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Abstract
In this paper, we introduce a novel domain-general, statistical learning model for P&P 
grammars: the Expectation Driven Parameter Learner (EDPL). We show that the EDPL 
provides a mathematically principled solution to the Credit Problem (Dresher 1999). 
We present the first systematic tests of the EDPL and an existing and closely related 
model, the Naïve Parameter Learner (NPL), on a full stress typology, the one generated 
by Dresher & Kaye’s (1990) stress parameter framework. This framework has figured 
prominently in the debate about the necessity of domain-specific mechanisms for 
learning of parametric stress. The essential difference between the two learning 
models is that the EDPL incorporates a mechanism that directly tackles the Credit 
Problem, while the NPL does not. We find that the NPL fails to cope with the ambiguity 
of this stress system both in terms of learning success and data complexity, while the 
EDPL performs well on both metrics. Based on these results, we argue that probabilistic 
inference provides a viable domain-general approach to parametric stress learning, 
but only when learning involves an inferential process that directly addresses the 
Credit Problem. We also present in-depth analyses of the learning outcomes, showing 
how learning outcomes depend crucially on the structural ambiguities posited by 
a particular phonological theory, and how these learning difficulties correspond to 
typological gaps.
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1 Introduction
1.1 Overview

Understanding how learners overcome the pervasive ambiguity inherent to the language 
acquisition process is a foundational question of linguistics, and cognitive science more 
generally. In this paper, we focus on a type of structural ambiguity sometimes referred to as 
the Credit Problem (Dresher 1999). While this term is best known from learnability work in 
the Principles and Parameters framework (P&P; Chomsky 1981), the Credit Problem is inherent 
to any linguistic theory in which distinct structural analyses may underlie the same observed 
linguistic form in different contexts or languages. The Credit Problem arises when the learning 
data are compatible with multiple structural analyses (e.g., [kalàmatána] can be analyzed as 
(kalà)(matá)na or ka(làma)(tána)), and the learner must decide which analysis – and which 
corresponding constraint or rule in the grammar – the observed data should reinforce (e.g., 
Foot=Trochee or Foot=Iamb); see also Clark (1989; 1992) for early work on these concepts in 
P&P. There have been many proposals for how learners tackle the Credit Problem. One approach 
emphasizes specialized parsing mechanisms and data forms that remove or reduce ambiguity, 
an example of which is the well-known idea of triggers (Gibson & Wexler 1994; Berwick & 
Niyogi 1996; Lightfoot 1999). This approach has primarily been explored in the context of P&P 
syntax (Fodor 1998; Sakas & Fodor 2001; Pearl 2007; Pearl & Lidz 2009; see Sakas 2016 for 
an overview), although one strand of this approach – relying on domain-specific mechanisms 
to reduce ambiguity – has also been explored in P&P phonology (Dresher & Kaye 1990; Pearl 
2007; 2011). Another approach to the Credit Problem exploits the structure of the grammatical 
framework, as in the classic Optimality Theoretic (OT; Prince & Smolensky 1993/2004) 
solution to learning rankings using Error-Driven Constraint Demotion (Tesar 1995; see also 
Tesar 2013 for an approach relying on the structure of Output-Driven Maps). This OT-specific 
approach relies on the ranking logic of winner-preferring and loser-preferring constraints and 
has been applied extensively in phonology (e.g., Tesar & Smolensky 1998; 2000; Pater 2010) 
in addition to applications in various other domains (e.g., pragmatics: Blutner & Zeevat 2004; 
syntax: Rodríguez-Mondoñedo 2008). A third general approach combines domain-general 
statistical learning strategies with theories of universal grammar. This approach has been 
applied extensively to constraint-based learning of hidden phonological structure (Boersma 
2003; Apoussidou 2007; Jarosz 2006; 2013a; 2015; Boersma & Pater 2016; see Jarosz 2016; 
2019 for overviews), and to a lesser extent in the domain of P&P syntax (Yang 2002; Straus 
2008; Gould 2015). Clark’s (1989; 1992) work on genetic algorithms may also be classified 
under this general approach.

1.2 Domain specificity and the Credit Problem in parametric stress learning

The Principles and Parameters (P&P) approach to language typology and acquisition (Chomsky 
1981) has provided important insights in both phonological and syntactic theory. In phonology, 
parametric models exist in the domains of word stress (Halle & Vergnaud 1987; Dresher & Kaye 
1990; Dresher 1999; Hayes 1995), consonant assimilation (Archangeli & Pulleyblank 1994; 
Cho 1999), and syllable structure (Blevins 1995). In syntax, parametric models have been 
proposed for phenomena like phrase headedness, null subjects, null topics, wh-movement, 
nonconfigurationality, polysynthesis, X-bar phrase structure, and compounding; see Van 
Oostendorp (2015) and Huang & Roberts (2017) and references therein. In all of these models 
(except perhaps the consonant assimilation models), the parameters control hidden structure: 
depending on the parameter settings, different structures may be assigned to the same overt 
data points.

Within phonology, the Credit Problem is particularly clear in the domain of metrical stress. 
To succeed, the P&P learner must discover the language-specific settings of stress parameters, 
such as footing directionality and headedness, which are not directly observable in the 
language input. In this context, the Credit Problem refers to the learner’s uncertainty about 
which parameter setting to “credit” for a successful prediction and which to “blame” for an 
unsuccessful prediction. As mentioned above, to deal with the Credit Problem, existing work 
on stress parameter learning (Dresher & Kaye 1990; Pearl 2007; 2011) posits domain-specific 
learning mechanisms (see also Gibson & Wexler 1994; Berwick & Niyogi 1996; Lightfoot 1999). 
These are learning mechanisms that reference the contents of Universal Grammar (UG), such 
as feet and syllables, and thus must be specified innately as part of the language endowment. 
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This contrasts with learning approaches in OT, where existing models rely overwhelmingly 
on domain-general learning strategies outside of the language endowment (see, e.g., Tesar 
1995; Boersma 1997; Tesar & Smolensky 2000; Boersma & Hayes 2001; Jarosz 2013a; b; 2015; 
Boersma & Pater 2016).1

Contra Dresher & Kaye (1990) and Pearl (2007; 2011), we argue that a domain-general learner 
can successfully address the Credit Problem in parametric stress as long as it is equipped 
with mechanisms for performing analysis on incoming data. We propose a learning model, 
the Expectation Driven Parameter Learner (EDPL), that tackles the Credit Problem directly 
using probabilistic inference: the EDPL’s learning updates formalize “credit” as a probabilistic 
expression. We demonstrate that these updates can be efficiently implemented in an online, 
incremental learner. An “online” learner sees one data point at a time, as opposed to a “batch” 
learner, which sees all data simultaneously. An “incremental” learner makes small adjustments 
to its current hypothesis at every iteration instead of switching between radically different 
ones. We present systematic tests evaluating the performance of both the EDPL and a simpler 
learning model, the Naïve Parameter Learner (NPL; Yang 2002), on the complete typology 
of 302 stress systems defined by Dresher & Kaye’s 11 parameters, the first systematic tests of 
either model on a complete stress typology.

Our results indicate that the NPL does not possess the necessary mechanisms to cope with 
the pervasive ambiguity inherent to parametric stress, while the EDPL does. We conclude 
that domain-general learning of parametric stress remains a viable hypothesis but only if 
it incorporates mechanisms that directly address the Credit Problem. These conclusions 
have implications about the nature and content of Universal Grammar (UG), but they also 
complement theoretical work within and across frameworks by enriching our understanding 
of various theoretical frameworks’ computational properties. While our focus is on the P&P 
approach to metrical phonology, the learning models we examine are broadly applicable to 
P&P theories in phonology and beyond, and connect to current approaches to learning in 
Optimality Theory (OT; Prince & Smolensky 1993/2004). By contributing to the development 
of explicit learning models in competing frameworks, such as P&P and OT, we construct 
tools to help uncover differences in predictions. Conversely, computational analyses of 
theoretical frameworks can also uncover deep similarities between divergent approaches 
(for an overview of such results in phonology, see Heinz 2011a; b). Our contributions also 
include an in-depth discussion of how ambiguity influences learning outcomes and how that 
ambiguity is linked to the representational assumptions specific to each linguistic theory. 
The paper concludes with a discussion of how making explicit connections between learning 
and representational assumptions promises to yield novel empirical sources of evidence to 
differentiate linguistic theories.

The rest of this paper is structured as follows. We present a detailed overview of the Credit 
Problem in Dresher & Kaye’s (1990) word stress P&P framework (§2) and discuss the challenges 
it raises for existing approaches (§3). After this, the learners are discussed: the NPL, in §4 and 
the EDPL, in §5. In §6 we present the first systematic typological tests of both the NPL and 
EDPL in the stress domain, while §7 presents an in-depth analysis of the learning outcomes. 
Concluding remarks are offered in §8.

2 Challenges in learning parametric stress
2.1 Global and local ambiguity

Dresher & Kaye (D&K; 1990) define a set of 11 parameters of stress assignment that cover a 
range of typologically varied stress systems. We choose their parametric system as a concrete 
test case to examine the broader learning challenges posed by stress parameter setting – it is 
also the most concretely implementable of the available stress parameter systems (see §1). The 
parameters proposed by D&K and our shorthand notation (to be used henceforth) are presented 
in (1) below. Like most generative linguistic systems of any complexity, this system of 11 
parameters results in surface patterns with widespread ambiguity, as discussed by D&K.

1 Although the Markedness-over-Faithfulness bias (Prince & Tesar 2004) is a domain-specific addition to a 
domain-general strategy.

https://doi.org/10.16995/glossa.5884


4Nazarov and Jarosz 
Glossa: a journal of 
general linguistics  
DOI: 10.16995/glossa.5884

(1) i. The word-tree is strong on [Left/Right] (Main=Left/Right)
ii. Feet are [Binary/Unbounded] (Bounded=On/Off)
iii. Feet are built from the [Left/Right] (Dir=L-to-R/R-to-L)
iv. Feet are strong on the [Left/Right] (Foot=Trochee/Iamb)2

v. Feet are quantity sensitive (QS) [Yes/No] (QS=On/Off)
vi. Feet are QS to the [Rime/Nucleus] (CVC=Light/Heavy)
vii. A strong branch of a foot must itself branch [No/Yes] (HeavyHead=On/Off)
viii. There is an extrametrical syllable [No/Yes] (XM=On/Off)
ix. It is extrametrical on the [Left/Right] (XMdir=Left/Right)
x. Feet consisting of a single light syllable are removed [No/Yes] 

(Degenerate=On/Off)
xi. Feet are noniterative [No/Yes] (SecStress=On/Off)

For D&K, bounded feet can have the shapes {(L), (LL), (H), (HL), (LH)}. Feet of the shape 
(H́L) are allowed (contra Hayes 1995). Parameter (1vi) only matters if QS=On; if QS=Off, all 
syllables are treated as light, even when CVC=Heavy. Similarly, parameter (1ix) only matters 
if XM=On; if XM=Off, the setting of XMdir does not matter.2

When HeavyHead=On, then after feet are constructed, all feet with light syllable heads are 
deleted, as in LLHLH → (ĹL)(H́L)(H́) → LL(H́L)(H́). In a quantity-insensitive language, all 
syllables are light, and thus, all feet are deleted. When Degenerate=On, all feet consisting of 
one light syllable are deleted; in this, we follow Dresher (1999); D&K’s original formulation 
of (1x) is slightly different and somewhat underspecified: “A weak foot is defooted in clash”. 
Secondary stress feet are always constructed, but when SecStress=Off, the heads of non-main 
feet do not project stress (D&K’s original name for this parameter, Noniterativity, is somewhat 
misleading). This means that when SecStress=On, all feet have stress.

The most ambiguous stress pattern in D&K’s framework is initial/final stress. A form with 
initial stress, as in (2), could be attributed to settings of completely unrelated parameters, 
corresponding to distinct assignments of hidden structure, as illustrated in (2a–c). In (2a), 
binary trochees are built throughout the word, of which the leftmost receives main stress, with 
no overt stress projected from the other trochees. In (2b), a single unbounded trochee is built 
over the entire word, and it receives main stress; note that this is consistent with Main=Left 
or Main=Right. In (2c), no feet are built because HeavyHead=On requires that all foot heads 
be heavy, while all available syllables are light because of QS=Off. Since Main=Left, the 
leftmost element (here, the leftmost syllable) is assigned main stress. This example involves 
global ambiguity: no further data from the same stress system will disambiguate between the 
various hypotheses in (2) since they all predict initial stress for words of any length and syllable 
structure. Acquiring any of these three settings may be considered as correctly acquiring 
the language.

(2) a. (σ́σ)(σσ)(σσ)
Foot=Trochee, Main=Left, SecStress=Off

b. (σ́σσσσσ)
Foot=Trochee, Bounded=Off

c. σ́σσσσσ
Main=Left, QS=Off, HeavyHead=On

In (2), the three sets of parameter settings are compatible with one another: combining any 
of these three settings will also yield initial stress. In other cases, structural analyses of the 
same overt stress pattern can be mutually incompatible. The pattern with penultimate main 
stress and alternating secondary stress provides an example, as shown in (3) for odd-syllable 
words and (4) for even-syllable words. In the iambic parses in (3a) and (4a), Right-to-Left 
iambic feet are built with right extrametricality such that degenerate feet are allowed, and 
the rightmost foot receives main stress. In (3b) and (4b), Right-to-Left trochaic feet are built 
without extrametricality and degenerate feet are disallowed. This is also global ambiguity since 
both types of parses yield the same stress patterns for all words. However, here the learner must 

2 We use “trochee”/“iamb” as a shorthand for “left-headed”/“right-headed” even when feet are longer than two 
syllables.
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find a consistent combination of several interdependent parameters to produce the right stress 
pattern. If the learner chooses trochees, it must also posit no extrametricality and no degenerate 
feet; if it chooses iambs, it must also posit right extrametricality and permit degenerate feet.

(3) a. (σσ̀)(σσ́)<σ>
Foot=Iamb, Dir=R-to-L, XM=On, Degenerate=On

b. σ(σ̀σ)(σ́σ)
Foot=Trochee, Dir=R-to-L, XM=Off, Degenerate=Off

(4) a. (σ̀)(σσ̀)(σσ́)<σ>
Foot=Iamb, Dir=R-to-L, XM=On, Degenerate=On

b. (σ̀σ)(σ̀σ)(σ́σ)
Foot=Trochee, Dir=R-to-L, XM=Off, Degenerate=Off

Such cases of global ambiguity require learners to be sensitive to the interdependence between 
parameters: the learning data will never provide unambiguous information about the settings of 
some parameters. In (3–4), both odd- and even-parity words are compatible with trochees and 
iambs: there is no learning data that will unambiguously require one or the other foot type. The 
same holds for the extrametricality, directionality and degenerate foot parameters.

In addition to global ambiguity, the learner must also cope with local ambiguity – ambiguity in 
the analysis of a particular data point that must be resolved, but requires reference to other data 
points. Many data points are uninformative for setting a particular parameter. For instance, 
words consisting only of light syllables are compatible with all four possible settings of the 
quantity-sensitivity parameters. Similarly, words with an even number of (non-extrametrical) 
syllables are consistent with both Left-to-Right and Right-to-Left footing.

The learner must be able to combine information across multiple data forms to arrive at a grammar 
that accounts for all observed stress patterns. For example, a language with antepenultimate 
main stress and alternating leftward secondary stresses (e.g., [ta.mà.na.pò.la.tú.ti.la]) must 
be analysed with Right-to-Left trochees and right extrametricality. However, each individual 
word has an alternative analysis with Left-to-Right trochees. For even-parity words like  
<na>(pò.la)(tú.ti)la, this Left-to-Right analysis requires left extrametricality, whereas odd-
parity words like (mà.na)(pò.la)(tú.ti)la require no left extrametricality. It is only by comparing 
even-parity and odd-parity words that the learner can conclude that the correct analysis is 
indeed Right-to-Left. Note, this conclusion also requires sensitivity to the interdependence 
between parameters since it depends on identifying a consistent setting of the extrametricality 
parameters which, in combination with the directionality setting, produces the correct stress 
pattern across all forms.

Thus, learning parametric stress requires facing ambiguity resulting from two types of 
interdependence: interdependence between parameters and interdependence between word 
forms. The data may be globally ambiguous and require the learner to commit to a combination 
of interdependent parameter settings to specify a working grammar. Moreover, a given learning 
datum may be locally ambiguous and require the learner to cope with interdependence between 
data forms to set crucial parameter settings. This results in a difficult computational challenge 
since the learner cannot solve the problem by considering parameters or data points in isolation. 
Such ambiguities, especially the one in (3), are also relevant in other frameworks like Hayes (1995) 
or OT approaches like Tesar & Smolensky (2000), but we use D&K’s framework as a case study.

2.2 The Credit Problem

Interdependencies like these are a challenge for an incremental learner. When the learner’s 
current hypothesis correctly generates the stress pattern for an observed word, the learner 
faces the Credit Problem: it is unclear which parameter setting to credit with this correctness. 
For example, if the learner’s current grammar generates (σσ̀)(σσ́) with Right-to-Left iambs, 
matching the observed pattern σσ̀σσ́, the learner does not know whether it is iambic footing 
or Right-to-Left directionality that should get credit for this match. The same problem occurs 
when the model fails to generate the correct stress pattern. For example, if the observed 
pattern is σσ̀σσ́ and the learner’s current grammar produces the mismatching <σ>(σ́σ)σ, it 
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is not immediately obvious whether left extrametricality, the presence of extrametricality, the 
trochaic foot, or the lack of degenerate feet led to the mismatch between the observed and 
the predicted stress pattern. Simply observing that a combination of parameter settings leads 
to a match or mismatch does not mean that all parameter settings should share credit or 
blame equally.

To address the Credit Problem, the learner must have a way to gauge which parameters are 
the most relevant to and responsible for a given data point. Not only must the learner resolve 
this ambiguity and ultimately succeed in reaching the target grammar, it must do so using a 
computationally feasible learning procedure. In addition to considering learning success, in 
this paper we consider two fundamental measures of computational complexity. Processing 
complexity refers to time spent computing a learning update for an individual datum and data 
complexity refers to the number of data forms needed to reach the target grammar. Both must 
be feasible for the overall learning process to be feasible. In the next section, we review some 
possible strategies for coping with the Credit Problem and dealing with the interdependencies 
inherent to learning parameter settings discussed above.

3 Strategies for coping with ambiguity and the Credit Problem
Given the preceding discussion, it should be clear that brute-force approaches cannot cope 
with the computational challenges inherent to learning parameter settings from structurally 
ambiguous data, as has been discussed extensively in previous work (D&K 1990; Fodor 1998; 
Dresher 1999; Yang 2002; Pearl 2011; Gould 2015). For example, Fodor (1998) discusses a 
strategy in which the learner considers all combinations of all parameter settings for each 
learning datum to discover all successful analyses of the datum. The parameters that have a 
consistent setting across all successful analyses are crucial to that datum, and the learner sets 
those parameters in their grammar. Data points that provide crucial evidence for the setting 
of some parameter – because they are consistent with only one setting – are called triggers for 
that parameter (Gibson & Wexler 1994; Berwick & Niyogi 1996; Lightfoot 1999). With this 
capacity to identify triggers, this learner could gradually accumulate evidence about individual 
parameter settings, gathering whatever information each individual datum provides. It would 
therefore provide a way to cope with some cases of local ambiguity.

Unfortunately, this strategy has two fatal flaws. First, as Fodor points out, explicitly enumerating 
all combinations of all parameter settings for each datum is computationally intractable: the 
processing complexity grows exponentially with the number of parameters. Second, this strategy 
would fail to learn a complete grammar in cases of global ambiguity like examples (2–4). There, 
successful analyses of the learning data vary on all settings of numerous parameters: no single 
parameter setting is shared between them, and no datum in the language can help this learner 
break out of the ambiguity. In other words, the data are not guaranteed to contain triggers for 
every parameter. For extensive discussion of this issue in the domain of syntactic parameters, 
see Gibson & Wexler (1994). Examples (2–4) highlight the point that lack of triggers is not an 
issue specific to syntax, but rather a general challenge for learning parameter settings. Thus, 
this strategy fails to cope with interdependencies between parameters.

In the domain of stress, several learning models for parameter setting have been proposed and 
can be broadly classified either as domain-specific or domain-general. Both domain-specific 
and domain-general learning approaches assume UG is available to the learner: the learner has 
access to the universal set of parameters, their possible settings, and the system that generates 
linguistic structures based on specified parameter settings. They differ, however, in whether the 
posited learning mechanisms are domain-specific themselves.

Domain-specific learners for parameters may have prior knowledge of ambiguities that arise for 
linguistic data for a particular set of parameters, the best order in which to set these parameters, 
and/or default settings of these parameters (Pearl 2007). These mechanisms do not generalise 
beyond the specified grammatical system – they are intrinsically tied to particular parameters.

In contrast, domain-general learners, while having access to UG and being able to manipulate 
parameters, have learning strategies that do not depend on the content or identity of any 
specific parameter (domain-specific knowledge). Crucially, a domain-general learner cannot 
rely on the identity of a parameter to make inferences about its setting or connect it to 
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data. Domain-general learners rely on mechanisms that generalise beyond a given system or 
linguistic domain.

3.1 Domain-specific hypotheses

In the domain of stress, one well-known domain-specific learning approach relies on cues to 
parameter setting (D&K 1990; Pearl 2011). Cues are overt data patterns that identify triggers for 
a particular parameter setting or group of parameter settings. Each parameter is hypothesised 
to be associated with a cue for at least one setting, and one setting may be specified as default.

Cues tell the learner which data points are informative for a given parameter setting. For 
instance, if we again consider the example of ambiguity in initial-stress words like σ́σσσσσ (see 
(2) in §2.1), cues can tell the learner that this data point is uninformative for many different 
parameters. D&K (1990) propose that QS=Off by default and is only overturned if the learning 
data contain a pair of words with the same length in syllables but different stress patterns.3 D&K 
specify that QS=Off is incompatible with Bounded=On and HeavyHead=On, which means 
that if there is no evidence for QS=On, these parameters will be set to Bounded=Off and 
HeavyHead=Off, respectively.4 However, if QS=On, the learner assumes that Bounded=Off 
until it encounters a stressed light syllable away from the word edge. Similarly, if QS=On, the 
learner presumes HeavyHead =On until it sees a stressed light syllable away from the word 
edge or a light syllable with secondary stress. Finally, the learner presumes that SecStress=Off 
until it encounters a data point with secondary stress. Word-initial stress in σ́σσσσσ does not 
fit the cues for QS or SecStress. If all words in this language have initial stress, the learner 
will decide that this language is quantity-insensitive (QI) with bounded feet, HeavyHead=Off, 
and no overt secondary stress, as in (2a). The combination of default settings and cues lets 
the learner circumvent the interdependencies between parameters and between data points 
discussed above. Notably, this learning strategy commits the learner to a particular analysis of 
a globally ambiguous pattern. Although the parametric system can represent the other analyses, 
they will never be selected by a learner with these cues and defaults. In contrast, the domain-
general learners explored in §§4–7 must cope with all analyses of such patterns.

In addition to cues for each parameter, D&K specify an order in which parameters should be 
acquired.5 This is another way in which domain-specific learners can cope with interdependencies 
between parameters. For instance, the cue for Bounded=On is the presence of stressed non-
peripheral light syllables. To determine whether a syllable is light and non-peripheral, the 
learner first needs to know which syllables are heavy in the language (determined by the two QS 
parameters) as well as which syllables are peripheral (determined by the two extrametricality 
parameters). For this reason, D&K posit that the acquisition of foot (un)boundedness occurs 
after the acquisition of quantity-(in)sensitivity and (non-)extrametricality.

Gillis et al. (1995) tested D&K’s learner on all 216 parameter specifications with Degenerate=Off 
permitted in D&K’s original framework and found that 173 (80.1%) of these were correctly 
learned. Gillis et al. only considered words of 2–4 syllables; Dresher (1999: 40fn11) hypothesizes 
that considering longer words will lead to a greater success rate; however, effectiveness 
comparisons between D&K’s learner and domain-general strategies do not yet exist.

More recently, Pearl (2007) examines both domain-general and domain-specific strategies for 
learning English stress. She shows that only some parameter orders lead to successful learning of 
stress parameters in English, assuming a parameter is set when more data points unambiguously 
support that setting compared to the opposing setting. Pearl concludes from this that either 
cues or a pre-determined order of setting parameters are necessary for acquiring English stress. 
Pearl (2011) also shows that several versions of the domain-general Naïve Parameter Learner 
(NPL; Yang 2002) overwhelmingly fail to find the desired analysis of English stress. Based on 
these considerations, she argues domain-specific mechanisms are essential.

3 D&K acknowledge that this cue would also be triggered by morphological/lexical influences on stress. Dresher 
(2016) underscores the importance of contrast in distinguishing these factors. Morphological/lexical factors are 
beyond the scope of this paper, but see Jarosz (2015) for applications of Expectation Driven Learning (the algorithm 
that the EDPL is based on, see §5) to lexical stress in the OT framework.

4 In our simulations, we disregard such built-in dependencies between parameters since they make the model 
more complex and do not affect which stress patterns the model generates.

5 The proposed order is QS – CVC – SecStress – XM/XMdir – Bounded –Main – HeavyHead – Dir/Foot. Degenerate 
is not included in this order because D&K consider it to be in a separate phonological module.
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Thus, Pearl’s arguments are based on a direct comparison of domain-specific and domain-
general learning strategies, but the argument focuses on one analysis of one language. D&K 
propose a parametric system and a detailed domain-specific learning model for that system, 
but they do not explore alternative models with weaker assumptions. This is the question we 
undertake in this paper by systematically evaluating two domain-general learning models on 
D&K’s typology.

3.2 Domain-general hypotheses

Domain-general approaches have not been extensively explored in the domain of stress 
parameter learning. Beyond our own proposal, the only application of domain-general learning 
models to parametric stress is the series of studies by Pearl (2007; 2011) discussed above 
examining the learning of English stress using the NPL (Yang 2002).

The NPL is an online, incremental learning algorithm for probabilistic P&P grammars, the 
details of which are presented in §4. The algorithm is naïve in the sense that no attempt is 
made to address the Credit Problem directly. No analysis of the learning data is performed: 
no attempt is made to determine which parameters are crucial, which are incompatible, nor 
which are irrelevant for the observed data. As acknowledged by Yang (2002), this can lead to 
incorrect updates and inconsistencies during learning.

Pearl (2011) proposes a variant of the NPL (based on a similar proposal in Yang 2002), which 
we call “pseudo-batch” here, which is described in §4.3 and aims to limit the potential harmful 
effects of such inconsistencies. A conceptually similar method of smoothing is to use a Bayesian 
update rule (Pearl 2007; 2011; Gould 2015), where previous data points’ propensity towards a 
particular parameter setting increases or decreases the influence that the current data point’s 
preference for a parameter setting has on the grammar. Pearl finds some improvement in 
performance using the pseudo-batch variant of the NPL, but ultimately concludes that neither 
adding pseudo-batch learning, nor adding a Bayesian update rule (nor both) is sufficient to 
consistently learn English stress. In the simulation results presented in §6.2, we show that, 
while pseudo-batch learning increases the success rate of the NPL, it still does so in a very 
limited fashion.

3.3 Discussion

To summarise, the most prominent and extensively studied approaches to the Credit Problem 
in stress parameter learning rely on domain-specific learning mechanisms. Existing work on 
domain-general learning of stress (Pearl 2011) is limited to one language (English) and one 
learning model (NPL).

Domain-specific approaches have a number of drawbacks. One is the strong assumptions 
made about the genetic endowment, since they assume domain-specific knowledge beyond 
the knowledge of UG itself. Tesar & Smolensky (1998: 255–257) discuss several additional 
challenges for the domain-specific approach. The learning model proposed by D&K is entirely 
specific to their parameters. The learning model cannot be applied to any other stress parameter 
system or linguistic domain, let alone to another cognitive domain. This also means the 
predictions of the learning model are entirely dependent on the particular linguistic analysis 
made possible by this parametric system. It is therefore not possible to compare learning of two 
parametric systems, or two analyses of the same phenomena, with the same domain-specific 
learning model. Since the theory of grammar and of learning are inextricably linked, learning 
cannot provide independent evidence for or against theoretical choices.

Domain-general approaches do not share these disadvantages. The assumptions about the 
genetic endowment are more modest, and a domain-general model tested on one parametric 
system can be applied without modification to any other parametric system, whether that be 
an alternative theory of stress parameters or a parametric system in another domain, such 
as syntax.

In the rest of this paper, we show the possibilities of domain-general learning in D&K’s 
parametric stress framework. Before presenting our novel approach in §5, we first explain how 
the NPL works, with which our proposal shares all but one aspect of its inner workings.
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4 The Naïve Parameter Learner (Yang 2002)
Yang (2002) proposes a domain-general statistical learner for parameter systems, the Naïve 
Parameter Learner (NPL), based on criteria of minimal cognitive load and gradualness: the 
property of incrementally transitioning from one grammar state to the other. This approach 
has been held as a benchmark of learning parameter grammars (Sakas 2016) and has a proof of 
convergence that holds under certain strict conditions (Straus 2008).

The novel proposal in the current paper, the Expectation Driven Parameter Learner (EDPL, see 
§5), shares the majority of its machinery with the NPL: the probabilistic parameter grammar 
framework and the linear update rule, which will be discussed in §4.1 and §4.2, respectively. 
The difference between the learners lies in how the reward/penalty value in the update rule is 
calculated. The NPL’s method for doing so is covered in §4.2 (see §5 for the EDPL’s method). 
Then, a pseudo-batch modification to the NPL is presented in §4.3, while §4.4 presents some 
crucial challenges for the NPL.

4.1 Probabilistic parameter grammars

Yang defines a probabilistic parameter grammar in terms of a set of independent Bernoulli 
distributions, one for each (binary) parameter in UG, as exemplified in (5). The probability of 
a parameter setting stands for how often this setting will be chosen at a given instance of the 
grammar’s use. The probabilities of the settings for each parameter sum to 1, and there is no 
relationship between the probabilities of settings of different parameters.

(5)  
 

 
 

 
 

        
      

0.6 1 0.3:   ,  : , : , 0.4 0 0.7t
P Left P On P L to RG Main Bounded DirP Right P Off P R to L

When a grammar is used to generate an output for a given input (in our case, a stress pattern 
given a sequence of syllables), each parameter is given a categorical setting sampled from 
that parameter’s probability distribution. An output is then generated based on the parameter 
specification generated in this way (cf. (6)).

When learning, this predicted output is compared to an observed output, resulting in a stress 
match or mismatch. In (6), two parameter specifications are generated from the grammar in 
(5). In (6a), rightmost main stress and L-to-R feet are selected, while in (6b), leftmost main 
stress and R-to-L feet are selected. Because of the probabilities in the grammar, the specification 
in (6b) is more likely to be chosen than the one in (6a). In both cases, feet are bounded, since 
this option has a probability of 1 in the grammar. In terms of production and comparison to the 
hypothetical observed forms, the specification in (6a) leads to a match between the predicted 
and the observed stress pattern, while the specification (6b) leads to a mismatch.

(6) a. Sample parameter specification 1: Main=Right, Bounded=On, Dir=L-to-R, … 
probability: 0.4 × 1 × 0.3 = 0.12
(kàla)(máta)na observed: [kàlamátana] match=TRUE

b. Sample parameter specification 2: Main=Left, Bounded=On, Dir=R-to-L, …
probability: 0.6 × 1 × 0.7 = 0.42
ka(láma)(tàna) observed: [kàlamátana] match=FALSE

Both the NPL and the EDPL represent their knowledge of language in terms of Yang-style 
grammars. If the stress system of a language is categorical, with no variation between or 
within words, this can be represented by a grammar where all crucial parameter settings have 
a probability of 1. However, if a language does exhibit variation, it is possible to represent this 
by giving parameter settings probabilities between 0 and 1. In this paper, we only consider 
categorical systems as targets of learning, but patterns with variation are an important 
intermediate stage, and target patterns with variation are an important test case for future work.

4.2 Linear update rule

Both the NPL and EDPL use the Linear Reward-Penalty Scheme (LRPS; Bush & Mosteller 1951), 
see our formulation in (7), to update grammars in the course of learning. This online update rule 
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uses what we call a Reward value, a value between 0 and 1, to adjust each parameter setting’s 
probability higher or lower. The LRPS simply takes a weighted average of this Reward value 
and the old probability of a specific parameter setting, π = υ, to compute a new probability 
for that setting.

(7)                      1|       1     |    t tP G R P G

Where:

•	 P(π = υ │Gt) is the parameter setting’s probability in the grammar at time t
•	 R(π = υ)∈[0,1] is the parameter setting’s current Reward value
•	 λ∈[0,1] is the learning rate

For the NPL, each parameter’s Reward value is either 0 or 1, with no intermediate values. This 
value is determined based on a single parameter specification sample, St, selected at time t from 
the current grammar to generate an output to compare against the current data point’s stress 
pattern, as in (8). A parameter setting’s Reward value is 1 if that setting is in the specification 
and the specification results in a match, or if the setting is not in the specification while the 
specification results in a mismatch. Otherwise, the Reward value is 0.

(8)

 
  
  

 

   

      



   & 
1        

   & 
0                                   

t t

t t

if S Match S
R if S Mismatch S

all other cases

For example, consider scenario (6a). Main=Right is in specification 
St={Main=Right,Bounded=On,Dir=L-to-R,…} and St matches [kàlamátana], so according to 
the first clause in (8), R(Main=Right)=1. Main=Left is not in St, but St does yield a match, so 
neither condition for a reward value of 1 applies, meaning that R(Main=Left)=0. Assuming 
a learning rate of 0.1, the updated probability of Main=Right would be P(Main=Right)= 
0.1 × R(Main=Right) + 0.9 × 0.4 = 0.46, increasing from 0.4 to 0.46. All the parameters 
in the grammar would be similarly updated based on this match – for instance, Bounded=On 
would be rewarded (in St and match so R=1) and Bounded=Off would be penalized (not in 
St and match so R=0). When there is a mismatch, as in (6b), the sampled parameter settings 
receive R=0 (e.g. Main=Left), while the opposite settings receive R=1 (e.g. Main=Right).

The NPL fares exceedingly well on processing complexity. For each data point, it takes one 
sample for each parameter, and uses the resulting match or mismatch to compute which 
settings get rewarded and which get penalised. The time complexity grows linearly with the 
number of parameters: each additional parameter in the grammar requires a constant amount 
of additional computation for the processing of one data form. In §6, we present tests that 
investigate the NPL’s data complexity and success rates.

4.3 Pseudo-batch learning

As discussed earlier, Pearl (2011) reformulates Yang’s “batch” NPL variant, positing an 
algorithm to help smooth out learning across data points. This is not an actual batch learning 
algorithm, but a modification of the online update procedure of NPL, which is why we call 
it “pseudo-batch”. The probability of a particular parameter setting is updated only once 
recent data points preferring this setting outnumber those preferring the opposite setting by 
a prespecified threshold. To do this, the learner keeps a counter for each parameter setting, 
initialized to zero. If the counter reaches the positive threshold, this parameter setting’s 
probability in the grammar is updated with a Reward value of 1, and if it reaches the negative 
threshold, that parameter setting’s probability is updated with a Reward value of 0. After 
each update, the counter for this parameter setting is reset to 0. The counters for all other 
parameters remain unaffected.

The result of this pseudo-batch procedure is that parameter settings that work for certain 
words but not others are less likely to be rewarded, since their successes may be offset with 
immediately following failures, leading to a counter vacillating around 0. On the other hand, 
parameter settings that are crucial for the target language are more likely to be successful in 
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succession, leading to a rapidly rising counter and a Reward value of 1 in many cases. However, 
this does not guarantee finding all crucial parameter settings due to the accomplice scenario 
explained in §4.4.

We examine the effect of pseudo-batch learning in the simulations in §6, comparing the NPL 
with and without pseudo-batch learning side-by-side.

4.4 Challenges for the NPL

Yang (2002) acknowledges that the NPL does not attempt to address the Credit Problem 
directly and names two specific ways in which the Credit Problem can manifest itself in 
the NPL: hitchhikers and accomplices. Yang (2002: 43) explains that the “hope” behind 
NPL is that the gradual, statistical nature of the learning process will allow the learner to 
smooth over these inconsistencies while allowing the crucial parameter settings to rise to 
dominance over time; however, our results in §6 show that is not the case for the stress 
parameter setting problem.

In the hitchhiker scenario, parameter settings are rewarded despite having no responsibility 
for a match. For example, suppose the learner observes the data point [kàlamátana] (cf. (6)) 
and generates its output using a parameter specification that contains the crucial setting 
Main=Right as well as a setting that is irrelevant to this data point, like QS=On (irrelevant 
since there are no heavy syllables). The combination of these parameter settings leads to 
a match to the observed stress. Since the NPL rewards every parameter setting involved in 
generating a match, the crucial setting, Main=Right, is rewarded, and the irrelevant setting, 
QS=On, “hitchhikes” along and also receives a reward of the same magnitude, even though 
QS=On has no role in creating the current stress match and may be inconsistent with the data 
set at large.

In the accomplice scenario, parameter settings are penalised despite not being responsible for 
a mismatch. Consider again the data point [kàlamátana], and suppose the learner samples 
a parameter specification from their grammar with the crucial setting Main=Right and the 
incompatible setting Bounded=Off, which is incompatible since an unbounded foot over light 
syllables yields only one stress. This results in a mismatch: the secondary stress in [kàlamátana] 
is not generated. Because the NPL penalises all parameter settings in a specification that results 
in a mismatch, it not only penalises the incompatible setting Bounded=Off, but also the crucial 
setting Main=Right, which is an “accomplice” in creating an incorrect stress form. This is 
problematic, because Main=Right is needed to obtain the correct stress for this datum, so it 
should have been rewarded rather than punished.

Because of the widespread ambiguity in stress setting discussed earlier, hitchhikers and 
accomplices can lead to serious challenges for the model. The same parameter setting can be 
rewarded by accident for one data point and penalised by accident for the next data point. 
These spurious updates create substantial noise that disrupts the learning process. As discussed 
above, the pseudo-batch strategy may smooth over some of this noise, and we consider its 
effects on the performance of the model in §6.

More problematic than random noise is the general failure of the model to cope with 
interdependence between parameters, which is the underlying source of accomplices and 
hitchhikers in NPL. A crucial parameter setting only leads to a match with the data if all other 
crucial parameters for that data point are set appropriately for the target language. Unless the 
learner’s grammar is already very close to the target grammar, sampling the correct combination 
of all crucial parameter settings is a statistically rare occurrence. This means that the vast 
majority of updates are mismatches involving spurious penalties for crucial parameter settings 
(accomplices), causing the learner to make no progress, vacillating endlessly until they happen 
to sample a correct combination of all crucial parameter settings to reward (in which case 
they are at risk of rewarding hitchhikers). However, it is possible to design a domain-general 
learner that overcomes these challenges, as shown in §5, where we propose the Expectation 
Driven Parameter Learner, which addresses the Credit Problem directly in the formulation of 
the Reward value.
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5 Proposal: The Expectation Driven Parameter Learner
The EDPL model proposed here extends Jarosz’s (2015) Expectation Driven Learning proposal 
developed for probabilistic OT. It maintains the same type of probabilistic grammar as the 
NPL without using any additional memory, it uses the same online update rule (LRPS, see (7)) 
after each data point presented to the learner, and, like the NPL, its processing complexity 
grows slowly with the number of parameters. The difference between the two models lies 
in the Reward values computed. The EDPL gives each parameter setting a separate Reward 
value proportional to its responsibility in generating the current data point. For instance, for 
[kàlamátana] (cf. (6)), Main=Right is a crucial setting, QS=On is an irrelevant setting, and 
Bounded=Off is an incompatible setting, all of which are rewarded differently by the EDPL. 
This avoids hitchhikers and accomplices: irrelevant QS=On is not rewarded for co-occurring 
with Main=Right, whereas the latter is not punished for co-occurring with Bounded=Off.

Formally, the Reward is defined as the expected value of a parameter setting given the current 
grammar and the data point currently under examination. Computing this value relies on two 
crucial steps (Jarosz 2015): estimating the probability of the current data point given each 
parameter setting using constrained sampling, and then converting this probability into the 
Reward value using Bayes’ Rule. The following subsections walk through these steps in detail.

5.1 Defining the Reward

Rather than updating all parameters equally, the EDPL defines the Reward value R(π = υ) 
for parameter setting π = υ as the probability of that parameter setting given the current 
data point and the current grammar, (9a). Intuitively, this quantity represents that parameter 
setting’s responsibility in generating the observed stress pattern – the probability of finding that 
parameter setting among the successful parses of the observed learning datum. Once the reward 
value is computed, it is plugged into the same update rule used by NPL, repeated in (9b).

(9) a.       ( |  ,  )tR P match G
b.                      1|       1     |  t tP G R P G

Rather than computing the probability in (9a) directly using parsing, we follow Jarosz (2015) 
in decomposing this expression using Bayes’ Rule into three quantities (10a) that can be easily 
estimated using the production grammar. The first term, P(match|π = υ,Gt), is the conditional 
likelihood that a given parameter setting leads to a match with the current data point and can 
be estimated efficiently using constrained sampling from the production grammar, as described 
in §5.2. The second term, P(π = υ|Gt), is simply the probability of that parameter setting in the 
current grammar and can be looked up directly. Once these quantities are computed for both 
settings of a parameter, the denominator can be computed by plugging these quantities into the 
marginalization formula in (10b): the probability of a match given this parameter is a weighted 
sum of the match probabilities of both of its settings.6,7

(10) a.            
1| , ( | , ) ( | ) ( | )t t t

t
P match G P match G P G P match G

b.         
   

    
    

| | , |
( | , ) ( | )

t t t
t t

P match G P match G P G
P match G P G

Defining the Reward value this way yields an online, sampling-based approximation to 
Expectation Maximization (EM; Dempster et al. 1977): instead of setting the new probabilities 
of parameter settings to their expected values given the entire data set, which would be the 
classic EM approach, the process here is broken up into smaller and more local calculations 
computed incrementally on each incoming data point, just like in the NPL. The EDPL update 
rule moves the probability of π = υ closer to its expected value given the current data point.

6 We present the algorithm using binary parameters here, but the algorithm can be straightforwardly extended 
to n-ary parameters: for a n-ary parameter there would simply be n terms in P(match|Gt).

7 To avoid division by zero, we added a very small number (10–250) to the number of matches for each parameter 
setting, which results in no update to the grammar when P(match|Gt) would otherwise evaluate to zero.
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5.2 Sampling: correct stress given parameter setting

We use constrained sampling from the production grammar to estimate the conditional likelihood 
P(match|π = υ,Gt) following Jarosz (2015). To perform this sampling, the current parameter 
grammar, Gt, is temporarily modified by replacing the probability of parameter setting π = υ  
with 1 and replacing the probability of the opposing setting of the same parameter with 0. 
This temporary grammar in which every production is guaranteed to choose parameter setting 
π = υ provides an estimate of π = υ’s contribution to matching the current data point. For 
this estimate, a fixed number r of samples is taken by repeatedly generating an output for the 
current data point with that temporary grammar, and assessing the number of matches that 
result. P(match|π = υ,Gt) is then estimated by dividing the number of matches by the number 
of samples, see (11). The analogous computation is then performed for the other setting of that 
parameter: π = ¬υ (cf. the second term of (10b)).

(11)
    

 
 

 ˆ              1| , t
t

Number of matchesusingG except that PP match G r

During this process, the probabilities for the other parameters are left untouched. This makes 
it possible to isolate the effects of manipulating a single parameter. At the same time, using 
the full production grammar ensures that the consequences of any interactions with other 
parameters are taken into account.

To summarise, the EDPL computes a separate Reward value for each parameter setting 
(e.g., for the grammar in (5): Main=Left/Right, Bounded=On/Off, Dir=L-to-R/R-to-L) 
given a data point (e.g., [kàlamátana]). This involves creating two temporary grammars, 
one for each setting of the parameter (e.g., when looking at Main, we have temporary 
grammars Gt,Main=Left={P(Main=Left)=1, P(Bounded=On)=1, P(Dir=L-to-R)=0.3}  
and Gt,Main=Right={P(Main=Left)=0, P(Bounded=On)=1, P(Dir=L-to-R)=0.3}), 
sampling from each a fixed number of times (e.g., if r=5, Gt,Main=Left might generate 
{kálamàtana,kalámatàna, kalámatàna,kálamàtana,kalámatàna} and Gt,Main=Right might generate 
{kàlamátana,kalàmatána,kalàmatána,kàlamátana,kalàmatána}), and calculating the probability 
of a match according to (11) (0/5=0 for Main=Left, 2/5=0.4 for Main=Right). These 
values are then plugged into (10ab): R(Main=Left)=P(Main=Left|match,Gt)=0/(0+0.4)=0, 
R(Main=Right) =P(Main=Right|match,Gt)=0.4/(0 + 0.4) = 1.8 The processing complexity 
for the EDPL is greater than the NPL: the grammar is sampled 2r times per parameter rather 
than once. This means the overall processing complexity grows quadratically with the number 
of parameters: each grammar sample requires walking through all the parameters, and this 
must be done a fixed number of times for each parameter. However, quadratic processing time 
is still very efficient and certainly much more efficient than exhaustive search as the number 
of parameters increases. We examine data complexity of both the EDPL and the NPL in more 
detail in §6.

5.3 EDPL approach to the Credit Problem

The EDPL provides a principled solution to the Credit Problem without domain-specific 
mechanisms. It distinguishes necessary, incompatible, and irrelevant parameter settings 
by computing Reward values separately for each parameter setting, where Reward 
values are defined as the degree to which each parameter setting is responsible for each  
data point.

A parameter setting necessary for data point d (e.g., Main=Right for [kàlamátana] in (6)) will 
always have a Reward value of 1 since the probability of generating the data point with the 
opposing parameter setting is 0, as shown in (12a), even if the necessary parameter setting 
sometimes yields mismatches (e.g., Main=Right is compatible with [kalàmatána]): see footnote 
8. The numerator and denominator simplify to the same value, yielding 1. The update rule will 
thus always give a crucial parameter setting a maximal increase in probability when that data 
point is processed.

8 The Reward value of Main=Right equals 1 even if Main=Right yields a match just 40% of the time: because 
Main=Left always yields a mismatch, Main=Right is the only viable option.
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Conversely, a parameter setting that is incompatible with data point d (e.g., Bounded=Off 
for [kàlamátana]) will always have a Reward value of 0, as in (12b), since the probability of 
generating a match using an incompatible parameter setting is 0, making the numerator 0. 
The update rule will thus always give an incompatible parameter setting a maximal decrease 
in probability.

Finally, for a parameter setting irrelevant to data point d (e.g., QS=On for [kàlamátana]), 
its Reward value will be roughly equal to its probability in the grammar. Such a parameter 
setting has no effect on generating a match: either setting of this parameter will on average 
produce the same proportion p of matches with the data point. As shown in (12c), replacing 
the conditional likelihoods for both parameter settings with p results in an expression that 
simplifies to the probability of the irrelevant parameter setting in the current grammar. In 
this case, the update rule in (9b) produces no change to the parameter’s probability. This 
means that whenever the model encounters a parameter setting that is irrelevant to the current 
data point, the grammar remains unaffected by this data point. In all three cases, this is the 
desired behaviour: crucial parameter settings should be consistently rewarded, incompatible 
parameter settings should be consistently penalised, and irrelevant parameter settings should 
remain unchanged.

(12) a. Parameter setting crucial for data point d:
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b. Parameter setting incompatible with data point d:
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c. Parameter setting irrelevant to data point d:
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It must be stressed that the three updated scenarios discussed above are only the edge cases. 
As discussed in §2, stress parameters are often ambiguous: multiple parameter settings are 
potentially compatible with the same data point. It is in such cases that EDPL Reward values 
other than 1, 0, or P(π = υ) are found.

The EDPL relies on the learner’s current knowledge of one parameter to make inferences 
about settings of other, interdependent parameters to deal with such ambiguous cases. For 
example, suppose the learner’s current grammar has P(Dir=R-to-L)=0.7 and P(XM=On)=0.5: 
that is, the learner is completely uncertain about extrametricality, but it believes Right-to-Left 
directionality is more likely than Left-to-Right. If the learner then observes [kàlamátana], a 
data point that is ambiguous in terms of both extrametricality and directionality, it will be 
able to use its current knowledge of directionality to make inferences about extrametricality 
from this ambiguous data point: it will reward XM=On. This occurs because the sampling 
procedure is sensitive to the other settings in the grammar. Left-to-Right is compatible with 
either setting of extrametricality, but because this grammar selects Right-to-Left more often, 
and Right-to-Left only generates the correct pattern when extrametricality is on, XM=On will 
be more successful than XM=Off. This example demonstrates the EDPL’s capacity to deal with 
local ambiguity not only in the categorical edge cases, but also in contexts where previously 
accumulated knowledge about one parameter gradiently affects the learner’s inferences about 
another.
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6 Typological test of the NPL and EDPL
In this section, we will present systematic evaluations of the NPL and the EDPL on a diverse 
range of stress systems, constituting the first systematic typological test for these learners in 
the stress domain. Our primary goal is to gauge how well these models cope with the Credit 
Problem and the kinds of interdependencies that are inherent to parametric stress systems. By 
considering both models’ performance on the full typology proposed by D&K (1990), we get 
the most complete picture possible regarding their capacities to deal with hidden structure in a 
complex stress parameter system. This kind of evaluation is analogous to Tesar & Smolensky’s 
(2000) typological tests of their hidden structure learner on a set of 124 stress systems, a varied 
subset of the languages generated by their constraint set, which was later used by Boersma 
(2003); Boersma & Pater (2016); and Jarosz (2013a; b) to evaluate other learning models. 
We present two quantitative measures of performance, discussed in more detail below, which 
provide a first step in determining the viability of these learning models on complex stress 
parameter learning. To evaluate the capacity of these models to succeed at learning, we report 
success rates on the full typology, and to assess the models’ data complexity, we report time-to-
convergence statistics. Additionally, these typological tests allow us to analyse the properties of 
stress systems that are particularly challenging and particularly straightforward for the models 
to learn, leading to a deeper understanding of the general predictions these models make for 
learning beyond this particular framework.

6.1 Structure of the typology

The 11 stress parameters defined by D&K together define 211 = 2048 unique parameter 
specifications. To complement the discussion of ambiguity in §2, here we introduce a quantitative 
measure of ambiguity and use it to examine the rate and distribution of ambiguity in the 
typological space defined by these parameters. This measure provides a richer characterization 
of the types of ambiguities present in parametric systems, as exemplified by D&K’s system.

The 2048 combinations in D&K’s system yield just 302 unique stress systems on overt forms of 
up to 7 syllables. Long words were included to avoid collapsing differences between systems 
that arise only in long words (Stanton 2016 finds that some patterns are distinguished by 
6-syllable words and considers words of up to 7 syllables).9 This means that there is extensive 
global ambiguity in this system: on average, there are 7 distinct parameter specifications for 
each dataset.10 This ambiguity, however, is distributed quite unequally: the median number 
of specifications per stress system is only 2, while the range of specifications per stress system 
is 1 to 330. We refer to the number of specifications per stress system as its P(arameter 
setting)-volume, by analogy to Riggle’s (2008) R-volume, the number of constraint rankings 
per system. Table 1 shows the distribution of P-volumes among the stress systems in D&K’s 
parametric system. Each P-volume value is coupled with the number of stress systems that 
have this P-volume.

As can be seen in Table 1, there are 4 stress systems with a P-volume over 32. The systems with 
a P-volume of 330 are word-initial and word-final stress. The next highest P-volume of 118 
belongs to the systems with peninitial or penultimate stress.11 At the same time, 204 of 302 
stress systems (67.5%) have a P-volume of at most 2, and 254 (84.1%) have a P-volume of at 
most 4. Thus, only a few stress systems are highly ambiguous as to the underlying parameter 
settings, while the great majority shows very limited global ambiguity. See §7.3 for information 
on the attestation of these systems.

9 We also considered including 8- and 9-syllable words, but these do not lead to any additional unique stress 
systems.

10 As an anonymous reviewer points out, this global ambiguity may be greatly reduced if foot-conditioned 
segmental phonological processes provide additional evidence for foot boundaries.

11 An anonymous reviewer points out that these high P-volumes will be drastically lower if primary stress is 
assigned non-metrically (van der Hulst 1996; 1997). However, the learning implications of such a model would 
have to be evaluated separately.

P-volume 330 118 32 16 8 6 4 3 2 1

# systems 2 2 8 16 4 16 42 8 116 88

Table 1 P-volume distribution 
in the stress systems defined 
by D&K (1990).
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P-volume provides a way to assess how the learner responds to global ambiguity. On the one 
hand, systems with high P-volume should be easier to find by pure chance so a learner that 
relies substantially on luck to find the target language may be expected to fare better on high 
P-volume systems on average. On the other hand, systems with high P-volume are highly 
globally ambiguous and often involve interdependencies between parameters that must be 
disentangled to settle on a complete specification for a target language. From this perspective, 
high P-volume languages may pose a challenge to a learning model that must incrementally 
commit to parameter settings, without clear or consistent evidence for crucial settings.

6.2 Simulations and results

The 302 unique stress systems described in §6.1 were presented to the learners as datafiles 
consisting of strings of CV, CVV, and CVC syllables with corresponding stress patterns and 
likelihoods of occurrence (e.g., CVV.CV.CV.CV.CV σ̀σσ́σσ 0.0003, CV.CV.CVC.CV σ̀σσ́σ 0.0003). 
Strings with a length of 1–7 syllables were used, and all possible combinations of the 3 syllable 
types of these lengths were included, yielding a total of 3 + 32 + … + 37 = 3,279 pseudowords 
for each stress system. During learning, a pseudoword was sampled at each iteration. Here, we 
assumed equal likelihood for each pseudoword.

Both the NPL and the EDPL were tested on these datasets. For the NPL, three settings for 
batch size were used: no pseudo-batch learning (henceforth: NPL0), pseudo-batch learning 
with b = 5 (henceforth: NPL5), and pseudo-batch learning with b = 10 (henceforth: NPL10). 
These latter values were two representative settings of the pseudo-batch size examined by Pearl 
(2011) (she used b = {2,5,7,10,15,20}). For the EDPL, r = 50 was used for the sample size. In 
total, this yields 4 learners, each of which used a learning rate of λ = 0.1.

To better evaluate these four learners, we also ran a random baseline (brute force) model 
as a sanity check. Checking performance against a simple baseline is standard practice in 
computational linguistics and important to ensure that the proposed learning mechanisms 
compare favourably to random search and other brute-force strategies. It provides a way to 
gauge whether learning models’ performance on relatively simple learning tasks have the 
potential to scale to the full problem of language learning.

The random baseline model encounters one data point at a time, just like the other models, but 
instead of gradually updating a probabilistic parameter grammar, it simply samples a random 
parameter specification from a uniform distribution at the first iteration and whenever a stress 
mismatch occurs. Since the space of categorical grammars is finite, and all the languages in 
D&K’s typology are categorical, this baseline model will eventually reach any target system. 
Because it only considers a finite space of stress systems and can flip parameters categorically, 
this baseline is quite strict with respect to the NPL and EDPL, which are designed to search 
an infinite space of probabilistic target grammars and can only update their parameter 
settings gradually.

Crucially, this baseline is not a serious proposal for learning stress parameters. As discussed 
earlier, the learning time for random search grows exponentially with the number of parameters, 
quickly becoming intractable as the language learning problem grows. Only learning strategies 
that can cope with the learning data more efficiently than random search have a chance of 
solving the actual language learning problem faced by children. In addition, while simulations 
involving variable stress are beyond the scope of the current paper, both the NPL and EDPL 
can in principle cope with non-determinism, while this baseline cannot. Finally, the random 
baseline cannot model the kind of incremental acquisition of stress seen in children, while 
the NPL and EDPL can. Thus, the baseline provides a benchmark for interpreting the data 
complexity results, but we do not consider it to be a competing model of language acquisition.

Each model was run 10 times on each of the 302 stress patterns, yielding 3020 runs per 
model. For the three versions of the NPL and the random baseline, each run was allowed up to 
10,000,000 iterations, where an iteration is the processing of one data point in the system. Pearl 
(2011) estimates that children acquire a final stress pattern after about 1,666,667 data points, 
so this is extremely generous, but we wanted to ensure our simulations gave these models 
every chance to succeed. Because preliminary tests revealed fewer iterations are sufficient for 
convergence for the EDPL, the EDPL was given a maximum of 200,000 iterations per run.
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For all learners, the simulation was stopped once the convergence criterion (at least 99% 
accuracy on each word in the corpus) was reached. Accuracy was assessed by sampling 100 
parameter specifications from the current grammar, computing the resulting stress patterns for 
all words, and, for each word, counting how many specifications led to a stress match for each 
word; if even one word had more than 1 mismatch out of 100, there was no convergence. For 
globally ambiguous stress systems, this means that any grammar that leads to the desired stress 
assignment is accepted (see §2.1). Since assessing convergence is the most computationally 
intensive component of running the models, this was only done every 100 iterations (for the 
NPL and the random baseline, accuracy was checked even less often between 20,000 and 
9,999,900 iterations: it was checked every 10,000 iterations between 20,000 and 100,000, 
every 100,000 iterations between 100,000 and 1,000,000, and afterwards every 1,000,000 
iterations until 9,999,900 and 10,000,000).

Table 2 shows the success rates and data complexity statistics for each learner as well as 
the random baseline. We evaluated each of these on how many of 3020 runs reached the 
convergence criterion, how many of 302 stress systems converged on some run, how many 
stress systems converged on all runs, and how many iterations the learner required to converge 
(assuming it reached convergence).

As can be seen in Table 2, the EDPL performs well both in terms of its success rates and its 
data complexity. It learns 93% of the systems in the typology at least some of the time, while 
89.1% of the systems are learned on all runs. The random baseline learns all 302 stress systems, 
but not all of these are attested (§7.3). See §7.3 for an analysis of which (attested) systems 
were learned by the EDPL and NPL. Moreover, the 91.6% of runs that reach the convergence 
criterion do so quickly: the median number of iterations needed to find the solution is just 200 
iterations. These data complexity numbers are well below Pearl’s (2011) estimated 1,666,667 
data forms a human child requires, and they improve over the random baseline, which requires 
a median of 800 iterations (the maxima for the random baseline and the EDPL are in the same 
general range, as well).12 Thus, on all metrics, the EDPL meets the goals we outlined for the 
learning models.

The NPL, on the other hand, fares poorly: it is unable to learn the typology, and if it does 
converge, it does so considerably slower than guessing at random. NPL0 learns less than 1% of 
the typology, and for the successful 0.7% of runs, the median number of data points required 
is much higher than for the random baseline (200,000 vs. 800) . The NPL with pseudo-batch 
learning fares slightly better, but still fails to learn more than 90% of stress systems, and the 
median number of iterations is still considerably greater than for the random baseline on 
the small proportion of runs that are successful. This level of performance falls short of the 
goals we set out for the learning models and below a minimal standard required for successful 
language learning.

6.3 Interim Discussion

The simulation results reveal a marked difference between the NPL and the EDPL. While the 
EDPL learns almost all stress systems and does so faster than random guessing, the NPL learns 
only a few stress systems, and does so slower than random guessing. We conclude that the NPL 

12 Unlike the baseline, the EDPL’s and NPL’s speed of learning depends on the learning rate. Since the EDPL 
outperformed the baseline with this learning rate, we did not investigate even larger learning rates, which would 
be expected to result in faster learning. 

EDPL NPL0 NPL5 NPL10 Random 
baseline

# of runs that converge (% of 3020) 2765 (91.6%) 20 (0.7%) 143 (4.7%) 143 (4.7%) 3020 (100%)

# of stress systems that converge on ≥1 run (% of 3020) 281 (93.0%) 2 (0.7%) 28 (9.3%) 24 (7.9%) 302 (100%)

# of stress systems that converge on all 10 runs (% of 320) 269 (89.1%) 2 (0.7%) 8 (2.6%) 9 (3.0%) 302 (100%)

Median (maximum) # of iterations/data points till convergence 200 (66,200) 200,000 
(700,000)

6,300 
(9,999,900)

3,400 
(9,999,900)

800 (30,000)

Table 2 Success rates and 
data complexity results  
(λ = 0.1 for all EDPL and NPL 
runs).
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is not a viable model of stress parameter learning, at least not for complex stress systems with 
the sorts of ambiguities that are present in D&K’s typology.

Beyond establishing extensive quantitative evaluations for both learning models, these results 
also undermine the argument for domain-specific mechanisms. Pearl’s (2011) comparison 
between domain-general and domain-specific learning mechanisms relied on a domain-general 
learning model (the NPL) that cannot cope with the sorts of ambiguities typical to stress 
parameter systems. The present results show that the NPL’s failure to learn English stress should 
not be taken as evidence against domain-general learning generally: we demonstrate that there 
exist domain-general learning strategies that are much more effective than the NPL.

The encouraging results of the EDPL on D&K’s full typology show that the domain-specific 
learning mechanisms D&K posit for their parametric system are likely unnecessary. The EDPL, 
a domain-general learner, succeeds in efficiently learning 93% of stress systems in this typology 
without the use of cues, parameter ordering, or defaults. As mentioned earlier, Gillis et al. report 
a 80% success rate on a similar experiment with D&K’s domain-specific learner, which does not 
surpass the EDPL’s performance. To better understand how to interpret our quantitative results, 
we present in §7 an in-depth analysis of the NPL’s and EDPL’s learning outcomes.

7 General discussion: analysis of learning outcomes
7.1 Global ambiguity and the NPL

The few stress systems that NPL learns successfully tend to be those with very high global 
ambiguity. As shown in Table 3, all variants of the NPL show a high positive Somers’ D rank 
correlation between successful convergence on a run and the P-volume (§6) of the target stress 
system on that run.13 Indeed, NPL0 even has a perfect rank correlation. As discussed in §4.4, 
the NPL’s learning process involves a great deal of random and disruptive noise. Occasionally, 
the random noise lands the learner close to the target system, which is more likely to occur 
for systems with high P-volume, since there are more distinct parameter specifications that 
correspond to the target system. Thus, this correlation indicates NPL’s successes are strongly 
driven by random chance.

In contrast, the EDPL’s successes shows virtually no correlation with P-volume. This confirms 
that the EDPL is not driven by random chance. The only randomness to its updates comes 
from the sampling used to estimate the Reward value and the random order in which data are 
presented to the learner. Since the EDPL offers a principled solution to the Credit Problem, 
global ambiguity does not necessarily make learning easier. It can be helpful in cases where 
high P-volume corresponds to a stress system with many mutually compatible analyses and few 
crucial parameter settings. However, as discussed in §2.1, high P-volume can also correspond 
to cases where there are many mutually incompatible analyses, and a learner sensitive to the 
Credit Problem must disentangle this confusing evidence. The next section takes a closer look 
at how this affects learning for the EDPL.

7.2 Local ambiguity and the EDPL

For the EDPL, learning success depends on the extent to which learning data unambiguously 
supports crucial parameter settings. See Hucklebridge (2020) for an in-depth analysis of how 
ambiguity about crucial parameter settings affects EDPL’s learning curves in the syntactic 
domain. The most challenging stress systems are those that crucially require foot structure for 
which there is only highly ambiguous evidence. To illustrate this, in (13) we have classified 
the stress systems in the typology into four types based on the degree of unambiguous evidence 
for hidden structure. Using this classification, we show that the challenging cases for the EDPL 
are those where hidden structure is signalled by very little information in the data. The EDPL’s 

13 This was computed using SomersDelta() in the DescTools package for R (Signorell 2019).

EDPL NPL0 NPL5 NPL10

Somers’ D .03 1 .75 .77

Table 3 Somers’ D rank 
correlation: successful 
convergence dependent on 
P-volume.
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performance on each class is shown in Table 4. The NPL’s performance on these classes is shown 
for reference only.

(13)

As indicated in (13), Type A stress systems are those with overt secondary stress. Type B stress 
systems have no overt secondary stress and are compatible with unbounded feet. Type B includes 
systems with fixed initial, peninitial, penultimate, and final stress.14 Type C and D stress systems 
also lack overt secondary stress, but require bounded feet to be constructed throughout the 
word. The difference between types C and D lies in the type of bounded foot that is required: 
Type C stress systems can be accounted for with “full” (i.e., non-degenerate) quantity-sensitive 
feet, e.g., stress the rightmost L-to-R non-degenerate QS trochaic foot: ka(laːda)(máta)na, while 
Type D stress systems require either quantity-insensitive feet, e.g., stress the rightmost L-to-R 
QI trochaic foot (kalaː)(dama)(tána) or degenerate feet, e.g., stress the rightmost L-to-R QS 
potentially degenerate trochaic foot: (ka)(laːda)(mata)(ná).

Overt secondary stress (Type A) guarantees that the head of each foot is expressed as a stress 
mark, which means that the number of feet and the approximate location of foot boundaries 
(always adjacent to a stressed syllable) can be read off the overt form. This gives Type A stress 
systems a relatively unambiguous relationship between overt form and foot structure.

The absence of overt secondary stress in the data (Types B/C/D) introduces additional 
ambiguity: there could be multiple feet even though there is just one stress. However, for 
unbounded feet (Type B), the division of the word into feet is still signalled by the segmental 
makeup of the word: foot boundaries are either at the word boundary (modulo extrametricality) 
or just before/after a heavy syllable: consider (ka)(láːdamatana)<bi> for Foot=Trochee and 
(kalaː)(damataná)<bi> for Foot=Iamb. This means that, once the learner has seen sufficient 
evidence for unbounded feet (for instance, main stress on the 4th syllable of a 7-syllable word), 
there are only a handful of different foot structures available for a given word.

Type C and D lack secondary stress and require bounded feet: they require multiple feet in 
(longer) words, but only the head foot gets stress. Such systems have one stress mark that 
fluctuates between one or two positions in the word (e.g., penult vs. final): this minimal 
information is the only evidence of the existence and details of an iterative bounded footing 

14 As opposed to D&K’s (1990) original proposal, we did consider unbounded QI feet in our simulations; see 
footnote 4.

Type A Type B Type C Type D

Number of stress systems (runs) 196 (1960) 40 (400) 36 (360) 30 (300)

EDPL successful runs (%) 1932 (98.6%) 400 (100%) 320 (88.9%) 113 (37.7%)

NPL0 successful runs (%) 0 (0%) 20 (5.0%) 0 (0%) 0 (0%)

NPL5 successful runs (%) 0 (0%) 112 (28.0%) 25 (6.9%) 6 (2.0%)

NPL10 successful runs (%) 0 (0%) 123 (30.8%) 24 (6.7%) 0 (0%)

Table 4 Success on learning 
stress systems split up by 
secondary stress and foot 
shape.
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system, e.g., if stress falls on the rightmost L-to-R QI non-degenerate trochee, its location varies 
between the penultimate and antepenultimate syllable depending on the length of the word: 
(kala)(máta), (kala)(máta)na.

Among the patterns with bounded feet, the Type C systems, which can be represented with 
full QS feet, provide the most information to finding silent bounded feet: heavy syllables 
provide landmarks for the location of feet, while a restriction to full (non-degenerate) feet 
severely limits the possible locations of feet relative to stress position: initial stress on a 
light syllable only works with trochees – and final stress on a light syllable only works with 
iambs – if degenerate feet are prohibited. For instance, this is the case in Creek (Hayes 1995; 
D&K:177–8), where stress falls on the rightmost L-to-R (QS non-degenerate) iamb: (apa)(taká) 
‘pancake’. Stress always falls an even number of syllables from the rightmost heavy syllable: 
(taːs)(hokí)ta ‘to jump (dual subj.)’; and there is never stress on a light initial syllable or light 
syllable following a heavy syllable because this would require a word-initial degenerate iamb: 
*(í)fa instead of (ifá) ‘dog’, *(ic)(kí) instead of (íc)ki ‘mother’.

The remaining stress systems (Type D) provide the greatest hidden structure challenge. These 
systems lack secondary stress, but require bounded feet that are either quantity-insensitive or 
(optionally) degenerate. In a quantity-insensitive system, the only landmarks for the location of 
bounded feet are the word edges and the location of main stress, meaning that the foot boundaries 
between unstressed syllables are not overtly cued – consider the case where stress falls on 
the rightmost L-to-R QI non-degenerate iamb: (kala)(maːta)(nabí); in this case, the boundary  
la)(maː is only signalled by the location of primary stress on [bi], while foot boundaries are also 
signalled by heavy syllables in Type C Creek. If degenerate feet are necessary to account for the 
stress pattern, evidence for foot headedness can be unclear: for instance, there might be initial 
stress in a crucially iambic system – consider the case where stress falls on the leftmost R-to-L 
potentially degenerate iamb: (ká)(lama)(tana). Compare this to Type C Creek, where there 
can be final but not initial stress, which cues iambs. As discussed in §7.3, Type D systems are 
unattested except for fixed antepenultimate stress (where stress falls on the rightmost L-to-R QI 
trochee with right extrametricality and silent secondary stress).

Table 4 shows that successful convergence of the EDPL follows this difficulty gradient: Type A and 
B stress systems are learned in practically all cases,15 Type C systems are learned approximately 
90% of the time (the 10% non-convergence is due to 2 specific stress systems discussed in 
§7.3), and Type D systems, approximately 40% of the time. This distribution of success rates 
confirms that the EDPL only has trouble learning stress systems when little evidence for the 
necessary foot structure exists. All systems have hidden foot structure, but it is only when the 
data are highly ambiguous about which analysis (setting of parameters) is right that the EDPL 
has trouble learning the target settings.

A further significant division in terms of ambiguity among Type C/D stress systems is whether 
they ever assign stress more than 1 syllable away from the word edge. Let “1-in” stress systems be 
those that have stress at most 1 syllable from the edge (initial, peninitial, penultimate, or final) 
and “2-in” stress systems be those that can have stress 2 syllables from the edge (post-peninitial 
or antepenultimate). Examples: Type C 1-in: stress rightmost L-to-R QS non-degenerate iamb, 
no extrametricality: (kala)(matá)na, (kala)(matá), (kaː)(lamá)ta; Type C 2-in: like Type C 1-in,  
but with right extrametricality: (kala)(matá)<na>, (kalá)ma<ta>, (kaː)(lamá)<ta>; 
Type D 1-in: stress rightmost L-to-R QI potentially degenerate trochee, no extrametricality: 
(kala)(mata)(ná), (kala)(máta); Type D 2-in: like Type D 1-in, but with right extrametricality: 
(kala)(matá)<na>, (kalá)ma<ta>.

In “1-in” stress systems, none of the individual data points require bounded feet, while the 
stress system as a whole does: final/initial stress and penult/peninitial stress are all consistent 
with unbounded feet (see (2,3) in §2.1). Bounded feet are only strictly necessary to represent 
post-penititial or antepenultimate stress data points: <σ>(σσ́)… or …(σ́σ)<σ>. This gives 
“2-in” stress systems an advantage: they feature data points with unambiguous evidence for 
bounded feet.

15 The EDPL needs slightly more iterations to learn Type B QS systems (median=300, maximum=800) than it 
does for the Type B QI systems (median=200, maximum=500).
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As shown in Table 5, the “2-in” vs. “1-in” division corresponds to marked differences in the 
EDPL’s performance. “2-in” Type C systems provide evidence for bounded feet and provide 
relatively unambiguous cues to foot location/shape (full QS feet): these show perfect learning 
by the EDPL. The EDPL is still successful over 70% of the time on systems that include just one 
of these sources of ambiguity: the “1-in” Type C systems and “2-in” Type D systems. “1-in” 
Type D systems have maximal ambiguity: there is no secondary stress, and bounded feet are 
necessary, but none of the overt forms provide incontrovertible evidence for bounded feet, and 
there are no clear cues to foot location or shape. The EDPL’s performance is poor only for these 
systems where many different sources of ambiguity coincide.

Our analysis indicates that, in general, learning data that provide highly ambiguous or 
contradictory support for settings of crucial parameters are particularly difficult for the EDPL. 
It is not the presence of hidden structure per se that creates challenges for the learner; rather, 
challenges arise when hidden structure creates ambiguity about crucial parameter settings. 
Sensitivity to this sort of ambiguity is therefore a general prediction of the EDPL that extends 
beyond D&K’s framework. However, the relative learning difficulty of each stress system also 
depends on the grammatical framework assumed, which determines what analytical options are 
available to the learner. This connection between theory and learning has potential to provide 
novel predictions to differentiate linguistic theories. We return to this topic in the conclusion.

7.3 Relationship between EDPL’s success rates and attestedness

A rich body of experimental and computational work supports the hypothesis that soft biases 
outside of the grammatical system play an important role in shaping linguistic typology (see 
Culbertson 2012; Moreton & Pater 2012a; b; Jarosz 2019 for overviews). Recent computational 
work has supported one possible source of such a bias: learning biases inherent to statistical 
learning. This line of research shows that when statistical learning models are applied 
to computational implementations of linguistic theories, learning outcomes often mirror 
typological skews (Pater 2012; Jarosz 2016; Stanton 2016; Staubs 2016; O’Hara 2017; Breteler 
2018; Hughto 2018; Prickett 2019; Hucklebridge 2020). From this perspective, linguistic 
theory provides more options and representations than are fully realized in typology. Some 
combinations of options, while in principle available to learners, may be un- or under-
represented because they pose particularly difficult learning challenges. If this is the case, 
the linguistic framework is expected to overgenerate, with some unattested languages allowed 
by UG being particularly challenging from a learning perspective. In this section, we present 
the results of a preliminary typological survey examining the correspondence between the 
attestation of languages in D&K’s framework and their learning outcomes for the EDPL.

While we believe these results are encouraging, we wish to emphasize several limitations of these 
findings. First, as discussed above, the relative learning difficulty of each stress system depends 
crucially on the D&K framework. Second, the simulations here make the simplifying assumption 
that all syllable type sequences are equally frequent in the input: learning outcomes could 
change with different input statistics. Third, classifying stress systems as attested or not is not 
entirely trivial. Our analysis relies on a manual search of StressTyp2 (Goedemans et al. 2015), a 
large-scale typological database of stress systems, for patterns that match the predictions of the 
theory. We find that 48 of D&K’s predicted stress systems correspond to at least one language in 
the database – in the following discussion, we refer to these patterns as attested. Of course, it is 
important to keep in mind that the database may be missing some attested languages.

Type C Type D

2-in 1-in 2-in 1-in

Number of stress systems (runs) 20 (200) 16 (160) 14 (140) 16 (160)

EDPL successful runs (%) 200 (100%) 120 (75.0%) 100 (71.4%) 13 (8.1%)

NPL0 successful runs (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

NPL5 successful runs (%) 1 (0.5%) 24 (15.0%) 0 (0%) 6 (3.8%)

NPL10 successful runs (%) 15 (7.5%) 9 (5.6%) 0 (0%) 0 (0%)

Table 5 Success on learning 
Type C/D systems split by 
stress-to-word edge distance.
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Table 6 presents results by Types (§7.2). Nearly all the attested stress systems fall into the A, B, 
and C Types from Table 4. Only one system of Type D is attested: fixed antepenultimate stress 
(which requires bounded QI feet without overt secondary stress). This system is consistently 
learned by the EDPL on all runs. Thus, while the EDPL’s lowest performance is on stress systems 
of Type D, none of these problematic cases are attested in StressTyp2.

In fact, there are just two attested stress systems that are consistently not learned by the EDPL.16 
These are Type C systems in which CVC syllables are light. One system stresses the rightmost 
R-to-L QS non-degenerate trochee: (H́L), (ĹL), (H)(H́), L(H́) (French (phrasal-level stress): 
Martinet 1969; Selkirk 1978; Hayes 1995;17 Sorbian: Bethin 1998; in both cases, only schwa 
counts as short), and the other is its exact mirror image: (LH́), (LĹ), (H́)(H), (H́)L (Iron Ossetic, 
Abaev 1964; Borise & Erschler 2020; phrasal-level stress, only reduced vowels count as short). 
Interestingly, the two stress systems identical to these except that CVCs are treated as heavy 
are consistently learned by the EDPL. This is because when CVCs are heavy, two thirds of 
the syllables in the learning data have potential to cue quantity sensitivity, while when CVCs 
are light, only one third of the syllables, those with long vowels, have that opportunity. This 
suggests that the EDPL’s learning outcomes can depend on the prevalence of heavy syllables 
in the learning data.18 Recent results by Zuiderwijk (2020) do indeed confirm this: if the 
proportion of CVV syllables is increased to two-thirds of the dataset, these two stress systems 
are consistently learned. It is a question for further work what the EDPL predicts for learning 
based on the actual statistical distribution of segmental and stress patterns in these languages.

We tentatively conclude there is an intriguing correspondence between patterns that pose 
difficulty for the EDPL and patterns that appear to be unattested typologically. The two exceptions 
discussed above show that much further work, beyond the scope of this paper, is needed before 
firm conclusions about the connections between learning and typology can be made. This work 
will require examining how distributional properties of the data – in particular, the distribution 
of word lengths (Stanton 2016) and heavy syllables (Apoussidou 2007) – affect learning and 
how predictions for learning vary when different theoretical assumptions are made.

8 Conclusion
In this paper, we introduce a novel domain-general learning model for P&P grammars. We 
show how the proposed learning model provides a mathematically principled solution to the 
Credit Problem. The solution relies on probabilistic inference to formalise and quantify each 
parameter setting’s relative responsibility for each data point. We show that these learning 
updates can be computed efficiently and incrementally without the need for any specialized 
parsing mechanisms. The proposed learning algorithm, the EDPL, can be viewed as an extension 
of the NPL wherein the parameter-specific, continuously-valued responsibility replaces the 
global, binary reward value used by the NPL.

We present the first systematic tests of both the NPL and EDPL on a full stress typology, namely, 
the one predicted by Dresher & Kaye’s (D&K; 1990) framework. Our findings indicate that the 
NPL fails to cope with the ambiguity present in this typological system, learning fewer than 5% 
of the languages. In contrast, the EDPL learns over 90% of the languages in D&K’s framework, 
and over 94% of the languages in their framework that are also attested in StressTyp2. The 
only difference between the EDPL and the NPL is in the definition of the Reward values: the 
NPL does not attempt to address the Credit Problem, while the Reward values in the EDPL 

16 One other system not learned by the EDPL resembles Cairene Arabic to some extent (Hayes 1995). However, 
the actual Cairene Arabic stress pattern cannot be modelled in the D&K framework because moraic trochees and 
segment extrametricality are not available. 

17 See, e.g., Jun & Fougeron (2000); Post (2000) for non-stress analyses of prominence in French.

18 See Apoussidou (2007:106–107) for a similar influence of preponderance of heavy syllables on learning.

Type A Type B Type C Type D

Attested languages 23 16 8 1

Convergent runs 228/230 (99.1%) 160/160 (100%) 60/80 (75%) 10/10 (100%)

Table 6 Attested stress 
systems broken down by Type.
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are mathematically defined as the share of credit attributable to each parameter setting. This 
minimal contrast together with the dramatic differences in performance between the NPL and 
EDPL support our claim that mechanisms for performing analysis on incoming data are essential 
for successful, domain-general learning of metrical stress.

These results have further implications for P&P frameworks of stress and phonological theory 
more generally. Since the EDPL is a domain-general learning model, its high performance 
undermines arguments made in previous work for the necessity of domain-specific learning 
mechanisms. We provide the first results to suggest that combining a P&P theory of universal 
grammar with general statistical learning mechanisms may be sufficient to account for successful 
learning of stress. This brings learning results for P&P closer in line with those of OT, where a 
number of existing domain-general learning models have been demonstrated to have similar 
levels of performance on metrical stress systems (Jarosz 2013a; 2015; Boersma & Pater 2016). 
Indeed, some of these results are for the Expectation Driven Learning model for OT (Jarosz 
2015), which the EDPL is based on, making it possible for the first time to directly compare the 
learning predictions of OT and P&P theories of stress within the context of the same learning 
theory. The EDPL can also be readily applied in its current form to other P&P theories of stress 
(e.g., Halle & Vergnaud 1987; Hayes 1995).

Our findings have broader implications beyond P&P and beyond the domain of stress. The 
EDPL has already been applied outside phonology to the domain of syntax with promising 
results (Hucklebridge 2020; Prickett et al. 2020). Future work should further examine the 
EDPL in this context and compare its performance and computational properties to existing 
models of syntactic learning (e.g., Sakas & Fodor 2001; Yang 2002; Gould 2015). This work is 
also part of a broader effort to develop deeper and more explicit connections between learning 
and linguistic theory. In the previous section, we presented an in-depth analysis of how local 
ambiguity presents learning challenges for the EDPL and where learning difficulties may line 
up with typological attestation. While the analysis is necessarily specific to this stress system 
and the typological correspondence is preliminary for the reasons discussed earlier, the results 
are encouraging and provide support for pursuing these connections further. As Hucklebridge 
(2020) finds for the domain of syntax, we find that the EDPL’s learning difficulty in the stress 
domain depends on the quantity and quality of evidence supporting target settings of crucial 
parameters. Different theories make distinct representational assumptions and therefore predict 
learning challenges should arise in different contexts and for different patterns. Typological 
skews are one place where predictions of different frameworks may diverge, and we have taken 
the first steps toward exploring such predictions for the D&K system here.
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