required (assuming again 
that μ is resolved to the cardinality function).

(41)

(42) ⟦ MEAS ⟧c = λMdt,t λx λn λy. y ≤ x & M(n)( [ ]c
x ym )

where μx[y] = λd: μ(x) ≥ d. μ(y) ≥ d

(43) ⟦ Prozent MEAS ⟧c = λx λn λy. y ≤ x & MAX( [ ]c
x ym )⁄MAX(dom( [ ]c

x ym )) ≥ n⁄100
= λx λn λy. y ≤ x & μc(y)⁄μc(x) ≥ n⁄100

As we have just seen a key component of existing analyses is to explain differences in the distribution 
of available proportional readings to the properties of different nominal structures. Particularly, 
partitives are taken to restrict the range of available proportional readings by imposing some 

 7 Pasternak & Sauerland (2022) does not discuss MEAS in relation to Solt’s domain-restricted measure functions. They 
achieve the same result in a slightly different way, but the desired effect is essentially the same.
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additional restrictions. At the same time, however, seemingly very similar readings (the reverse 
proportional reading of many, the proportional reading of comparatives like (13) and the reverse 
proportional reading of juxtaposed structures with percentages) have been analyzed in very 
different ways, at least regarding the key question of the locus of proportionality in nominal 
measurement. The rest of this paper discusses to what extent these facts can be given a unified 
explanation by exploring how prima facie proportional modifiers like percentages interact with 
other potential sources of proportionality. Notice that a proportional analysis of percentages can, 
in principle, be combined with any one of the other analyses we have seen so far, multiplying 
the available analytical options. In this paper we will focus on two empirical domains. First, we 
look at a case, which, as far we know, has not been investigated before, the use of percentages 
in differential comparatives. Next, we move to the Greek equivalents of the German facts in 
(24) and (25). Since the structures we are primarily interested in are not sensitive to contextual 
standards, standards-based analyses will not be discussed any further. Lexical analyses will also 
not feature prominently in what follows, since Bale & Schwarz (2020) have already shown that 
they cannot capture the full range of available proportional readings, as discussed above. Our 
attention, thus, will focus on how the proportional measure functions of proportional μ-based 
analyses interact with proportional modifiers like percentages.

For the remainder of this paper, we change the language of investigation from English 
and German to Greek. By focusing on the Greek facts, we are not only expanding the relevant 
empirical landscape, but we also motivate a revision of the analysis in Pasternak & Sauerland 
(2022), particularly in the syntactic structures assumed for juxtaposed and partitive structures 
and the reliance to focus to generate reverse proportional readings. Before we move to this point, 
we will first consider the case of comparatives in some more detail. We argue that to account 
for the full range of available readings of percentages acting as differential measure phrases, a 
proportional μ-based analysis is necessary, even in the presence of a proportional modifier.

3 Percentages in differential comparatives
This section provides an analysis of percentages in comparatives, as in (44). Comparatives with 
percentages as differential measure phrases are three-way ambiguous, as they can be true in all 
the contexts in (44a–c). We will call the reading that makes (44) true in Context A, a relative 
cardinal reading, the reading that makes (44) true in Context B, a relative proportional reading, and 
the reading that makes (44) true in Context C, an absolute proportional reading.

(44) Exthes proslavame peninta tis ekato perisoterus fitites
yesterday hired.1pl fifty the. dat hundred.dat more.pl.acc student.pl.acc
apo oti simera.
from rel today
‘We hired fifty percent more students yesterday than we did today.’
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a. Context A: We hired 75 students yesterday and 50 students today.
b. Context B: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 

students out of 200 hirees today (i.e. 50%).
c. Context C: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 

students out of 400 hirees today (i.e. 25%).

We argue that all three readings necessitate a revision of the entry for n percent in (27) and that 
relative and absolute proportional readings require a proportional μ-based analysis. To account 
for the distribution of absolute proportional readings, we make use of a crucial distinction 
between proportional measure functions, domain-restricted proportional measure functions, as 
in Solt (2018), and non-restricted proportional measure functions. We first discuss differential 
comparatives with absolute differential measure phrases to present our basic assumptions about 
the interpretation of differential comparatives, and then move to discuss each of the readings of 
(44) in turn.

3.1 Differential comparatives
Consider first a regular differential comparative as in (45).8 (45) is true in a context in which we 
hired 10 students yesterday and 7 today.

(45) Exthes proslavame tris perisoterus fitites apo oti simera.
yesterday hired.1pl three more.pl.acc student.pl.acc from rel today
‘We hired three more students yesterday than we did today.’

Following Alexiadou et al. (2021), we adopt a decompositional analysis of Greek comparatives 
according to which perisoteri ‘more’ is decomposed into the comparative morpheme -ter- ‘-er’ 
and periso- ‘many’.9 The comparative specifies a relation between sets of degrees, as in (46). We 
choose the variable names T and M to stand as mnemonics for ‘than-clause’ and ‘main-clause’, 
respectively. periso- ‘many’ introduces a measure function as in (47). In this case, the function 
measures cardinality, cf. Makri (2018; 2020).

 8 Our treatment of comparatives is based on that in Bale and Schwarz (2020) extended straightforwardly to cover 
differentials. Many of the details of this analysis are not crucial for our main argument. Our choice is directed by 
facilitating comparison with the most relevant literature.

 9 Next to the synthetic form of the comparative, an analytic form, as in (i), also exists. Like the synthetic form, the ana-
lytic form is also three-way ambiguous, and will not be discussed further here. See Makri (2018, 2020) and Alexiadou 
et al. (2021) for discussion of the similarities and differences between the two forms.

(i) Exthes proslavame peninta tis ekato pio polus fitites
yesterday hired.1pl fifty the.dat hundred.dat COMP many.pl.acc students.pl.acc
apo oti simera.
from rel today
‘We hired fifty percent more students yesterday than we did today.’
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(46) ⟦ -ter- ⟧c = λd λTdt λMdt. MAX(M) = d + MAX(T)

(47) ⟦ periso- ⟧c = λd λRet λSet. μc(⊔ (R∩S) ≥ d

The than-clause and the main clause provide the two relevant sets of degrees, after predicate 
abstraction in the than-clause and after Quantifier Raising (Heim & Kratzer 1998) the degree phrase 
formed by the comparative morpheme and the than-clause, as in (48). The numeral tris ‘three’, 
which we take to name an individual degree in a scale of cardinality, provides the differential 
argument.

(48) [[[tris -ter-] λd [ simera proslavame d-periso- fitites ]]
λd [ exthes proslavame d-periso- fitites ]]

The meaning of (45) comes out as in (49), i.e. it is true if the number of students we hired 
yesterday exceeds the number of students we hired today by three. The differential measure 
phrase then simply specifies the difference between two degrees.

(49) ⟦ (42) ⟧c = MAX(λd. ∃x[STUDENTS.WE.HIRED.YEST(x) & μ#(x) ≥ d])
= 3 + MAX(λd. ∃x[STUDENTS.WE.HIRED.YEST(x) & μ#(x) ≥ d])

3.2 Differential comparatives with percentages
With this background we can now proceed to consider comparatives with percentages as 
differential measure phrases, repeated in (50). We observe that such examples are three-way 
ambiguous. In its first and most prominent reading, which we called the relative cardinal reading, 
the differential measure phrase represents the ratio of the difference between two cardinalities to 
the cardinality provided by the than-clause. Under this interpretation, (50) says that the positive 
difference between the number of people we hired yesterday and today equals 50 percent of the 
people we hired today. (50) is thus true in the context of (51a). In its second reading, which 
we called the relative proportional reading, (50) receives a proportional interpretation like the 
one discussed for (13) above. It compares the proportion of students we hired today (relative to 
today’s hirees) to the proportion of students we hired yesterday (relative to yesterday’s hirees). 
The differential measure phrase, in this case, represents the ratio of the difference between two 
proportions to the proportion provided by the than-clause. Under this interpretation, (50) says 
that the positive difference between the proportion of students we hired yesterday and today 
equals 50 percent of the proportion of students we hired today. (50) is thus true in the context of 
(51b). The third reading, which we called the absolute proportional reading, is also based on the 
same underlying proportional reading. In this case, however, the percentage appears to behave 
more like a regular, non-proportional differential measure phrase; it does not represent a ratio, 
but simply the difference between two proportions. Under this interpretation, (50) says that the 
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positive difference between the proportion of students we hired yesterday and today equals 50 
percent and is, thus, true in the context of (51c).10

(50) Exthes proslavame peninta tis ekato perisoterus fitites
yesterday hired.1pl fifty the. dat hundred.dat more.pl.acc student.pl.acc
apo oti simera.
from rel today
‘We hired fifty percent more students yesterday than we did today.’

(51) a. Context A: We hired 75 students yesterday and 50 students today.
b. Context B: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 

students out of 200 hirees today (i.e. 50%).
c. Context C: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 

students out of 400 hirees today (i.e. 25%).

3.2.1. The relative cardinal reading
We begin by considering an analysis that deviates minimally from the analysis of differential 
comparatives in the previous section; i.e. we assume that the percentage functions as a regular 
differential measure phrase and that the LF of (50) is identical to that of other differential 
comparatives, as in (52). Assuming a quantificational analysis of percentages as in Pasternak & 
Sauerland’s entry in (27), repeated here in (53), the percentage undergoes Quantifier Raising, 
interpreted here in the usual way.

(52) [ [peninta tis ekato] [ λ1 [[ [t1 -ter-] [ λd [ simera proslavame d-periso- fitites ]] ]
[ λd [ exthes proslavame d-periso- fitites ]] ]] ]

(53) ⟦ ⟧ = λ      (  
    (   (   

 
   

Informally, the relative cardinal reading of (50) should represent the ratio in (54). But as is 
immediately obvious, whereas the degree predicate in the numerator correctly represents the 
difference between the two cardinalities, as required, the denominator is not the maximal degree 
in the domain of this degree predicate (there is no such degree), but the cardinality provided by 
the than-clause. The entry in (53), then, needs to be revised.

 10 Dan Lassiter (p.c.) points out that closed scale adjectives, as in (ii), also show the same type of ambiguity. Example (i) 
is true if the red glass is 75% full and the blue glass 50% full, but also if the red glass is 75% full and the blue glass 
25% full. For another case of an absolute proportional reading see also (ii) from Klecha (2014), which is true if the 
odds increased from 50% to 60%.

(i) The red glass is 50% fuller than the blue glass.
(ii) The odds increased 10%.
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(54)

As a first attempt (to be revised in section 4.3.2), we will assume the quantificational entry in 
(55). (55) replaces MAX⁡(dom(D)) in the denominator with the maximal degree of a contextually 
supplied predicate of degrees, MAX⁡(C). If so, context sensitivity is introduced in two places, the 
variable over measure functions in the meaning of periso ‘many’ and the variable C over sets of 
degrees in the meaning of the percentage. The different readings of (50) will be generated by 
different choices in the resolution of these variables.

(55) ⟦ ⟧ = λ      (      (   
 
   

The cardinal reading is generated when μ is resolved to the function measuring cardinality and C 
to the set of degrees introduced by the than-clause. We end up with the meaning in (56), which 
is verified for the context in (51a) in (57).

(56)   (         .  .     .        (         .  .     .    
  (         .  .     .    

   
   

(57)      
  =   

   
  
   

3.2.2 The relative proportional reading
The relative proportional reading can be accounted for by resolving the measure functions to 
proportional measure functions, as in (58). Crucially in this case, the variables over measure functions 
in the main clause and than-clause are resolved to different functions. If, as in the relative cardinal 
reading, C is resolved to the degree predicate provided by the than-clause, we end up with the 
meaning in (59). This correctly predicts that (50) is true in the context of (51b), as verified in (60).

(58) a. μ1 = λx. |x|⁄|⊔ HIREES.YEST|
b. μ2 =λx. |x|⁄|⊔ HIREES.TOD|

(59)   (         .  .     .        (         .  .     .    
  (         .  .     .    

   
   

(60) .  .  
. = .  

.  
  
   

3.2.3. The absolute proportional reading
Finally, we turn to the absolute proportional reading. In this case the percentage appears to act 
more like absolute measure phrases and simply specify the difference between two proportional 
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degrees. The issue here is that, given the ingredients we have specified so far (the predicates of 
degrees provided by the main and the than-clauses and the measure functions in (58)), there is 
no obvious choice for the variable C that would give us the right result. In fact, what we need 
to achieve is to nullify the effects of the percentage itself, as in (61); i.e. give substance to the 
underlying intuition that the percentage in this case specifies a degree in the domain of the 
relevant proportional measure functions.11

(61) μ1(⊔ STUDENTS.WE.HIRED.YEST) – μ2 (⊔ STUDENTS.WE.HIRED.TOD) ≥ 50%

To achieve this we claim that the measure functions relevant for the absolute (and relevant) 
proportional reading are not the ones in (58), but the domain-restricted versions of them in (62).

(62) a. μ1 = λx :x ⊑ ⊔ HIREES.YEST. |x|⁄|⊔ HIREES.YEST|
b. μ2 = λx :x ⊑ ⊔ HIREES.TOD. |x|⁄|⊔ HIREES.TOD|

The crucial difference between the functions in (58) and the ones in (62) is that only the latter 
have a maximal degree in their range, the degree whose value is | HIREES.TOD|| HIREES.TOD|


  and | HIREES.YEST|| HIREES.YEST|


 , namely 

1. The degree predicate that composes with the percentage, which we will call the differential 
predicate, is given in (63).

(63) λd. d = μ1 (⊔ STUDENTS.WE.HIRED.YEST)-μ2 (⊔ STUDENTS.WE.HIRED.TOD)

Assuming, as in our Context C, that we hired 75% students yesterday and 25% students today, the 
predicate in (63) will contain the unique degree that corresponds to the difference between the 
two proportions, namely 0.5. Crucially, since we are dealing with degrees of domain-restricted 
proportionality, the maximal degree in the domain of the differential predicate is the maximal 
degree in a scale of domain-restricted proportionality, namely 1. If so, the result of applying the 
differential predicate to the percentage and resolving the variable C to the set of degrees in the 
domain of (63), as in (64), is (65), the correct result.

(64) C = {d|d ∈ dom(⟦(60)⟧)}

(65)    (⟦(   ⟧ 
   ({       (⟦(   ⟧ } =

  (         .  .     .        (         .  .     .    
    

   

(66) .   .  
 = . 

  
  
   

More generally, the analysis predicts that only domain-restricted proportional measure functions 
will give rise to absolute proportional readings. Solt (2018) is the first work to define such 

 11 Just like the measure phrase 2 cm is a degree of height in Mary is 2 cm taller than John.
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functions. Like non-proportional domain-restricted functions, they are restricted to only measure 
parts of an individual and return degrees that encode the proportion they represent of the totality 
in some dimension of measurement, as in the definition in (67) (Bale 2022: (8), based on Solt 
2018).12 The measure functions in (62) are domain-restricted measures based on cardinality 
measures whose restrictions are the sum of people we hired yesterday and today, respectively.

(67) For any measure function μ into a non-proportional dimension DIM and for any restriction 
x, there is a domain-restricted proportional measure associated with μ, symbolized as 
μDIM%;x, such that for any y in the domain of %;

%;

( )
%; %; ( ), ( ) DIM x

DIM x

y
DIM x DIM x xy m

m
m m = , which is equal 

to %;
%;

( )
( )

DIM x
DIM x

y
x

m

m
 if y ≤ x.

Importantly not all the proportional measures we have seen so far can be re-written as domain-
restricted measures.13 Consider, for example, the comparative in (68), whose intended reading is 
based on the functions in (69), so that (65) compares the density of road signs on the two Routes. 
There exists no domain-restricted version of the functions in (69), as any such functions would 
necessarily measure miles in the numerator, not road signs, as required.

(68) There are more road signs on Rte 101 than on Rte 104.

(69) a. μ1 = λx. |x|⁄|miles of Rte 101|
b. μ2 = λx. |x|⁄|miles of Rte 101|

The analysis correctly predicts then that differential percentages will not give rise to absolute 
proportional readings in this case, since the functions in (69) do not have maximal degrees in their 
range (and the corresponding predicates of degrees have no maximal degrees in their domains). 
Indeed, (70) is felicitous in the contexts A and B in (71), but not in context C (or any other context).

(70) Afti i leoforos exi peninta tis ekato perisotera
this the highway has.3sg fifty the. dat hundred.dat more.pl.acc
simata apo ekini.
road.sign.pl.acc from that
‘This highway has 50 percent more road signs than that one.’

(71) a. Context A: There are 75 road signs in this highway and 50 in that one.
b. Context B: There are 75 road signs per mile in this highway and 50 road signs per mile 

in that one.
c. Context C: There are 75 road signs per mile in this highway and 25 road signs per mile 

in that one.

 12 Domain-restricted proportional measure functions map their domain to the unit interval [0, 1].
 13 This is exactly what motivates Bale & Schwarz (2020) and Bale (2021) to adopt the broader definition of proportional 

measures in (11), in response to Solt (2018) who supposes that all proportional measures are domain-restricted measures.
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Before moving on let us briefly discuss an alternative to our analysis of absolute proportional 
readings, based on the idea that percentages do not denote degree quantifiers, but rather individual 
degrees in the range of domain-restricted proportional measure function, as in Solt (2018).

(72) ⟦ n percent ⟧ = n%

If so, percentages can directly saturate the differential argument of -ter- ‘-er’ when we are dealing 
with domain-restricted proportional measure functions. This entry derives absolute proportional 
readings, since the differential percentage will correspond directly to the difference between the 
two measurements; percentages are expected to behave exactly like any non-relative differential 
measure phrases, which is the right result for absolute proportional readings. But here also lies 
the limitation of this approach. By eliminating the variable C in the denotation of the percentage, 
it is now not possible to derive the relative readings of differential percentages. For these readings 
the quantificational entry in (55) is still required. We cannot at this point exclude such an 
ambiguity analysis of percentages. However, since our aim is to explore to what extent we can 
achieve unified accounts of the relevant phenomena, we put this option aside.14

We have argued that differential percentages provide further evidence for a proportional 
μ-based analysis of proportionality in nominal measurement. We have shown that even in the 
presence of a relative modifier proportional measure functions are necessary to derive the full 
range of available readings. Once we also pay attention to differences between two types of 
proportional measure phrases (domain-restricted and non-restricted functions) we can also 
correctly predict the distribution of absolute proportional readings. In what follows we proceed 
to apply a proportional μ-based analysis to Greek juxtaposed and partitive measurement structures.

4 Reverse proportional readings in juxtaposed measurement 
structures
This section provides an analysis of reverse proportional readings that arise by use of percentages 
in juxtaposed measurement constructions, as in (73). As in the German example discussed 
briefly in section 2.2, (73) only gives rise to reverse proportional readings and is thus true 
in a context in which we hired 10 people half of which were students. We first argue that 
the phrase peninta tis ekato fitites ‘fifty percent students’ is indeed an instance of a nominal 
measurement structure. In order to do so we compare it with a case of absolute measurement, 
as in (74). We then take a closer look at the availability of reverse proportional readings in 
juxtaposed measurement. We show that the availability of such readings correlates with the 
availability of absolute proportional readings in the corresponding comparatives. This provides 
a first motivation to pursue a proportional μ-based analysis. We provide further motivation by 
showing that the modifier-based analysis of Pasternak & Sauerland (2022), which crucially relies 

 14 See also the discussion in section 4.4.
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on focus to generate reverse proportionality, under-generates. We proceed with our own analysis 
which generates reverse proportional readings in juxtaposed measurement in the same way that 
we generated absolute proportional readings in comparatives. To achieve a unified analysis of 
relative modifiers, however, we need to rethink our analysis of differential comparatives.

(73) Exthes proslavame peninta tis ekato fitites.
yesterday hired.1pl fifty the.dat hundred.dat students.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

(74) Exthes faghame tria kila mila.
yesterday ate.1pl three kilo.pl.acc apple.pl.acc
‘We ate three kilos of apples yesterday.’

4.1 Juxtaposed nominal measurement
Juxtaposed measurement structures with absolute measures, as in (74), are comprised of a substance 
noun, a measure noun, and a numeral. The substance noun and the absolute measure noun, which 
inflect for case and number, bear the same case. Relative measures like tis ekato ‘percent’ do not 
inflect for case or any phi-features. In fact, tis ekato ‘percent’ has itself the form of a DP as it is 
built out of the definite determiner in its plural dative form tis and the numeral ekato ‘hundred’. 
Morphological dative has been replaced in Modern Greek by the genitive, so we are dealing with a 
fixed expression.15 Case is determined by the position of the nominal construction in the sentence. 
For example, the substance and measure noun bear nominative when in subject position, as in (75) 
and (76).16 We conclude that the juxtaposed measurement structure is a Determiner Phrase which 
is an argument of the verb and case-marked by it, see Alexiadou et al. (2007) for an overview.

 15 In more colloquial speech the dative tis is often replaced with the plural accusative form of the neuter definite 
determiner ta, as in ta ekato ‘percent’.

 16 We restrict our attention to absolute measure phrases with pure measure nouns, like kilo ‘kilo’. The structures dis-
cussed here are clearly related to similar cases with container nouns, as in (i), which have usually been discussed 
in the literature under the rubric of pseudo-partitivity. These cases are famously ambiguous between quantity and 
container readings. We submit that in their quantity readings container nouns can be treated exactly like the pure 
measure nouns discussed here and throughout the paper, as also manifested by the fact that they can function as 
differential measure phrases, as in (ii). In these cases, the measure phrases have regular degree readings, where the 
degrees represent measures in some non-established unit. We leave aside the important question of the differences 
between container and quantity readings, since, as far as we can see, it has no bearing on our main point, but see 
Alexiadou et al. 2007, Alexiadou (2014) and Borer (2005) and references therein for arguments that container and 
quantity readings should receive distinct syntactic representations.

(i) Ipia/ Espasa dhio potiria krasi
drank.1sg broke.1sg two glass.pl.acc wine.sg.acc
‘I drank/broke two glasses wine.’

(ii) Ipia dhio potiria perisotero krasi apo esena
drank.1pl two glass.pl.acc more.sg.acc wine.sg.acc from you
‘I drank two glasses more wine than you did.’
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(75) Exthes katanalothikan tria kila mila.
yesterday consumed.pass.3pl three kilo.pl.nom apple.pl.nom
‘Thirty percent of what was consumed yesterday was apples.’

(76) Exthes etreksan ston marathonio trianta tis ekato fitites.
yesterday ran.3pl in.the marathon thirty the. dat hundred.dat student.pl.nom
‘Thirty percent of the people that ran the marathon yesterday were students.’

Notice that Greek allows a range of word-orders, usually conditioned by information structure. 
In (75) and (76) above, we used post-verbal subjects. Reverse proportional readings seem to 
require that the juxtaposed structure appears in post-verbal position. In the presence of multiple 
arguments, reverse proportional readings require the nominal construction to appear in sentence-
final position, as in (77). There is significant controversy in the literature on the distribution 
and analysis of different word-orders in Greek, see Oikonomou & Alexiadou (2021) for a recent 
summary. At this point, we cannot offer a more concrete proposal about the interaction of reverse 
proportionality with the usually subtle information structural effects that condition word-order 
variation in Greek.

(77) Exthes dhosame afksisi se trianta tis ekato fitites
yesterday gave.1pl raise to thirty the. dat hundred.dat student.pl.acc
‘Thirty percent of the people we gave a raise to yesterday were students.’

Nominal constructions in adjunct positions also allow reverse proportional readings, as in (78).

(78) Exthes taksidhepsame me trianta tis ekato fitites.
yesterday travelled.1pl with thirty the. dat hundred.dat student.pl.acc
‘Thirty percent of the people we travelled with yesterday were students.’

The internal constituency of juxtaposed absolute measurement has been an issue of considerable 
debate in the literature (Alexiadou et al. 2007 for overview).17 We assume a structure as in (79), 
where the absolute measure tria kila ‘three kilos’ forms a constituent (labelled MP, Measure 

 17 A lot of the discussion centers around the proper treatment of the ‘semi-lexicality/-functionality’ of the measure and 
container nouns that appear in juxtaposed structures, i.e. the fact that they do not appear to project as full-fledged 
nominals. In the structure we propose, the measure nouns are part of the measure phrase and not part of the func-
tional spine of the DP. Alternatively, semi-lexical nouns like unit nouns (or even tis ekato ‘percent’) can be taken to 
be heads (perhaps identified with the Meas head in (79) and (80)) in the functional projection of the substance noun. 
Although such analyses are possible and in principle compatible with all analyses of proportionality considered in 
this paper, they would need to do more work to explain both the facts in (81) and (82) and the use of phrases like tria 
kila ‘three kilos’ and trianta tis ekato ‘thirty percent’ as differential measure phrases in comparatives. Things might be 
different in the case of the container readings mentioned in footnote 16. See Stavrou (2003), Alexiadou et al. (2007) 
and Klockmann (2017) for extensive discussion on semi-lexicality.
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Phrase) and is introduced in the specifier of a functional head Meas in the extended projection 
of the substance NP mila ‘apples’. We extent this analysis to juxtaposed relative measures with 
percentages in (80). Following Pasternak and Sauerland (2022) we assume that the Determiner 
Phrase is headed by a covert existential quantifier.18

(79)

(80)

The structure we adopt is mono-projectional in the sense that a single nominal is projected (see 
Stavrou 2003, Alexiadou & Stavrou 2020 for arguments in favor of a mono-projectional analysis 
of Greek absolute juxtaposed measurement.) We assume that semi-lexical nouns like kilo ‘kilo’ 
acquire case via agreement with the substance NP. We have assumed here that the numeral 
and the semi-lexical noun form a constituent. This analysis explains the fact that both the MP 
and the substance noun can be left-dislocated in Greek. This is so for both absolute and relative 
measurement, as shown in (81) and (82), respectively.19

(81) a. Fitites proslavame exthes trianta tis ekato.
student.pl.acc hired.1pl yesterday thirty the.dat hundred.dat
‘Thirty percent of the people we hired yesterday were students.’

 18 An overt indefinite determiner, which is homophonous with the numeral one, is available for relative measures, but, in 
this case, it acts as an approximator, as in (i). The indefinite determiner kapjos ‘some’, on the other hand, which cannot 
give rise to approximation, is ruled out. We currently have no account of the approximative use of ena ‘one/some’ and 
its distribution.

(i) Exthes proslavame ena / *kapjo trianta tis ekato fitites.
yesterday hired.1pl one some thirty the.dat hundred.dat student.pl.acc
‘Approximately thirty percent of the people we hired yesterday were students.’

 19 Notice that the examples with fronted MPs in (81b) and (81b) are somewhat more degraded if judged out of context. 
We believe this is because the fronted position is a topicalized position and MPs are harder to conceive as discourse 
topics. Both examples are perfectly felicitous if they are answers to questions like ‘What did you hire thirty percent 
of yesterday?’ and ‘What did you eat three kilos of yesterday?’.
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b. Trianta tis ekato proslavame exthes fitites.
thirty the.dat hundred.dat hired.1pl yesterday student.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

(82) a. Mila faghame exthes tria kila.
apple.pl.acc ate.1pl yesterday three kilo.pl.acc
‘We ate three kilos of apples yesterday.’

b. Tria kila faghame exthes mila.
three kilo.pl.acc ate.1pl yesterday apple.pl.acc
‘We ate three kilos of apples yesterday.’

One area where the absolute and relative measures differ in their behavior is verbal agreement. 
In the case of absolute measurement, verbal agreement in number depends on the number of 
the measurement construction, which itself depends on the number of the semi-lexical number, 
as shown in (83) and (84). In the case of relative measurement, however, number on the verb 
is always plural, as shown in (85). We will provide an analysis of these agreement patterns in 
section 4.4.

(83) Exthes katanalothike ena kilo mila.
yesterday consumed.pass.3sg one kilo.sg.nom apple.pl.nom
‘One kilo of apples was consumed yesterday.’

(84) Exthes katanalothikan tria kila mila.
yesterday consumed.pass.3pl three kilo.pl.nom apple.pl.nom
‘Three kilos of apples were consumed yesterday.’

(85) Exthes *proslifthike/ proslifthisan ena/ trianta tis ekato
yesterday hired.pass.3sg hired.pass.3pl one thirty the.dat hundred.dat
fitites.
student.pl.acc
‘One/ Thirty percent of the people that were hired yesterday were students.’

Before moving on, we should mention that reverse proportional readings in Greek can also be 
generated with an adverbial strategy, as in (86), where the percentage appears as part of an 
adverbial PP, headed by kata ‘by’. An analysis of adverbial reverse proportional readings lies 
outside the scope of this paper. The existence of this strategy does raise the possibility, however, 
that the structures we have considered so far also involve adverbial percentages. In this case it 
would in principle even be possible to assume that the adverbial percentage attaches to the DP 
projected by the substance noun, explaining the fact that the whole phrase trianta tis ekato fitites 
‘thirty percent students’ has the properties and distribution of a DP.
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(86) Exthes proslavame kata trianta tis ekato fitites.
yesterday hired.1pl by thirty the. dat hundred.dat student.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

The main reason to reject such an extension of the adverbial strategy has to do with the fact 
that PP percentages and bare percentages do not have the same distribution. Recall that 
juxtaposed relative measurement constructions can appear inside PPs, as we saw in (87) and 
(88) above, giving rise to a reverse proportional reading. PP-percentages, on the other hand, are 
ungrammatical in these positions.

(87) *Exthes dhosame afksisi se kata trianta tis ekato fitites.
yesterday gave.1pl raise to by thirty the. dat hundred.dat student.pl.acc
‘Thirty percent of the people we gave a raise to yesterday were students.’

(88) *Exthes taksidhepsame me kata trianta tis ekato fitites.
yesterday travelled.1pl with by thirty the. dat hundred.dat student.pl.acc
‘Thirty percent of the people we travelled with yesterday were students.’

Moreover, PP-percentages can appear in more positions within the clause than bare percentages. 
So, whereas PP-percentages can appear pre-verbally, as in (89), bare percentages cannot, as 
shown in (90). The same is true of the clause-final position in (91) and (92). We thus reject an 
adverbial analysis of percentages in juxtaposed measurement structures.

(89) Exthes kata trianta tis ekato proslavame fitites.
yesterday by thirty the. dat hundred.dat hired.1pl student.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

(90) *Exthes trianta tis ekato proslavame fitites.
yesterday thirty the. dat hundred.dat hired.1pl student.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

(91) Exthes proslavame fitites kata trianta tis ekato.
yesterday hired.1pl student.pl.acc by thirty the. dat hundred.dat
‘Thirty percent of the people we hired yesterday were students.’

(92) *Exthes proslavame fitites trianta tis ekato.
yesterday hired.1pl student.pl.acc thirty the. dat hundred.dat
‘Thirty percent of the people we hired yesterday were students.’

4.2 The distribution of reverse proportionality
Before moving to our analysis, we present further motivation for seeking an alternative to a 
modifier-based analysis. We first observe a correlation between the availability of juxtaposed 
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measurement structures with percentages and the absolute proportional readings of the 
corresponding comparatives. We then turn to the issue of focus-sensitivity.

We have seen that whereas readings based on domain-restricted measure functions, as in 
(93), give rise to absolute proportional readings of differential percentages, readings based on 
non-restricted measure functions, as in (94), do not.

(93) Context C: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 students 
out of 400 hirees today (i.e. 25%).
Exthes proslavame peninta tis ekato perisoterus fitites
yesterday hired.1pl fifty the. dat hundred.dat more.pl.acc student.pl.acc
apo oti simera.
from rel today
‘We hired fifty percent more students yesterday than we did today.’

(94) Context C: There are 75 road signs per mile in this highway and 25 road signs per mile 
in that one.

 #Afti i leoforos exi peninta tis ekato perisotera
this the highway has.3sg fifty the. dat hundred.dat more.pl.acc
simata apo ekini.
road.sign.pl.acc from that
‘This highway has 50 percent more road signs than that one.’

We observe that this contrast carries over to the availability of proportional readings with 
percentages in juxtaposed measurement structures. Whereas, as we have seen, (95) is available, 
it is not possible for (96) to have a reading based on the density of road signs in the highway.20

(95) Exthes proslavame peninta tis ekato fitites.
yesterday hired.1pl fifty the.dat hundred.dat student.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

(96) #Afti i leoforos exi peninta tis ekato simata.
this the highway has.3sg fifty the.dat hundred.dat road.sign.pl.acc
‘This highway has fifty percent road signs.’

This pattern generalizes to all non-restricted proportional measures. To give one more example, 
consider the proportional reading of the comparative in (97) based on the proportional measures 
in (98). Such measures cannot support an absolute proportional reading, as shown in (99), and 

 20 The only (marginally) available reading of (96) is one in which the percentage specifies the proportional relation of 
the number of road signs to the total number of items that the highway has/is related to. This of course would be a 
reading based on a domain-restricted proportional measure.
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neither is it available in the juxtaposed measurement structure in (100). As in the case of absolute 
proportional readings in comparatives the intuition is that the percentage will only be felicitous 
in juxtaposed measurement if it can be taken to directly specify a degree in the dimension of the 
underlying proportional measure function.

(97) I Athina exi perisotera aftokinita apo ti Nea Iorki.
the Athens has.3sg more.pl.acc car.pl.acc from the New York
‘Athens has more cars than New York.’

(98) a. μ1 = λx. |x|⁄|people in Athens|
b. μ2 = λx. |x|⁄|people in New York|

(99) Context: There are 75 cars per 100 inhabitants in Athens and 25 cars per 100 inhabitants 
in New York.

 #I Athina exi peninta tis ekato perisotera aftokinita apo
the Athens has.3sg fifty the.dat hundred.dat more.pl.acc car.pl.acc from
ti Nea Iorki.
the New York
‘Athens has fifty percent more cars than New York.’

(100) #I Athina exi peninta tis ekato aftokinita.
the Athens has.3sg fifty the.dat hundred.dat car.pl.acc
‘Athens has fifty percent cars.’

Our claim is not that modifier-based analyses cannot account for the unavailability of (96) and 
(100). For the reading of, e.g., (100), to be generated in such an account, the denominator of 
the percentage would have to measure the cardinality of the inhabitants of Athens. But recall 
that since in the account of Pasternak & Sauerland (2022) the denominator is strictly determined 
by grammatical means, i.e. the landing site of the QR-ed nominal and the focus structure of its 
sister constituent, there is simply no way to generate the intended meaning. Since, however, 
such an analysis has nothing to say about the derivation of absolute proportional readings in 
comparatives, the observed correlation will have to be coincidental. On the other hand, if, 
as we will propose in the next section, the proportional readings of juxtaposed measurement 
structures require the presence of a domain-restricted proportional measure function, just like we 
have argued for the absolute proportional readings of differential comparatives, the correlation 
follows naturally.

Consider next the issue of focus-sensitivity, which in the account of Pasternak & Sauerland 
(2022) is necessary to generate the reverse proportional reading of juxtaposed structures. Indeed, 
the nominals that head juxtaposed measurement structures do receive the main stress of the 
sentence. Recall, however, that, as we have seen in (76)–(78), there is a strong preference for 
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the nominals to appear in sentence-final position. In this case, it is not clear whether main 
stress is the result of default stress assignment or the result of F-marking the nominal. More 
informative are examples where default stress assignment and F-marking produce different stress 
patterns, like the German example in (40). The moment we move to such examples, however, the 
empirical picture becomes much murkier. An example like (101) sounds perfectly grammatical 
to native speakers, but it is almost impossible to figure out what it actually means.

(101) ??Exthes proslavame peninta tis ekato ITALUS fitites.
yesterday hired.1pl fifty the.dat hundred.dat Italian.pl.acc student.pl.acc
‘Intended: Fifty percent of the students we hired yesterday were Italian.’

The most natural way to convey the intended meaning is to use a hanging topic, as in (102). 
Hanging topics in Greek (Anagnostopoulou 1994) are base-generated in their sentence-initial 
position and receive widest scope. This is confirmed by examples like (103), where the topicalized 
nominal cannot possibly be linked to any position lower in the structure. Yet (103) has a 
proportional reading where the percentage specifies the proportional relation of the number of 
students we hired to the number of waiters we hired.

(102) Oso ja fitites, exthes proslavame peninta tis ekato
as for student.pl.acc yesterday hired.1pl fifty the.dat hundred.dat
ITALUS.
Italian.pl.acc
‘Thirty percent of the students we hired yesterday were Italian.’

(103) Oso ja servitorus, exthes proslavame peninta tis ekato
as for waiter.pl.acc yesterday hired.1pl fifty the.dat hundred.dat
FITITES.
student.pl.acc
‘Thirty percent of the waiters we hired yesterday were student.’

One cannot simply claim that the structures in (102) and (103) are necessary because F-marked 
constituents in Greek have to appear in sentence final position. For one thing, there is no such 
requirement in the language. For example, mono ‘only’ can associate with the adjectival modifier 
in (104), even if this does not appear in sentence-final position.

(104) Exthes proslavame mono ITALUS fitites.
yesterday hired.1pl only Italian.pl.acc student.pl.acc
‘We only hired ITALIAN students yesterday.’

Moreover, the analysis in Pasternak & Sauerland (2022) simply cannot generate the observed 
proportional readings of (102) and (103) even if we do assume that Italus and fitites are F-marked. 
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Take for example (103). For the observed meaning to be generated the denominator should 
specify the number of waiters we hired. But there is no possible landing site for the QR-ed 
phrase that would provide the right argument to the percentage. At best, the account generates 
a reading, where the percentage specifies the relation of the number of students we hired to 
the total number of people (rather than waiters) we hired. It might be possible to save the 
account by alluding to the known fact that focus-alternatives simply restrict rather than fully 
determine the domain of quantification of focus-sensitive quantifiers. But this is not how focus-
sensitivity works in Pasternak & Sauerland (2022), where the focus value of the constituent 
the percentage composes with only enters the truth-conditional meaning via the effects of the 
focus presupposition on the domain of the degree predicate. There is no space in the account for 
context sensitivity in its current form.21 We will argue in the next section that an analysis that 
allows context sensitivity to enter the derivation of these readings solely via the contextually 
supplied proportional measure function faces no similar issues.

4.3 Analysis
We can now proceed to present our analysis of proportional readings in juxtaposed measurement 
structures. As discussed above, the analysis should (a) explain the correlation between these 
readings and absolute proportional readings in comparatives, (b) allow enough context 
sensitivity to derive examples like (102) and (103) where the measures involved cannot be 
derived solely by grammatical means, (c) but not in a way that sneaks in unwanted readings, like 
the ones based on non-restricted proportional measure functions in (100). The key ingredient 
of the analysis that helps us derive objectives (a) and (b) are domain-restricted proportional 
measure functions. In section 4.3.1 we provide an analysis based on domain-restricted measure 
functions that also assumes the entry for percentages which we argued is necessary to derive 
all readings of percentages in differential comparatives. As we will see, however, the context 
sensitivity introduced in the meaning of percentages leads to an over-generation problem. To 
solve this issue and still achieve a unified treatment of percentages in both juxtaposed structures 
and differential comparatives, we will need to revise both the meaning of percentages and the 
meaning of differential comparatives. We make a concrete proposal to this end in section 4.3.2.

 21 To revise the account in a way that allows context sensitivity to determine the value of the denominator, one would 
minimally need to introduce a variable C over sets of degree predicates in the meaning of the percentage and assume 
a theory of focus as in Rooth (1992). It is unclear to us at this point whether such an approach can successfully be 
implemented in this case. Ahn and Sauerland (2015, 2017) pursue this strategy, albeit in an analysis of percentages 
in which they measure individual rather than quantify over degrees. Pasternak & Sauerland (2022) identify several 
compositionality problems in the execution of this strategy in Ahn & Sauerland (2015; 2017). As far as we can see 
these problems would carry over in a degree-based account. Notice, moreover, that any such account would have to 
explain why focus sensitivity is necessary in the case of juxtaposed structures but not in other measurement struc-
tures with percentages, like, e.g., differential percentages in comparatives.
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4.3.1 Reverse proportionality with domain-restricted proportional measure functions
Recall the syntax we assume for juxtaposed measurement structures like (73) in (105). A head Meas 
introduces measures and mediates the relationship between the bare noun and the percentage. 
The whole DP, which has the type of a generalized quantifier, since the head D is assumed to 
be an existential quantifier, undergoes QR to a propositional node, vP, in the partial derivation 
provided below. In the quantificational analysis of percentages, we have been assuming, the 
percentage will also QR out of the DP. In order to derive reverse proportional readings, we 
simply need to assume that the contextually supplied measure function is the domain-restricted 
proportional measure function in (111). If so, the percentage specifies the relation between the 
proportion of students we hired yesterday (relative to the total number of hirees) to MAX⁡(C). 
Given that the underlying function is domain-restricted, MAX⁡(C) will be 1 if the variable C is 
resolved to the set of degrees in the domain of the degree predicate in vP5. The result is verified 
in (113) for a context in which we hired 10 people, five of who are students.

(105)

(106) ⟦ Meas ⟧c = λPet λd λx. P(x) & μc(x) ≥ d

(107) ⟦ ∃ ⟧c = λPet λQet. ∃x [P(x) & Q(x)]

(108) ⟦ DP ⟧c = λQet. ∃x [STUDENT(x) & Q(x) & μc(x) ≥ d1]

(109) ⟦ vP5 ⟧c = λd. ∃(x) [STUDENTS.WE.HIRED.YEST(x) & μc(x) ≥ d]

(110)

(111) μ = λx :x ⊑ ⊔ WE.HIRED.YEST. |x|⁄|⊔ WE.HIRED.YEST|

(112)

(113) . 
  

  
   



31

The derivation of reverse proportional readings is exactly parallel to that of absolute proportional 
readings in comparatives. The only difference is the measurement in the numerator of the 
percentage. The account predicts, then, that non-restricted measures (and non-proportional 
measures like cardinality) will not be licensed because their domain does not include a maximal 
degree.22

Notice that there are two sources of context sensitivity in the proposed analysis; the 
contextually resolved measure function μc in the meaning of Meas, and the variable C over 
sets of degrees in the meaning of the percentage. Each of these raise issues of overgeneration. 
Consider first μc. Although the account can successfully exclude non-restricted proportional 
measure functions as values of μc, it still might permit one too many domain-restricted functions. 
Nothing we have said so far prevents μc to be resolved to the function in (114). Based on this 
function the percentage in examples like (73) could end up specifying the proportional relation 
of the number of students we hired to the total number of students. This reading is identical to 
the forward proportional reading of partitive measurement structures. Since, we believe that it 
is not possible to exclude functions like (144) without at the same time excluding the ones that 
generate reverse proportional readings, we want to suggest that the source of the marginality of 
readings based on (114) is the availability of the corresponding partitive measurement structure. 
One possible reason for partitive measurement to be preferred in this case is that in partitive 
measurement the sum of students is introduced with a definite DP. The choice of structure, then, 
could be guided by Maximize Presupposition (Heim 1991), the principle which, everything else 
being equal, favors expressions with stronger presuppositions. Since the definite phrase ton fititon 
‘the students’ in partitive measurement carries uniqueness and familiarity presuppositions, while 
the bare plural fitites ‘students’ in juxtaposed measurement doesn’t carry any presuppositions, 
the partitive will be favored. Although we do not provide a full implementation of this idea at 
this point, we see no reason why it cannot be worked out in detail without affecting the core of 
our proposal.

(114) μ = λx :x ⊑ ⊔ STUDENTS. |x|⁄|⊔ STUDENTS|

The second source of context sensitivity, however, raises a more serious challenge. Assume that 
μc is resolved to a non-proportional measure function like cardinality. The resulting reading 
will then depend on the choice of C. In the case of example (73), this derivation will generate 
a reverse proportional reading if C is resolved to the set of degrees in (115). The percentage 

 22 The observed readings of examples (102) and (103), on the other hand, are predicted to be available if the measure 
function is resolved to the ones in (i) and (ii), respectively.

(i) μ = λx∶x ⊑ ⊔ STUDENTS.WE.HIRED.YEST. |x| ⁄ |⊔ STUDENTS.WE.HIRED.YEST|

(ii) μ=λx∶x ⊑ ⊔ WAITERS.WE.HIRED.YEST.|x| ⁄ |⊔ WAITERS.WE.HIRED.YEST|
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will specify the proportional relation of the number of students we hired to the total number of 
people we hired. This is of course unproblematic. But, again, the same derivation will generate a 
forward proportional reading if C is resolved to the degree predicate in (116).

(115) C = {d|μ#(⊔ HIREES) ≥ d}

(116) C = {d|μ#(⊔ STUDENTS) ≥ d}

More than that, in the case of examples like (73), nothing prevents C to be resolved to the 
degree predicate in (117) giving rise to a density reading in which the percentage specifies the 
proportional relation of the number of road signs in the highway to the number of miles that 
represent the length of the highway.

(117) C = {d|μ#(⊔ MILES.OF.HIGHWAY) ≥ d}

One way to exclude the offending readings would be to assume that Meas restricts the possible 
values of μc to domain-restricted proportional measure functions. This would in essence be a 
version of a lexical analysis of proportionality that would treat the proportional readings of 
juxtaposed measurement structures in a crucially different way than the proportional readings of 
other measurement structures, like comparatives with and without percentages, since for these 
cases it wouldn’t be possible to restrict the meaning of the functional head introducing measures 
in the same way. Since this approach goes against the spirit of unification that we are pursuing 
in this paper, we will put it aside. The option we will pursue instead is to eliminate the offending 
source of contextual sensitivity in the meaning of the percentage. In fact, it is not difficult to 
come up with an entry for percentages that would give us the right result. For example, using the 
entry assumed by Pastern & Sauerland (2021) repeated in (118) would do just that.

(118)

The issue that arises, however, is that contextual sensitivity in the meaning of the percentage 
was crucial in our analysis of the three readings of percentages in differential comparatives. 
The question, then, is whether we can come up with an entry for percentages that at the same 
time (a) does not include a variable over degree predicates and (b) generates all readings of 
differential percentages. We argue in the next section that this is possible, but only once we 
revise our analysis of differential comparatives.

4.3.2 Percentages without context sensitivity
Let us take the entry in (118) as our starting point and consider why it cannot account for all 
readings of percentages in differential comparatives under our current assumptions. Recall that 
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in relative cardinal readings the percentage specified the relation of two cardinalities, the one 
representing the difference between the measurements in the main- and than-clauses and the 
one representing the measurement in the than-clause. In the relative proportional reading, it 
specified the relation of two proportions, the one representing the difference between the two 
proportions and the one representing the measurement in the than-clause. Finally, in the absolute 
proportional reading the percentage specifies again the relation of two proportions, the one 
representing the difference between the two proportions and the one representing the maximal 
value in the underlying dimension of measurement. The problem with the entry in (118), as 
it stands, is that the entry requires that the degree in the denominator is a maximal degree in 
the domain of the relevant degree predicate. Yet this only appears to be the case for absolute 
proportional readings. In the case of relative cardinal and proportional readings, the degree 
in the denominator is the maximal degree of the degree predicate supplied by the than-clause, 
not the maximal degree of the degree predicate that appears in the numerator (i.e. the one 
representing the difference between the two measurements).

To solve this problem in a unified way we need the differential degree predicate to 
simultaneously be able to provide (a) the difference between the two measurements (since 
this is what appear in the numerator in all readings), (b) the measurement associated with 
the than-clause (for both non-proportional and proportional measures, since this appears in the 
denominator in the case of relative cardinal and proportional readings), and (c) the maximal 
degree in the range of a domain-restricted proportional measure function (if one is chosen, as 
has to be the case for absolute proportional readings). The differential degree predicate in our 
analysis simply does not provide enough information.

In that direction, we propose to revise the meaning of the differential comparative morpheme, 
as in (119).23

(119) ⟦ -ter- ⟧c = λd: d ≥ MAX(T). λTdt λMdt. d ≥ MAX(M)

Crucially, we will also assume that all differential measure phrases (both absolute and relative 
ones) denote degree quantifiers and undergo QR. The LF of an example with an absolute measure 
phrase, like (120), will, thus, be as in (121).

(120) Exthes proslavame tris perisoterus fitites apo oti simera.
yesterday hired.1pl three more.pl.acc student.pl.acc from rel today
‘We hired three more students yesterday than we did today.’

 23 This proposal has much in common with the analysis of comparatives in vector-based (Faller 2000) and segment-based 
(Schwarzschild 2012) analyses of comparatives, or the analysis in terms of difference functions in Kennedy & McNally 
(2005). We have favored an implementation that requires no modification to our underlying assumptions about the 
ontology of degrees and the syntax-semantics of comparison. Other implementations might be possible.
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(121) [ [MP tris] [vP λ1 [[ [t1 -ter-] [ λd [ simera proslavame d-periso- fitites ]] ]
[ λd [ exthes proslavame d-periso- fitites ]] ]] ]

Since the function of the than-clause in this analysis is to restrict the domain of the differential 
predicate, the vP denotes the degree predicate in (122). This predicate picks out the degrees that 
are greater or equal to the number of students we hired today and less or equal than the number 
of students we hired yesterday. In a context in which we hired 10 students yesterday and 7 
students today, (122) picks out the set of degrees of cardinality in (123), or the interval in (124).

(122) ⟦ vP ⟧c = λd: d ≥ MAX(λd.∃x[STUDENTS.HIRED.TOD(x) & μ#(x) ≥ d]).
d ≤ MAX(λd.∃x[STUDENTS.HIRED.YEST(x) & μ#(x) ≥ d]).

(123) {7, 8, 9, 10}

(124) [7,10]

To get the intended interpretation we now relegate the job of extracting the difference between 
the two measurements to the differential measure phrase itself. There are different ways to achieve 
this.24 We assume that an absolute measure has the denotation in (125), where DIM# is the set of 
degrees measuring cardinality and length takes the measure of an interval, as in (126).25

(125) ⟦ tris ⟧c = λDdt: dom(D) ⊆ DIM#. LENGTH(D) = 3

(126) The LENGTH of an interval I, LENGTH(I), with endpoints a, b is b – a if I is bounded and 
∞ if I is unbounded.

The presupposition in (125) makes sure that the measure phrase and the predicate of degrees 
it takes as an argument deal in the same dimension. Since the maximal degree in (122) is the 
number of students we hired yesterday (i.e. the maximal degree of the predicate provided by the 
main clause) and the minimal degree is the number of students we hired today (i.e. the maximal 
degree of the predicate provided by the than-clause), the two degrees specify the endpoints of 
the relevant interval and the absolute measure phrase correctly ends up specifying the difference 
between the two degrees, as required.

(127) LENGTH([7,10]) = 3

 24 Alternatively, we can use a function, which returns the difference between two degrees, as in (i) (cf. Kennedy & 
McNally 2005).

(i)

 25 The denotation in (125) is a version of the quantificational approach to absolute MPs in von Stechow (2005), in 
which the numeral picks out the maximal degree of the degree predicate, rather than specify its length.
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We can now revise the entry of n percent as in (128). This will ensure that in comparatives the 
value in the numerator will always represent a difference, as required.

(128)

A problem persists, however. The entry in (128) will always pick out the maximal degree in 
the domain of the differential predicate as the value of the denominator. To account for the full 
range of readings of differential percentages (particularly the relative cardinal and proportional 
readings), we need to allow ourselves more leeway in the choice of denominator. Taking a hint 
from Bale’s (2022) entry for partitive of in section 2.1, we revise the entry of n percent, as in 
(129). ENDPOINTa is a contextually set function from degree predicates to degrees that can be 
set to either ENDPOINTt, in which case it returns the maximal degree in the domain of the degree 
predicate, or to ENDPOINTb, in which case it returns the minimal degree in the domain of the 
degree predicate.

(129)

With the entry in (129) and the revised entry for the differential comparative morpheme in (119) 
we have the ingredients to generate all the readings of differential percentages. We repeat our 
example in (130) and its LF in (131).

(130) Exthes proslavame peninta tis ekato perisoterus fitites
yesterday hired.1pl fifty the.dat hundred.dat more.pl.acc students.pl.acc
apo oti simera.
from rel today
‘We hired (thirty percent) more students yesterday than we did today.’

(131) [ [peninta tis ekato] [vP λ1 [[ [t1 -ter-] [ λd [ simera proslavame d-periso- fitites ]] ]
[ λd [ exthes proslavame d-periso- fitites ]] ]] ]

There are two points of choice in calculating the meaning of (131); the choice of measure function 
and the choice of ENDPOINT function. The type of measure function will determine whether we 
are dealing with a cardinal or a proportional reading. The choice of ENDPOINT function will 
determine whether we are dealing with a relative or an absolute reading. Consider first relative 
cardinal readings in the context in (132).

(132) Context A: We hired 75 students yesterday and 50 students today.

To generate cardinal readings we assume, of course, that the measure function is resolved to 
the cardinality function. If so, the differential predicate is as in (133). In the context of (132), 
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this predicate specifies the interval in (134). The length of this interval will be the value of the 
numerator in the meaning of the percentage.

(133) ⟦ vP ⟧c = λd: d ≥ MAX(λd.∃x[STUDENTS.HIRED.YEST(x) & μ#(x) ≥ d]).
d ≤ MAX(λd.∃x[STUDENTS.HIRED.TOD(x) & μ#(x) ≥ d])

(134) [50, 75]

Consider next the ENDPOINT function. Since the measure in the differential predicate is cardinality, 
which has no maximal degree in its range, the domain of the degree predicate in (133) also 
contains no maximal degree. ENDPOINTt is therefore not an available option. Since, however, the 
degree predicate is domain-restricted, ENDPOINTb is available. ENDPOINTb picks out the minimal 
degree in the domain of (133), which is the maximal degree in the degree predicate denoted by 
the than-clause. We thus end up with the required values in the numerator and denominator to 
generate a cardinal relative reading. This is verified for the context in (132) in (135).

(135)       ([       
         (⟦  ⟧ 

=   
   

  
   

We move next to relative and absolute proportional readings, licensed in the contexts in (136a) 
and (136b) respectively.

(136) a. Context B: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 students 
out of 200 hirees today (i.e. 50%).

b. Context C: We hired 75 students out of 100 hirees yesterday (i.e.75%) and 100 students 
out of 400 hirees today (i.e. 25%).

We assume that the measure functions in the main- and than-clause are resolved in the domain-
restricted proportional measure functions in (137). If so, the differential predicate comes out as 
in (138). In the context of (136b), this predicate specifies the interval in (139). The length of this 
interval will again be the value of the numerator in the meaning of the percentage.

(137) a. μ1 = λx :x ⊑ ⊔ HIREES.YEST.|x|⁄|⊔ HIREES.YEST|
b. μ2 = λx :x ⊑ ⊔ HIREES.TOD.|x|⁄|⊔ HIREES.TOD|

(138) ⟦ vP ⟧c = λd: d ≥ MAX(λd.∃x[STUDENTS.HIRED.YEST(x) & μ1(x) ≥ d]).
d ≤ MAX(λd.∃x[STUDENTS.HIRED.TOD(x) & μ2(x) ≥ d])

(139) [.5, .75]

Consider next the ENDPOINT function. Since the measure in the degree predicate is domain-
restricted, the differential predicate has both minimal and maximal degrees in its domain. 
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Both ENDPOINTt and ENDPOINTb are thus available options. ENDPOINTb is responsible for the 
relative proportional reading; it picks out the minimal degree in the domain of (138), which is 
the maximal degree in the degree predicate denoted by the than-clause. We thus end up with the 
required values in the numerator and denominator to generate a relative proportional reading, 
as verified for the context in (136a) in (140).

(140)       ([.     .    
         (⟦  ⟧ 

= .  
.  

  
   

ENDPOINTt, on the other hand, is responsible for the absolute proportional reading; it picks out 
the maximal degree in the domain of (138), i.e. 1. We thus end up with the required values in 
the numerator and denominator to generate an absolute proportional reading, as verified for the 
context in (136b) in (141).

(141)       ([.      .    
         (⟦  ⟧ 

= . 
  

  
   

Finally, we return to juxtaposed measurement structures, as in (142), and show that the revised 
entry for n percent is compatible with the proportional μ-based analysis of the previous section. 
We refer to the syntactic structure in (105).

(142) Exthes proslavame peninta tis ekato fitites.
yesterday hired.1pl fifty the.dat hundred.dat student.pl.acc
‘Thirty percent of the people we hired yesterday were students.’

In the case of juxtaposed measurement, n percent will compose with the predicate in (143). In 
a context where we hired 50 students out a total number of 100 hirees, the degree predicate in 
(143) will pick out the interval in (145), assuming that the measure function is resolved to the 
familiar domain-restricted proportional measure function in (144). The length of this interval 
will figure in the numerator of the fraction in the percentage.

(143) ⟦ vP5 ⟧c = λd. ∃x[STUDENTS.WE.HIRED.YEST(x) & μ1(x) ≥ d]

(144) μ1 = λx :x ⊑ ⊔ HIREES.YEST.|x|⁄|⊔ HIREES.YEST|

(145) [0, .5]

The denominator will again depend on the choice of ENDPOINT function. Since ENDPOINTb 
picks out zero, which leads to undefinedness, ENDPOINTt, which picks out 1, is the only 
available option. The analysis thus derives a reverse proportional reading exactly as we saw in 
the previous section.
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(146)       ([     .   
         (⟦   ⟧ 

= . 
  

  
   

More generally, the same reasoning leads us to conclude that only degree predicates with a 
maximal degree in their domain can be arguments of percentages. If there is no such maximal 
degree, ENDPOINTt is not an option. At the same time, since all the measure functions we are 
dealing with are built on ratio scales, the degree predicates will always have zero as the minimal 
degree in their domain; ENDPOINTb will, thus, also not be an option. This excludes measures like 
cardinality as a choice for μc, but also all non-restricted proportional measures. At the same time, 
having eliminated the variable C over degree predicates in the meaning of n percent, there is no 
way to ‘sneak-in’ any offending readings.

4.4 Absolute juxtaposed measurement constructions
To complete the analysis of juxtaposed measurement, we consider next juxtaposed structures 
with absolute measures, as in (147). Nothing special needs to be said. The head Meas is the 
same as in the case of relative MPs. Assuming that the measure function is resolved to a function 
measuring weight in kilograms, the degree predicate that is the argument of the MP specifies the 
interval in (152). The MP will specify the value of the length of this interval, as in (153), which 
is equivalent to saying that the weight of the apples we ate yesterday is 3 kilos.

(147) Exthes faghame tria kila mila.
yesterday ate.1pl three kilo.pl.acc apple.pl.acc
‘We ate three kilos of apples yesterday.’

(148)

(149) ⟦ Meas ⟧c = λPet λd λx. P(x) & μc(x) ≥ d

(150) ⟦ tria kila ⟧c = λDdt: dom(D) ⊆ DIMkg. LENGTH(D) = 3

(151) ⟦ vP5 ⟧c = λd ∃(x) [APPLES.WE.ATE.YEST(x) & μkg(x) ≥ d]
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(152) [0,3]

(153) LENGTH([0,3]) = 3

Before moving to partitive measurement constructions, we show that our analysis can provide an 
explanation of the observed verbal agreement patterns in number. As we will see, the analysis 
of these patterns provides some additional evidence in favor of a quantificational analysis of 
n percent. Recall that this was a major difference between absolute and relative measures in 
juxtaposed measurement; whereas in the case of absolute measurement, the number on the verb 
depends on the number of the unit noun, the number of the verb is always plural in the case of 
relative measurement.

(154) Exthes katanalothike ena kilo mila.
yesterday consumed.pass.3sg one kilo.sg.nom apple.pl.nom
‘One kilo of apples was consumed yesterday.’

(155) Exthes katanalothikan tria kila mila.
yesterday consumed.pass.3pl three kilo.pl.nom apple.pl.nom
‘Three kilos of apples were consumed yesterday.’

(156) Exthes *proslifthike/ proslifthisan ena/ trianta tis ekato
yesterday hired.pass.3sg hired.pass.3pl one thirty the.dat hundred.dat
fitites.
student.pl.nom
‘One/ Thirty percent of the people that were hired yesterday were students.’

We begin with the assumption that the number of the verb depends on the number of DP via 
agreement. Moreover, we assume that the number of the measurement construction is determined 
at the level of a functional projection Num in the extended functional projection of the noun. We 
assume that Num is located above the unit noun (see Stavrou 2003; Alexiadou & Stavrou 2020 
for Greek), as in (157) and (158). For ease of exposition, we treat the absolute MP as denoting an 
individual degree in a dimension of degrees of weight measured in kilos. Nothing changes when 
we move to the quantification analysis above.

(157)
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(158)

To provide a concrete implementation, we adopt Scontras’ (2014) analysis of number, according to 
which the singularity presupposition of the singular feature SG is relativized to a measurement, as in 
(159). SG carries a one-ness presupposition, so that “every member of a predicate denotation must 
measure 1” (Scontras 2014: 22).26 The plural feature PL, on the other hand, is semantically vacuous, 
as in (160). The analysis thus replicates the familiar asymmetry of SG and PL. In contexts where both 
SG and PL can in principle be inserted, their distribution is regulated by Maximize Presupposition, 
which favors the derivation with the strictest presupposition, in this case the one with SG.

(159) ⟦ SG ⟧c = λPet: ∀x ∈P [μ(x) = 1]. P

(160) ⟦ PL ⟧c = λPet. P

The singularity presupposition checks whether the degree of every member in the predicate 
denoted by MeasP in some dimension of measurement equals one. For this analysis to go through, 
the measure introduced by SG and the measure introduced by Meas are identified. Consider first 
the case of absolute measurement. In the case of (154), MeasP denotes the predicate in (161). 
The presupposition of SG is satisfied, so SG is favored over PL. By subject-verb agreement, the 
number feature of the verb is singular. In the case of (155), on the other hand, MeasP denotes the 
predicate in (162). The presupposition of SG is not satisfied, so PL is the only option. By subject-
verb agreement, the number feature of the verb is plural.

(161) ⟦ MeasP ⟧c = λx. APPLE(x) & μweight.kg(x) ≥ 1

(162) ⟦ MeasP ⟧c = λx. APPLE(x) & μweight.kg(x) ≥ 3

We move next to relative measurement, where number on the verb is always plural. We will see 
that both analyses with and without proportional measure functions make the right prediction. 
However, analyses that treat percentages as individual degrees do not. The crucial case is the 
one with the relative modifier ena tis ekato ‘one percent’ in (156). Why is singular agreement 
unavailable in this case? Consider first an analysis without proportional measure functions, where 

 26 Other analyses of nominal number might also be suitable. A comparison between different analyses of nominal num-
ber lies beyond the scope of this paper.
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proportionality is solely contributed by the percentage. Since the measure function contributed by 
Meas in this case measures cardinality, the presupposition of SG requires that the cardinality of the 
students that were hired is one. All we know about this cardinality, however, is that it equals 1% of 
some other cardinality, the cardinality of the people that were hired. Similar considerations apply 
in the case of an analysis with proportional measure functions. In that case the presupposition of 
SG requires that the proportion of the students that were hired to the total number of hirees equals 
one (or 100%), which, by assertion, is not the case. In an analysis which treats percentages as 
individual degrees, on the other hand, the presupposition of SG is indeed satisfied, since, in this 
case, it requires that the proportion of the students that were hired to the total number of hirees 
equals 1%, which is the case. Such an analysis, then, makes the wrong prediction that singular 
agreement should be licensed with the relative modifier ena tis ekato ‘one percent’.

5 Forward proportional readings in partitive measurement structures
This section discusses the forward proportional readings that arise by use of percentages in 
partitive measurement structures, as in (163). We will first discuss some of the morpho-syntactic 
properties of partitive measurement. We show that cases like (163) are distinct from the 
juxtaposed structures we discussed previously and should be discussed on a par with absolute 
partitive measurement, as in (164). We will see, however, that some important differences 
between relative and absolute measurement do arise. We, then, present the range of proportional 
and non-proportional readings that partitives give rise to, discuss the analytical challenges that 
emerge from this picture, and present our current approach.

(163) Exthes proslavame peninta tis ekato ton fititon / apo
yesterday hired.1pl fifty the. dat hundred.dat the.gen students.gen from
tus fitites.
the students.acc
‘We hired fifty percent of the students yesterday’

(164) a. Exthes proslavame tris apo tus fitites.
yesterday hired.1pl three from the student.pl.acc
‘We hired three of the students yesterday.’

b. Exthes faghame tria kila apo ta mila.
yesterday ate.1pl three kilo.pl.acc from the apple.pl.acc
‘We ate three kilos of the apples yesterday.’

5.1 Absolute and relative partitives
Partitives differ from juxtaposed measurement in some obvious ways. First of all, we are clearly 
dealing with two DP projections, since the inner nominal is definite and projects its own D layer. 
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Moreover, the two nominals, the inner nominal and the measure noun, as seen in the absolute 
partitive in (164), do not share case. Whereas the case of the measure noun is determined by the 
syntactic position of the partitive, the inner nominal receives accusative case by the preposition 
apo ‘from’. An overt PP can also appear in the case of relative measurement. Most frequently, 
however, the inner nominal appears in genitive case. Notice that genitive did have a partitive 
function in the diachrony of Greek and can still be found with absolute measurement in some 
more archaic and formal registers.

Unlike relative juxtaposed measurement, where a definite determiner can only appear 
under certain conditions and only in the case of absolute measurement, a definite determiner 
can readily head the partitive, as in (165) and (166), without any apparent difference in 
meaning. But whereas the number on the definite determiner is always SG with relative 
measures, in the case of absolute measures, its number value depends on the number of the 
measure noun.

(165) Exthes proslavame to ena/trianta tis ekato ton
yesterday hired.1pl the.sg.acc one thirty the.dat hundred.dat the.gen
fititon / apo tus fitites.
students.gen from the student.pl.acc
‘We hired one/thirty percent of the students yesterday.’

(166) a. Exthes faghame to ena kilo apo ta mila.
yesterday ate.1pl the.sg.acc three kilo.sg.acc from the apples.pl.acc
‘We ate one kilo of the apples yesterday.’

b. Exthes faghame ta tria kila apo ta mila.
yesterday ate.1pl the.pl.acc three kilo.pl.acc from the apple.pl.acc
‘We ate three kilos of the apples yesterday.’

As in juxtaposed measurement, an overt indefinite determiner is only possible with relative 
measures and functions as an approximator.

(167) Exthes proslavame ena trianta tis ekato ton fititon /
yesterday hired.1pl one thirty the.dat hundred.dat the.gen students.gen
apo tus fitites.
from the students.pl.acc
‘We hired approximately thirty percent of the students yesterday.’

(168) *Exthes faghame ena tria kila apo ta mila.
yesterday ate.1pl one three kilo.pl.acc from the apple.pl.acc
‘Intended: We ate approximately three kilos of the apples yesterday.’
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Partitives also differ from juxtaposed measurement with regard to verbal agreement patterns. 
Recall that in juxtaposed measurement, relative measures only licensed plural number on the 
verb, whereas absolute measures licensed both singular and plural, depending on the number 
of the measure noun. Partitives show the same pattern in the case of absolute measurement, as 
shown in (169) and (170). In the case of relative measurement, on the other hand, the pattern is 
reversed. Relative measures only license singular number, as shown in (171). Notice, however, that 
in positions where the partitive controls agreement on the verb the presence of an overt definite 
determiner (which, as we saw above, is always SG with relative measures) is strongly preferred.

(169) Exthes katanalothike ena kilo apo ta mila.
yesterday consumed.pass.3sg one kilo.sg.nom from the apple.pl.nom
‘A kilo of the apples was consumed yesterday.’

(170) Exthes katanalothikan tria kila apo ta mila.
yesterday consumed.pass.3pl three kilo.pl.nom from the apple.pl.acc
‘Three kilos of apples were consumed yesterday.’

(171) Exthes proslifthike/ *proslifthisan ??(to) ena/trianta tis
yesterday hired.pass.3sg hired.pass.3pl the.sg.acc one thirty the.dat
ekato ton fititon.
hundred.dat the.gen students.gen
‘One/ Thirty percent of the people that were hired yesterday were students.’

Notice finally that partitives behave like juxtaposed structures in terms of left-dislocation. The 
PP/genitive DP can be left-dislocated, as shown in (172a) and (173a). Moreover, the numeral 
and the semi-lexical/measure noun form a constituent that can be left-dislocated, as shown in 
(173b) and (173b) for relative and absolute measures, respectively.27

(172) a. Apo tus fitites proslavame exthes trianta tis ekato.
from the student.pl.acc hired.1pl yesterday thirty the.dat hundred.dat
‘We hired thirty percent of the students yesterday.’

b. ?Trianta tis ekato proslavame exthes apo tus fitites.
thirty the.dat hundred.dat hired. 1pl yesterday from the student.pl.acc
‘We hired thirty percent of the students yesterday.’

(173) a. Apo ta mila faghame exthes tria kila.
from the apple.pl.acc ate.1pl yesterday three kilo.pl.acc
‘We ate three kilos of the apples yesterday.’

 27 Examples (172b) and (173b) are somewhat degraded out-of-the-blue since MPs are not the best candidates for dis-
course topics.



44

b. ?Tria kila faghame exthes apo ta mila.
three kilo.pl.acc ate.1pl yesterday from the apple.pl.acc
‘We ate three kilos of the apples yesterday.’

It goes beyond the scope of this paper to provide an analysis of partitives that captures all the 
properties we have observed. In the case of relative partitive structures, a particular challenge 
that arises is the analysis of structures with overt definite articles.28 Since our current focus 
is on a different issue, i.e. the locus of proportionality and the interaction of proportionality 
with partitivity, we put such cases to the side. To be able to highlight the relevant differences 
with juxtaposed measurement structures in what follows, we will focus on cases without overt 
determiners and assume a structure that is minimally different from that assumed for juxtaposed 
measurement, as in (174) and (175).

(174)

(175)

As in juxtaposed structures, the covert head D is taken to be an existential quantifier. We assume 
that semantic partitivity is located in the meaning of the Measpart head and that the presence of the 
preposition apo ‘from’ or genitive case is a morpho-syntactic effect with no semantic import. We 
also assume a mereological account of plurality and adopt a treatment of the definite determiner 
in terms of the summation operator σ (Link 1983), so that the DPGen/PP phrase containing NP will 
always have the meaning in (176).29

(176) ⟦ DPGen ⟧c = σx [⟦ NP ⟧c (x)]

 28 Falco & Zamparelli (2019), discussing similar patterns in Italian, suggest that the definite article in this structure is 
akin to the definite article that appears in generic predication in these languages, as in (i) for Greek.

(i) I elefantes exun provoskides.
the.pl.nom elephants.pl.nom have.3pl trunks
‘Elephants have trunks.’

 29 Alternatively, apo ‘from’ can be identified with Measpart. Nothing really hinges on this choice in what follows.
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Given the quantificational meaning of D and the quantificational analysis of MPs we have 
adopted, there are two instances of QR, as shown in (177) and (178).

(177)

(178)

5.2 Proportional and non-proportional readings of partitive measurement
Following Solt (2018), Bale (2022), and Pasternak & Sauerland (2022) we will introduce 
partitivity in the meaning of Measpart by restricting the measure functions introduced by Measpart 
to domain-restricted functions. The question we want to consider is whether we can stick to a 
non-lexical analysis, where Measpart does not introduce proportionality, as in (179), or we need to 
move to the entry in (180), as proposed in Bale (2022).

(179)

(180)

Let us start by considering the entry in (179). What readings does this entry license? Obviously, 
resolving μc to a simple non-proportional measure, like cardinality or weight, the entry will 
derive the readings of examples with absolute MPs like tris ‘three’ and tria kila ‘three kilos’ in 
(173). In this case the degree predicate that will be the argument of the measure phrase will be 
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the one in (181) for, e.g., cardinality, where s is the sum of students. Assuming we hired three 
out of 6 students, (181) specifies the interval in (182). The absolute measure phrase tris ‘three’ 
correctly specifies the length of this interval.

(181) ⟦ vP5 ⟧c = λd. ∃y [y ⊑ σx [STUDENT(x)] & WE.HIRED.YEST(y) & μ#;s(y) ≥ d]

(182) LENGTH([0,3]) = 3

The same resolution of μc can also generate forward/partitive proportional readings, when (181) 
is the argument of a percentage. Since the function is domain-restricted, the maximal degree in the 
domain of (181) is the cardinality of the sum of students. Setting the denominator to ENDPOINTt 
(the only option, since ENDPOINTb picks out zero), the percentage specifies the proportional 
relation of the cardinality of the students we hired to the cardinality of the sum of students.

(183)

The entry in (179) also makes successful predictions in case μc is resolved to proportional measure 
functions. Recall that we wish to derive the fact that an example like (163) only allows for forward/
partitive proportional readings, not any other proportional readings. Consider first the proportional 
measure function in (185). Due to partitivity, the function is actually domain-restricted, as in (186). 
In a context where we hired 3 out of 6 students, the degree predicate in (184) will pick out the 
interval [0, .5]. The maximal degree in the domain of the predicate is the maximal degree in the 
range of μ1;s, 

| STUDENTS|
| STUDENTS|

 , which equals 1. The percentage, thus, specifies correctly the proportional 

relation of the number of the students we hired to the total number of students.

(184) ⟦ vP5 ⟧c = λd. ∃y [y ⊑ σx [STUDENT(x)] & WE.HIRED.YEST(y) & μ2;s(y) ≥ d]

(185) μ2 = λx. |x|⁄|⊔ STUDENTS|

(186) μ2;s = λx: x ⊑ ⊔ STUDENTS. |x|⁄|⊔ STUDENTS|

(187)       ([     .   
         (⟦   ⟧ 

= . 
  

  
   

Assume next that μc is resolved to the function in (189), the one that has been responsible for 
generating reverse proportional readings. Due to partitivity, the function is domain-restricted, 
as in (190). Crucially, since the domain-restriction is determined grammatically by Measpart, the 
domain of the function is restricted to sub-aggregates of the sum of students (not the sum of 
hirees, as before). In a context where we hired 6 people, 3 of whom are students, the degree 
predicate in (188) will pick out the interval [0, .5]. The maximal degree in the domain of the 
predicate is the maximal degree in the range of | STUDENTS|

| HIREES.YEST|2; ,sm 
 . What is its value? (191) will only 
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be true in contexts in which the cardinality of the sum of students is equal to the cardinality of 
the sum of people we hired. Then the value will be 1 and the percentage will provide the right 
proportional specification of the relation of the two proportions. In this context, however, the 
forward proportional reading also comes out true since | STUDENTS| | STUDENTS|

| HIREES.YEST| | STUDENTS|= 
  . More generally, 

given the grammatically determined domain-restriction on the measure function and the fact 
that the only available choice for the denominator in the percentage is ENDPOINTt, any context 
in which (163) is true under the measure function in (190) will also be a context in which 
(163) is true under the measure function in (186). The same is true regardless of the choice 
of proportional measure function, they are all rendered invisible and identical to a measure 
in which the denominator is identical to the measure of the plural individual denoted by the 
nominal complement of Measpart.

(188) ⟦ vP5 ⟧c = λd. ∃y [y ⊑ σx [STUDENT(x)] & WE.HIRED.YEST(y) & μ1;s(y) ≥ d]

(189) μ1 = λx. |x|⁄|⊔ HIREES.YEST|

(190) μ1 = λx :x ⊑ ⊔ STUDENTS. |x|⁄|⊔ HIREES.YEST|

(191)       ([     .   
         (⟦   ⟧ 

= . 
  

  
   

The account achieves, in the presence of percentages, the same result that Bale’s (2022) entry in 
(180) achieves for partitives in all measurement constructions (and in much the same way). The 
advantage of Bale’s entry, as we discussed in section 2.1., is that it correctly predicts that partitive 
measurement prohibits non-partitive proportional readings across the board. For example, we 
saw that (the English version of) (192) only gives to partitive/forward proportional readings.

(192) Exthes proslavame perisoterus apo tus fitites apo oti simera.
yesterday hired.1pl more.pl.acc from the student.pl.acc from rel today
‘We hired more of the students yesterday than today.’

As we will see, however, there is an issue with simply adopting Bale’s entry instead of the one in 
(179). The issue does not have to do with the distribution of proportional readings, but with how 
the entry derives non-proportional readings of partitives.

(193)

Let us first reassure ourselves that we can unproblematically combine Bale’s entry in (193) 
with the proposed semantics of n percent. Consider, again, the example in (163). Under Bale’s 
analysis, the degree predicate in (194) is the same regardless of the choice of measure function 
since the denominators in the specification of all proportional measure functions are factored 
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out. Assuming that the LIMIT function is set to LIMITt, this predicate is exactly identical to the 
one in (184), except that the proportional measure is grammatically derived. Feeding (194) 
to a percentage, then, will lead to exactly the same result, a partitive/forward proportional 
reading.

(194)

(195)

Bale claims that the same entry can derive simple cardinal readings when LIMIT is set to LIMITb. 
He assumes that the minimal degree in the range of a domain-restricted measure function μDIM;x is 
1, the measure of the atoms that are a part of x. If so, the meaning of vP5 comes out as in (196); 
it picks out non-proportional degrees of cardinality.

(196)

The same setting of LIMIT is said to derive cardinal readings of comparatives like (192). Following 
Solt (2018), Bale argues that the English version of (192) also has a simple cardinal reading; it 
can be true in a scenario in which we hired 10 out 20 students yesterday and 8 out of 10 students 
today. Notice that the proportional partitive reading is false in this scenario.

The first thing to note is that it is not possible to derive cardinal readings in this way under 
our own assumptions. Since we have been assuming that all the relevant measure functions 
(domain-restricted ones included) define ratio scales, all the functions discussed here will have 
a zero degree in their range (even if no individual in the domain of the function is mapped  
on zero.)30 Setting LIMIT to LIMITb, then, will never be an option in the relevant cases above 
since this will lead to undefinedness. There is at least one reason to think that this is not an 
unwelcome result. Contra the judgements reported in Bale (2022), and Solt (2018) for English, 
we do not detect a simple cardinal reading for the comparative in (192). Indeed, we judge (192) 
false in the scenario above.31 The problem is, however, that we still need to be able to derive 

 30 As Bale (2022) notes, his account of non-proportional readings also requires that the domains of mass nouns have 
atomic elements. This is needed in order to account for the non-proportional readings of examples with mass nouns 
as in (i).

(i) I removed more of the red paint that was on my left boot than the blue paint that was on my right boot.
 31 One possible explanation for the discrepancy is that some speakers might take the definite descriptions the students in 

the main- and than-clause of the comparative to refer to the same sum of students, the sum of all relevant students. 
A partitive proportional reading then is true in a scenario in which we hired 10 out 20 students yesterday and 8 out 
of 10 students today, since the proportions that are actually compared are 10/30 and 8/30.
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non-proportional readings to handle partitive measurement with absolute measure phrases like 
tris ‘three’ and tria kila ‘three kilos’. Under current assumptions, only the entry in (179) can 
derive non-proportional readings.

To summarize, the entry in (179) generates non-proportional readings, but it over-generates 
proportional readings in comparatives. Adopting Bale’s entry in (180), on the other hand, derives 
the right proportional readings across the board, but under-generates non-proportional readings. 
At this point we have not been able to solve this puzzle by defining a single entry for Measpart that 
at the same time (a) only generates the right proportional readings and (b) only generates non-
proportional readings in the presence of absolute MPs. Although this issue does not affect the core 
empirical domain of interest in this paper (i.e. the interpretation of partitive measurement with 
relative measures), it affects every analysis of partitive measurement the moment proportional 
measure functions are admitted (as we have argued is necessary in the previous sections). For the 
time being, we will assume an ambiguity account, according to which both options are available. 
Bale’s entry is the default entry for Measpart and the entry in (179) only becomes available as a 
last resort in the presence of absolute measure phrases. A more principled account awaits to be 
formulated.

6 Conclusions
This paper addressed a key issue in the grammar of nominal measurement, namely the source 
of proportionality in relative readings of nominal measurement structures. We identified 
four available analytical options employed in previous literature. A lexical analysis places 
proportionality in the meaning of a functional element that introduces measures. A standard-
based analysis introduces proportionality via manipulating a contextual standard. A proportional 
μ-based analysis introduces proportionality via contextually introduced proportional measure 
functions. Finally, in a modifier-based analysis, proportionality enters the truth-conditions 
solely via the meaning of a relative modifier. The question is whether nominal measurement 
structures are (or can be) in some sense inherently proportional (in which case they would 
be subject to a lexical analysis of some sort or other) or whether proportionality comes into 
the meaning of proportional measurement via some external factor, like the manipulation of 
a contextual standard, the choice of a proportional measure function, or the presence of a 
relative modifier.

We investigated this question focusing in three non-standard-sensitive constructions 
with relative modifiers in Greek, namely comparatives with differential percentages, reverse 
proportional readings of juxtaposed nominal measurement structures, and forward proportional 
readings of percentages of partitives. We argued that the different readings of comparatives 
with differential percentages provide novel evidence in favor of proportional μ-based analyses. 
Interestingly, this is so even in the presence of an additional source of proportionality, the 



50

meaning of the percentage itself. We additionally provided several reasons to revise modifier-
based analyses of proportionality in juxtaposed and partitive measurement structures, at least 
for the language under investigation, Greek. In the case of juxtaposed measurement, we argued 
that a proportional μ-based analysis is both sufficient and necessary to derive the distribution 
of proportional readings we observed. In doing so, it was essential to make use of a difference 
between two types of proportional measure functions, domain-restricted and non-restricted 
measure functions. Moreover, in our quest to provide an analysis of percentages that can 
simultaneously (a) handle their uses in all structures under investigation and (b) solve an over-
generation problem faced by our proportional μ-based analysis, we proposed an alternative 
analysis of differential comparatives and (differential) measure phrases, in which measure 
phrases do not denote individual degrees but rather measure the lengths of degree predicates. 
Partitive measurement structures proved to be the most inconclusive case regarding the locus 
of proportionality and the only one of the cases under investigation for which inherent/lexical 
proportionality might be required.
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