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This article investigates whether cross-linguistic generalizations may arise from asymmetries 
in learnability of competing syntactic patterns. The model presented here uses a domain-
general statistical learner for parameter systems in order to probe whether languages violating 
the Final-over-Final Condition (FOFC; Sheehan et al. 2017) might be difficult to learn, rather 
than syntactically impossible. In this model, no parameters ruled out *FOFC languages, and no 
penalties targeting them were built into the learner. Regardless, the results of two learning tasks 
demonstrate a correlation between the learnability of a word order pattern and its frequency in 
the typology. *FOFC languages were harder to learn, providing a possible explanation for their 
relative rarity.
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1 Introduction
The source of universals and cross-linguistic generalizations has long been a central question for 
generative linguistics. Restrictions on Universal Grammar, computational efficiency, or processing 
costs are often considered as possible roots of recurrent patterns. This article investigates the 
possibility that universals may also arise from asymmetries in the learnability of competing 
syntactic patterns. Although there is a growing body of computational work modeling cross-
linguistic generalizations in phonology (Boersma 2003; Heinz 2010; Pater 2012; Staubs 2014; 
Hughto et al. 2015; Hughto 2018; Breteler 2018; Jarosz 2019), the utility of computational 
models for relating learning biases to typological phenomena has yet to receive the same attention 
in generative syntax (notable exceptions: Kirby (1999); Smith et al. (2003); Culbertson (2010); 
Culbertson et al. (2012)).1,2 In an effort to help fill this gap, this paper presents a computational 
model for a simplified typology of word order, with a particular focus on the learnability of 
languages containing structures that violate the Final-over-Final Condition (FOFC) (Holmberg 
2000; Biberauer et al. 2014; Sheehan et al. 2017: and others). The results of two learning tasks 
conducted here show a correlation between the learnability of a word order pattern and its 
frequency in the typology. The challenge presented by *FOFC languages is shown to stem from 
the difficulty the learner has in locating an appropriate grammar in the hypothesis space when 
it encounters them. This is in contrast with accounts that attribute the FOFC to a difficulty 
with final-over-initial tokens (such as syntactic restrictions on deriving them, or high processing 
cost). The rationale behind this project is as follows: Assuming a parametric model of syntax 
(Chomsky, 1981), a learner is faced with the challenge of deducing parameter settings, which 
operate over abstract syntactic structures, from the set of strings that make up their language. 
There are several obstacles inherent to this task. First, the learner is only exposed to a finite 
sample of an infinite set (poverty of the stimulus). Then, there is the problem of ambiguity, as 
individual strings may be compatible with multiple parameter settings (i.e. multiple grammars). 
Additionally, the learning problem presented by realistic language data is not always ‘smooth’ 
(Dresher, 1999), i.e. there is no guarantee that similar parameter settings will generate similar 
sets of strings. Given these challenges, it is natural to speculate that some sets of strings may 
be easier for a learner to relate to their corresponding parameter settings than others. Nothing 
in the grammar enforces that all possible parameter settings be equally easy to learn, and some 
syntactic patterns may therefore be more ‘learnable’ than their alternatives.

 1 Steinert-Threlkeld & Szymanik (2019; 2020) show how learnability can be related to typology in the domain of 
semantics, although use of neural nets in that work makes the mechanisms by which these asymmetries arise less 
transparent than in other works cited here.

 2 While models for syntactic parameter learning are given in Gibson & Wexler (1994); Fodor (1998); Yang (2002); 
Gould (2015; 2016); Sakas et al. (2018); Prickett et al. (2019), these works focus on modeling how parameter setting 
might be achieved given ambiguous evidence, rather than how the shape of the parameter space might influence 
typology.
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These differences in learnability have the potential to influence typology. Learning challenges 
which are present when looking at a small piece of language (and therefore the learning problem) 
are scaled up when faced with the task of acquiring a whole language. Therefore, it may be 
difficult to acquire a stable grammar for harder patterns given the limited time and data a human 
learner has. Because of this, learners may not reliably or robustly acquire the target grammars 
for these difficult patterns. These weak biases have the potential to be amplified into strong 
typological generalizations when they are transmitted across generations, as shown the Iterated 
Learning Framework (Kirby 1999; Smith et al. 2003; Kirby et al. 2004).

If a syntactic universal arises from this kind of learnability problem, it should be expressible 
as a constraint on syntactic structure, rather than strings, as structure is what parameters are 
generally taken to control. The FOFC provides an interesting window into the intersection of 
learnability and typology because it cannot be stated in terms of linear order (Biberauer et al. 
2014). Instead, it constrains hidden structure (i.e. unpronounced hierarchical syntactic structures) 
in a way that results in a restriction on possible word orders.

The FOFC states that a head-final phrase may not immediately dominate a head-initial phrase 
if both are in the same extended projection (Holmberg 2000; Biberauer et al. 2014):

(1) The Final-over-Final Condition (FOFC)
*[βP [αP α ɣ ] β ] where α and ɣ are sisters and β and α are members of the same extended 
projection (Sheehan et al. 2017: 1).

This is based on the observation that, out of the four logically possible structures in (2), only 
word orders predicted by (2a–c) are commonly attested (trees from Biberauer et al. 2014: 171):

(2) a. Head-initial (harmonic)

β′

αP

γPα

β

Example: Aux Verb Object

b. Head-final (harmonic)

β′

βαP

αγP

Example: Object Verb Aux
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c. Initial-over-final (disharmonic)

β′

αP

αγP

β

Example: Aux Object Verb

d. *Final-over-initial (disharmonic)

β′

βαP

γPα

Example: *Verb Object Aux

In addition to the FOFC, which bars structures like (2d), harmonic orders outnumber disharmonic 
orders (Greenberg 1963; Dryer 1992; Baker 2008). Therefore, the word-order typology can be 
said to exhibit two divisions in terms of frequency: harmonic orders are more common than 
disharmonic, and initial-over-final orders are more common than final-over-initial.

Several prior analyses of the FOFC have proposed restrictions on syntax that would prohibit 
final-over-initial word orders from ever being derived (that is to say, from ever being linearized)
(Holmberg 2000; Roberts 2010; Sheehan 2011; 2013; Biberauer et al. 2014).3 One prominent 
account comes from Biberauer et al. (2014) and subsequent papers in Sheehan et al. (2017). 
Their analysis reduces the FOFC to the interaction of the Linear Correspondence Axiom (LCA) 
and restrictions on feature spreading. All syntactic structures are assumed to have an underlying 
head-initial configuration while other orders must be derived by movement. Harmonically head-
final orders (2b) are derived via roll-up movement, where the sister of every head X moves to 
Spec XP. This movement is triggered by a feature ∧ that originates on the lexical head of an 
extended projection and spreads upwards. Initial-over-final disharmonic orders like (2c) emerge 
when ∧ only spreads to a subset of heads in the spine. Final-over-initial orders are ruled out 
because spreading of the ∧ feature is strictly local, and cannot skip over any heads in the extended 
projection that contains it. Therefore, no head-final phrase can be derived unless all the phrases 
it dominates are likewise head-final, rendering (2d) impossible.

 3 Other analyses couched in OT do not necessarily prohibit exceptions to the FOFC, due to the nature of violable con-
straints, as in Kusmer (2020); DelBusso (2020).
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Alone, this account has nothing to say about why harmonic orders are more common than 
the derivable disharmonic order (2c). Since both (2b) and (2c) must be derived via movement 
(and in fact (2b) requires more movement than (2c)), it is not possible to appeal to parsimony. 
This is addressed in Roberts (2017), who resolves this by amending the antisymmetric approach 
to include the idea that triggers for movement (i.e. ∧) tend to operate as a class. He sets this out 
as a restatement of the Cross-Categorical Harmony generalization from Hawkins (1983):

(3) There is a preference for the attraction property of a functional head F∧ to generalize to 
other functional heads G∧, H∧... (Roberts 2017: 36)

If the generalization in (3) is true, then harmonically head-final languages are less marked 
than disharmonic languages because head-final harmony is produced when the ∧ feature fully 
generalizes. Roberts (2017) takes this to be the result of conservatism of the learner, reasoning 
that it is simpler for a learner to assign the ∧ feature to either all heads or no heads, rather than 
to a subset of heads. Roberts notes that this can be modelled using the notion of macro- and 
micro-parameter found in Baker (1996; 2008). Assigning the ∧ feature universally is setting a 
‘macroparameter,’ while assigning it to select heads means setting multiple ‘microparameters.’ 
Taking Biberauer et al. (2014) and Roberts (2017), together, a split account of word order typology 
emerges: the prevalence of harmony is taken to be the result of asymmetries in learnability, 
while the FOFC is taken to be the result of immutable restrictions on possible derivations.

The model presented here takes the general idea of Roberts (2017) a step further by showing 
how both the preference for harmony and the FOFC may stem directly from asymmetries in 
learnability. Additionally, these learnability challenges need not to be built into an explicitly 
pre-defined learning path (i.e. with ordered macro- and micro-parameters), but may emerge 
automatically through the interaction of the learner with the grammar. The learning tasks 
were conducted using a domain-general statistical learner for parameter systems called the 
Expectation-Driven Parameter Learner (EDPL) (Jarosz 2015; Nazarov & Jarosz 2017).4 The 
EDPL was presented with the challenge of learning a word-order typology generated by a 
simple 4-parameter system which contained variations on the orders of {auxiliary, verb, object}. 
Each parameter could be set to either 1 or 0, and a setting of all four parameters constituted a 
language (e.g. 1000, 1100...etc.). These languages formed the hypothesis space that the learner 
was tasked with navigating. No explicit bias for or against a particular word order was built into 
the parameter system or the learner.

Using a typology generated by the 4-parameter system and a syntax described in sections 
2 & 3, two learning tasks were conducted: In the first, each language in the typology had three 
tokens, one instance each of {auxiliary, object}, {verb, object}, {auxiliary, verb, object} (given 

 4 The implementation of the EDPL used here is the same as in Prickett et al. (2019), written by Brandon Prickett, with 
minor modifications.
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here unordered). In the second, each language contained only the binary tokens, and the EDPL 
did not encounter any variant of {auxiliary, verb, object} in the training data. This 2-token task 
was included to investigate the role of the ternary tokens in determining how easy a word 
order pattern was to learn. An idea prevalent in the literature is that tokens which violate the 
FOFC are at fault for the phenomenon — either they are underivable, too difficult to process, 
unlinearizable, etc. If this is the case, then toy languages without ternary tokens would not be 
expected to impede learning even if their order predicted that a ternary token would violate the 
FOFC. The 2-token task’s inclusion was also motivated by the results of the adult learning study 
conducted in Culbertson et al. (2012), where participants struggled to learn artificial languages 
that violated Greenberg’s Universal 18 (sometimes taken as a FOFC phenomenon). Participants 
in that study only saw two-word tokens, and three-word tokens were not necessary for the effect 
to obtain.

The results of both learning tasks demonstrate a correlation between relative learnability 
of word order patterns and their frequency in the typology. In all tasks, the harmonic head-
final order was the easiest for the EDPL to learn. In the 3-token task, the head-initial harmonic 
order was the next easiest, while in the 2-token task, the head-initial order and the disharmonic 
initial-over-final had comparable learning curves. The final-over-initial order (i.e. *FOFC) was 
the most difficult word order pattern for the EDPL to learn by a significant margin in both tasks, 
although it never failed to converge on the target pattern. Detailed results are presented in 
sections 5 and 6.

A closer look at the learning path of the EDPL for each word order pattern showed that 
the difficulty of the final-over-initial pattern is reducible to the asymmetry between leftward 
and rightward movement. Leftward movement creates weakly-equivalent languages for the 
initial-over-final pattern, which produces a more contiguous parameter space (i.e. a space where 
languages with similar settings produce similar-looking sets of strings). This makes the pattern 
easier to learn because it helps guide the learner to a suitable grammar. Leftward movement 
does not create weakly-equivalent languages for the marked final-over-initial pattern (*FOFC). 
The two languages that instantiated the final-over-initial pattern had different settings on two 
parameters, and this pulled the learner in two different directions, which made learning difficult.5

It is important to emphasize that these results show that it is the challenge of finding a 
suitable grammar that makes *FOFC languages difficult, rather than a problem specific to FOFC-
violating tokens. As the results of the 2-token task demonstrate, even when the learner was never 
exposed to strings large enough to violate the FOFC, the final-over-initial word order pattern was 
the most difficult. Seeing two binary tokens that would predict a final-over-initial word order 

 5 See Stanton (2016) for similar discussion of antagonistic learning pressures in phonology.
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presented the learner with a comparable challenge to the 3-token task. These results parallel 
those in Culbertson et al. (2012).

The goal of this paper is a) to show how, under the adoption of a specific syntax and a specific 
learner, it may be possible to link the FOFC to learning, and b) to provide a proof of concept 
for the utility of learning models as a way of capturing difficult-to-explain patterns in syntactic 
typology. The model implemented here shows one way (and perhaps not the only way) that the 
FOFC can be linked to the influence that widely-observed phenomena (such as restrictions on 
rightward movement) have on the shape of the hypothesis space that a learner is confronted with 
during acquisition.

If the FOFC arises because of learnability rather than restrictions on syntax, then this may 
account for apparent exceptions to the FOFC reported in the literature. These include (but are not 
limited to) the position of sentence-final particles in Mandarin (Erlewine 2017), the availability 
of (S)-V-O-Aux order in Hindi (Mahajan 1990; Bhatt & Dayal 2007), and TAM particles in 
Amahuaca (Clem Forthcoming). The challenge that final-over-initial structures present to 
learning may account for their scarcity in the cross-linguistics typology. However, as the final-
over-initial pattern was never completely unlearnable, exceptions to this are also accounted for. 
*FOFC languages may be acquirable, but the relative difficulty of acquiring them may encourage 
languages to shift towards other, easier patterns.

2 Syntactic assumptions
The model used focuses on {auxiliary, verb, object} tokens and discussion of syntax is framed 
around a clausal spine that contains just these elements. However, I assume that the relevant 
properties of the training data can be generalized across other instances where the FOFC is 
active, such as the order of CPs or PPs.

2.1 Structure of the clause
Across all examples, I assume that the structure in (4) is present even when not all elements are 
pronounced:

(4) {ZP Z, {YP Y, {AuxP Aux, {XP X, {VP V, {NP N}}}}}

The heads Z, Y, and X are null functional elements. The specifiers for these phrases are the 
destination of movement used to derive various word orders in section 3. I will not speculate 
about the identity of these heads here, as it is not relevant for the question at hand.6

 6 This should not be taken to suggest that the existence of such phrases outside the bounds of what is normally pro-
posed in syntax. For example, potential identities for XP, YP, and ZP could be the commonly assumed vP, TP, and CP 
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2.2 Headedness
One popular approach to linearization is the Linear Corespondance Axiom (LCA) of Kayne 
(1994). The LCA relies on asymmetrical c-command to determine order, stating that if a 
syntactic node X asymmetrically c-commands another node Y, then all terminal nodes that X 
dominates precede the terminal nodes that Y dominates. The result of this algorithm is that 
all languages should be basically head-initial, and any other surface order must be derived 
through movement. Unlike restrictive approaches to linearization like the LCA, I hold that 
phrases may be either head-final or head-initial underlyingly – heads may be linearized either 
to the left or right of their complements. To clarify, I assume that structures are generated 
with no discernible word order (i.e. as sets), and that word order is established by setting a 
parameter that determines whether the resulting string will be head final or head initial. This 
parameter linearizes structures either as entirely head initial or entirely head final, so the 
linearization parameter produces purely harmonic structures. This is similar in some respects 
to the more permissive approach to linearization put forward in Abels & Neeleman (2012) or 
Sheehan (2013), however in that system each phrase must be specified as either head-final 
or head-initial, and headedness is determined on a phrase-by-phrase basis. Unlike the Abels 
and Neeleman approach, I take underlying headedness to be harmonic and movement to be 
necessary for disharmonic patterns.

Headedness here is defined over extended projections (Grimshaw 1991). Biberauer et al. 
(2014) observe that the FOFC does not hold across extended projections:7 word orders like the one 
in (2d) are not typologically marked where β and α are, for example, a verb and a determiner. By 
taking headedness parameters to target extended projections, the disharmonic orders that cross 
them are not predicted to exhibit the FOFC. The parameter relevant for controlling headedness 
in the typology here is given in (5):

(5) Parameter 1 (P1)
Headedness (VP): When set to 0, each head in the extended projection of VP is 
linearized at the left edge of its mother. When set to 1, heads are linearized at the right 
edge.

This parameter is sufficient to produce the harmonic head-initial and head-final orders:

phrases. Many options are also provided by syntactic cartography (e.g. in Cinque (1999)). Since it is the structural 
relationship between heads that will have a role to play in the learning experiment, this paper does not detour into 
the minutiae of what labels are most appropriate.

 7 A reviewer points out that Biberauer et al. (2014) employ a non-traditional notion of extended projection in order to 
capture the domain FOFC operates over. I follow them in calling this ‘extended projection,’ with the understanding 
that it may not be the exact domain originally proposed in Grimshaw (1991).
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(6) a. Head-initial: Headedness (VP) = 0
ZP

YP

AuxP

XP

VP

NP

N

V

X

Aux

Y

Z

Surface string: Aux V N

b. Head-final: Headedness (VP) = 1
ZP

ZYP

YAuxP

AuxXP

XVP

VNP

N

Surface string: N V Aux

Headedness (VP) by definition cannot control the order of any components within the NP. 
I take this to be controlled by a Headedness (NP) parameter, not included here as it would 
explode the amount of weakly-equivalent languages in a way that is symmetric across the four 
conditions (and therefore would not affect the results).

2.3 Movement
Following Grohmann (2003; 2011); Abels (2003); Abels & Neeleman (2012), I assume that movement 
is sensitive to anti-locality. Specifically relevant here will be the idea that complement movement into 
a local specifier is insufficiently distant movement. This is contra approaches that derive the FOFC 
from the LCA (e.g. Biberauer et al. (2014)), which utilize anti-locality-violating roll-up movement.

The assumption of anti-locality is related to the decision to include heads X, Y, and Z in the 
syntactic structures used here. The specifiers of these heads act as the landing sites for movement, 
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while anti-locality ensures that complement movement to more local specifiers need not be 
considered.8 The decision to include X, Y and Z, and to observe anti-locality in the training data 
was done in order to optimize for a small number of parameters. It may be possible to get rid of 
these assumptions without affecting the results, if additional parameters controlling movement 
were added, but I will not consider this further.

In addition to adopting anti-locality, all movement considered here is leftward, as is likewise 
assumed in Abels & Neeleman (2012). The asymmetry between leftward and rightward movement 
has been linked to the FOFC before, as in Cecchetto (2013); Zeijlstra (2016); Clem (Forthcoming). 
It is widely acknowledged that leftward movement is more common than rightward movement, 
and that rightward movement, when it occurs, is more constrained (Ross 1967). While rightward 
movement and specifiers are impossible in the current model, this is not a claim that rightward 
movement doesn’t exist as a phenomenon, just that it is constrained in such a way that is not 
relevant for the question at hand (for example, if its source is prosodic rather than syntactic, as 
proposed in Potsdam & Edmiston (2016) for Malagasy).

3 Deriving the word order typology
In this section I introduce the minimal derivations for deriving the two possible disharmonic 
orders from both head-final and -initial structures, along with the parameters that control them. 
These derivation are minimal in that they do not contain any string-vacuous movements. In 
the full typology there will be additional non-minimal derivations that contain string-vacuous 
movement – these are discussed in section 3.1. To begin, the initial-over-final pattern can be 
derived from an underlying head-initial structure with a single movement: NP movement into 
the specifier of XP, the functional projection above VP (7):

(7) Head-initial → Initial-over-final
ZP

YP

AuxP

XP

VP

NP

N

V

X

NP

N

Aux

Y

Z

 8 Additionally, movement always occurs from the bottom up, a universal assumption in generative syntax, so the 
ordering of movements is fixed.
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The surface order that results from the structure in (7) is Auxiliary, Noun, Verb (and therefore (7) 
is weakly-equivalent to (2c)). This movement is controlled by parameter 2:

(8) Parameter 2 (P2)
NP-SpecXP: When set to 0, no movement occurs. When set to 1, NP moves to the 
specifier of XP.

The marked final-over-initial order can also be derived from a head-initial structure using only 
one movement. This order obtains when the verb phrase moves into the specifier of YP, the 
functional projection dominating the auxiliary phrase (9):

(9) Head-initial → Final-over-initial (*FOFC)

ZP

YP

AuxP

XP

VP

NP

N

V

X

Aux

Y

VP

NP

N

V

Z

The underlying head-initial order between the verb and noun is preserved, while the auxiliary 
is linearized to the right, making (9) weakly-equivalent to (2d). The parameter that governs this 
movement is VP-SpecYP:

(10) Parameter 3 (P3)
VP-SpecYP: When set to 0, no movement occurs. When set to 1, VP moves to the 
specifier of YP.

In addition to these minimal derivations, both disharmonic orders can be derived from a head-
final structure. However, in these cases two movements are needed instead of one. The unmarked, 
initial-over-final order arises when VP movement to SpecYP precedes movement of AuxP to a 
higher ZP phrase:
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(11) Head-final → Initial-over-final
ZP

ZYP

YAuxP

AuxXP

XVP

VNP

N

VP

VNP

N

AuxP

AuxXP

XVP

VNP

N

The head-final order of the noun and verb is preserved, and the auxiliary is dislocated to the 
left, producing Auxiliary, Noun, Verb. The first movement here is already accounted for by the 
VP-SpecYP parameter, and so only one additional parameter is needed:

(12) Parameter 4 (P4)
AuxP-SpecZP: When set to 0, no movement occurs. When set to 1, AuxP moves to the 
specifier of ZP.

Deriving a final-over-initial language from a head-final language requires no additional 
parameters. If NP movement to Spec XP precedes movement of VP to Spec YP, then the resulting 
surface order is Verb, Noun, Auxiliary (13):

(13) Head-final → Final-over-initial (*FOFC)
ZP

ZYP

YAuxP

AuxXP

XVP

VNP

N

NP

N

VP

VNP

N
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The derivations in (11) and (13) are examples of remnant movement (Müller 1997; 2002). Remnant 
movement was proposed in Bhatt & Dayal (2007) to account for an apparent violation of the 
FOFC in Hindi. This type of derivation involves movement of a complement out of its containing 
phrase, followed by movement of the remains of that containing phrase.

3.1 Predicted languages
Languages predicted by the parameters set out here will be henceforth named with their 
parameter settings. For example, the head-final language with no movement is called 1000, 
where the setting of each parameter appears in the order they were introduced, as in Table 1.

The derivations in (7), (9), (11), and (13), along with the two harmonic structures in (a.) and 
(b.), are the set of structures giving minimal derivations for all the word orders in (2). However, 
they are not the only way to derive the attested patterns, as many string vacuous movements 
are also possible. The full set of predicted languages is given in Table 2, sorted by their surface 
word order pattern.

Headedness (P1) NP-SpecXP (P2) VP-SpecYP (P3) AuxP-SpecZP (P4)

settings: 1 0 0 0

Table 1: Languages are named by their parameter values. The order of the parameters from left 
to right is given in the first row. An example language name is given in the second row.

Initial Final Initial/final Final/initial HI +VP fronting HF + AuxP fronting

0011 1101 1011 1110 0110 1111

0001 1100 0111 0010  

0000 1010 0101   

1001 0100  

1000    

Table 2: Four parameter typology sorted by surface word order.

As Table 2 shows, the head-initial, head-final, and initial-over-final patterns hold of a 
number of languages beyond the minimal derivations. This is because our parameters predict 
that string-vacuous movements will be possible for each of these patterns. Unlike the first 
three orders, the marked final-over-initial pattern (*FOFC) can only be achieved through the 
derivations in (9) and (13), which correspond to the languages 0010 and 1110 respectively. No 
vacuous movement is possible while maintaining this word order. Additionally, these parameters 
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predict two additional word order patterns, each expressed by only a single language. I have 
called the first Head-initial+VP fronting. This pattern corresponds to the language 0110, and 
generates the word orders Aux-O, V-O, and V-Aux-O. It obtains when remnant movement of 
the verb phrase occurs in a head initial language. The second pattern is Head-final + AuxP 
fronting, and is expressed only by 1111. The word orders generated by this pattern are O-Aux, 
O-V, and O-Aux-V. This pattern is caused when all available movements occur in a head-final 
language.

4 Learning
A hypothesis about how language change might occur is as follows: at the end of the 
acquisition period, learners do not arrive at 100% certainty about the parameter settings 
of they language they have acquired. Let’s say that a stable word order pattern like Aux-
V-O is acquired with 98% certainty (an arbitrary number). The result of this is a grammar 
that generates Aux-V-O strings 98% of the time, and non-Aux-V-O strings 2% of the time. 
The output of this grammar serves as the input to the next generation of learners. Since the 
pattern is easy to learn and dearth between Aux-V-O and non-Aux-V-O strings in the input 
data is so great, the second generation also acquires a relatively stable grammar. The seed of 
language change can be found in what happens when a learner acquires a grammar with less 
certainty. Say a difficult-to-learn pattern, like V-O-Aux, is acquired with only 85% certainty 
by the end of the critical period. The input to the next generation of learning would then 
be 15% non-V-O-Aux word orders. Biases like this have the potential to compound over 
time (Kirby 1999; Smith et al. 2003; Kirby et al. 2004) so the second generation might end 
up with only 84% certainty about an V-O-Aux in their language. The initial difficulty of 
the pattern combined with its increasing underrepresentation in the input data between 
generations may strengthen this bias until V-O-Aux is no longer the default word order. As 
a result, marked patterns like V-O-Aux may be rare because languages tend to shift away 
from them, while easier patterns like Aux-V-O are common because they are stable and less 
inclined to change.

4.1 Hidden structure
Natural language data with hierarchical structure presents language learners with a problem: 
they must deduce a hidden structure of each datum they encounter from its surface representation 
alone. The reason that this presents a challenge is because surface strings may be consistent with 
a number of underlying representations, and therefore a number of different parameter settings. 
For example, the following structures all result in a harmonic head-initial word order auxiliary, 
verb, noun:
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(14) a. No movement: 0000
ZP

YP

AuxP

XP

VP

NP

N

V

X

Aux

Y

Z

b. AuxP moves: 0001
ZP

YP

AuxP

XP

VP

NP

N

V

X

Aux

Y

Z

AuxP

XP

VP

NP

N

V

X

Aux

c. AuxP/VP move: 0011
ZP

YP

AuxP

XP

VP

NP

N

V

X

Aux

Y

VP

NP

N

V

Z

AuxP

XP

VP

NP

N

V

X

Aux
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The string auxiliary, verb, noun is well-formed in languages 0000, 0001, and 0011. Movement 
obscures the underlying structures, and therefore the correct parameter settings.

An additional difficulty is that a single string may be derived by two or more languages that 
do not have similar parameter settings. In other words, the grammars that generate a particular 
language may not be contiguous in the parameter space. The language 0110 for instance, has 
more parameter settings in common with the final-over-initial language 1110 then it does with 
the head-initial language 0001, but produces surface strings that have more in common with 
head-initial languages then FOFC violators.

Ambiguity and the absence of smoothness are two factors that can make a particular pattern 
challenging to acquire. The harder it is to set parameters correctly, the more difficult a language 
is to learn. Given the number of languages even a small parameter system generates, it is difficult 
to intuit where and how the systems proposed to account for syntactic phenomena will present 
the greatest challenges to learners. To investigate what role such factors might play in the 
typology of word order, the learning tasks here are conducted using a computational learner as 
a proxy for a human learner. Although only a small number of parameters (and correspondingly 
small typology) will be considered, it is assumed that a much larger set of parameters are learned 
during acquisition.

4.2 Expectation Driven Parameter Learning (EDPL)
The Expectation-Driven Parameter Learner (EDPL) was developed in Jarosz (2015); Nazarov 
& Jarosz (2017); Nazarov & Jarosz (in press). The EDPL is a domain-general statistical 
learner for parameter systems (similar to the Naïve Parameter Learner proposed in Yang 
(2002)). The EDPL is able to acquire parameter settings for systems that are not smooth, 
and it does so gradually, offering a good approximation of human learning (and references 
above (Prickett et al. 2019: and references above). It is possible that results parallel to 
the ones presented in this paper could be obtained using another learner, such as those in 
Yang (2002); Goldwater et al. (2003); Gould (2015); Sakas et al. (2018), and the success 
demonstrated here for deriving the FOFC is not intended as an argument for the EDPL over 
other learners here. That being said, we will see that one property important for the results 
here is that the EDPL is sensitive to the contribution of individual parameter settings to 
errors made during learning.

The EDPL learns by testing each parameter setting and comparing the proportion of times 
each setting results in a match with the data. Settings that produce more matches are rewarded 
more in the learning update (i.e. their probability is increased). Learning is successful when the 
EDPL assigns a probability of 1 to a correct setting for each parameter.
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The EDPL uses a probabilistic parameter grammar (PPG) framework, which is a set of independent 
Bernoulli distributions for each parameter (Yang 2002). The probabilities for the total setting of 
a parameter sum to 1, and the settings of different parameters are unrelated. An example PPG 
(adapted from Nazarov & Jarosz (in press) for a subset of the parameters used here) is given below:

(15)
Gt =

{
Head =

P (Initial) = 0.4
P (Final) = 0.6

NP-XP =
P (On) = 0.3
P (Off) = 0.7

VP-YP =
P (On) = 0
P (Off) = 1

, ...

}

When a PPG is used to generate an output, its parameters are each given a categorical setting 
that is based on the probabilities for that parameter in the PPG. The resulting grammar is a full 
parameter specification (FPS). Two possible FPS based on (15) are shown in (16):

(16) a. Sample FPS 1: Headedness = Initial, NP-XP = ON, VP-YP = Off
probability: 0.4 × 0.3 × 1 = 0.12

b. Sample FPS 2: Headedness = Final, NP-XP = Off, VP-YP = Off
probability: 0.6 × 0.7 × 1 = 0.42

Given an unordered input, these FPS can be used to predict an output, which can be compared 
to an observed form (from the training data – see 4.2). For example:

(17) Observed word order: N V Aux
 Unordered input: {Aux {V N}}

 FPS output  Match with observed
Sample FPS 1:  Aux N V  False
Sample FPS 2:  N V Aux  True

Parameter probability distributions are updated using the Linear Reward-Penalty Scheme (LRPS: 
Bush & Mosteller 1951). The PPG in (15) is from a hypothetical stage where some learning has 
already occurred – parameter settings in the initial state have a probability of 0.5 (i.e. there is 
no prior bias for a particular setting of any parameter). The LRPS updates PPG probabilities with 
a Reward value (between 0 and 1) by which each parameter setting probability is increased or 
decreased. The LRPS computes a new probability for a parameter setting by taking a weighted 
average of the Reward value and the old probability of the parameter setting:

(18) Linear Reward-Penalty Scheme (Bush & Mosteller 1951)
Pt+1(ψi) = λ × R(ψi) + (1 - λ) × Pt(ψi)

In (18), Pt(ψi) represents the probability of a parameter setting ψi given the grammar at a time t 
(i.e. the current PPG). The current reward value of the parameter setting is R(ψi), where R(ψi) ∈ 
[0, 1], and λ is the learning rate (λ ∈ [0, 1]).
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The EDPL gives each parameter setting a different reward value based on the utility of 
that setting in generating a match. For example, the crucial parameter setting for matching the 
observed word order in (17) is Headedness = Final). The fact that NP-SpecXP is set to Off 
is irrelevant for producing a match, as setting it to On would result in the same string once 
Headedness is set to Final (i.e. all else being equal, the movement it triggers is string-vacuous in 
a head-final language). Therefore, Headedness and NP-SpecXP should not be equally rewarded, 
based on this datum.

An example of how the parameter Headedness might be updated after the observation in 
(17) is given in (19). The learning rate is λ = 0.1, as will be the case in the learning simulations in 
sections 5 and 6. Taking the PPG in (15) as the current grammar, the value of the Pt (Headedness 
= final) is 0.6 prior to this update. Setting aside for the moment the question of how the 
reward is calculated, suppose the learner just observed a learning datum that strongly supports 
Headedness=Final and has R(ψi) = 0.9. Using these values, the headedness parameter is 
updated by the LRPS as follows:

(19) Pt+1(Headedness = Final) = 0.1 × 0.9 + (1 – 0.1) × 0.6
Pt+1(Headedness = Final) = 0.63

Since NP-SpecXP = Off does not contribute to the match (17), it’s Reward value will be smaller 
than the one in (19), and the weight of NP-SpecXP = Off will not change:

(20) Pt+1(NP-SpecXP = Off) = 0.1 × 0.7 + (1 – 0.1) × 0.7
Pt+1(NP-SpecXP = Off) = 0.7

The result of (19) and (20) is the updated PPG in (21), where an update has been made to 
the probability distributions of the Headedness parameter, but the the NP-SpecXP parameter 
weights remain unchanged:

(21) Gt+1 =

{
Headedness =

P (Initial) = 0.37
P (Final) = 0.63

NP-XP =
P (On) = 0.3
P (Off) = 0.7

}

The sensitivity of EDPL to a parameter’s utility in producing a match with an observed datum 
is located in how the Reward value is calculated. The EDPL defines the Reward value for each 
parameter as the probability of that setting given a data point. More specifically, the Reward 
value of a setting is the probability of finding that setting in a successful parse of the observed 
data point (D) (Nazarov & Jarosz forthcoming: 13):

(22) R(ψi) = P(ψi|D)

This reward value is computed using Bayes’ rule. The three quantities in (23) can then be 
estimated using the current grammar, and so there is no need to generate an exhaustive list of 
possible parses for a given datum (Nazarov & Jarosz forthcoming: 13):
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(23) P (ψi|D) =
Pt(D|ψi)× Pt(ψi)

Pt(D)

The term Pt(D|ψi) is the conditional likelihood that a given setting leads to a match. This is 
estimated by sampling using the production grammar. This sampling is achieved by temporarily 
replacing the probability of parameter setting ψi in the current grammar with 1, while leaving 
all other parameter settings unaltered. Then, samples are taken by repeated generation of 
outputs by the temporary grammar. An estimation of Pt(D|ψi) is calculated by dividing the 
number of matches this produces by the number of samples (25, here). Pt(ψi) is the current 
probability of the parameter setting, which can be ascertained by referencing probabilities in 
the current PPG. Pt(D) is calculated by putting the two numerator quantities into the expanded 
Bayes’ rule. This yields a sample-based approximation of Expectation Maximization (Dempster 
et al. 1977).

Reward values are calculated this way for each parameter in an FPS, one parameter at a 
time. Once the Reward value for a particular setting is computed, it can be plugged into the LRPS 
update rule in (18), which will produce an updated parameter value. Updates are calculated after 
each datum the learner encounters (i.e. learning is online).

4.3 Learning tasks
In both learning tasks, the learner started with unordered sets representing syntactic hierarchy 
and learned from training data comprised of surface strings with no constituency information. 
The model corresponds to a slice of learning that takes place after lexical categories (POS tags) 
have already been acquired. This is a common starting-point in work on syntactic parameter 
learning (Gibson & Wexler 1994; Yang 2002; Gould 2015; 2016; Sakas et al. 2018; Prickett et al. 
2019). Similarly, the unordered constituency (section 2.1) is taken to be a part of UG. Learning is 
focused on the acquisition of order, and not lexical category or unordered hierarchy. The training 
data did not include any languages with variable word order. Additionally, the learner was only 
exposed to strings, and had no access to information about each datum’s hidden structure beyond 
hierarchy (i.e. no movement or headedness). Because of this, nothing in the data the learner 
sees differentiates the languages within a word order pattern, and so the learner did not make 
distinctions between them (see section 5).

In both tasks the learner was trained on every language for 80 passes through the data 
(unless otherwise noted) using a learning rate of 0.1, and averages were taken across 40 runs 
per language.9 Learning was deterministic (i.e. the learner acquired a single parameter setting 

 9 Runs represent individual learners, while passes through the data (i.e. ‘epochs’) represents the number of times the 
learner saw each token. 
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for each pattern) in all cases except one (the 3-token final-over-initial order; section 5.4), and 
averages were taken across runs to reduce noise. In the 3-token task, there were three data points 
per language an {Auxiliary, Object} sequence, a {Verb, Object} sequence, and an {Auxiliary, Verb, 
Object} sequence. The 3-token typology is given in Table 3.

HI HF I-over-F F-over-I HI+F HF+F

0011, 0001  
0000

1101, 1100, 1010  
1001, 1000

1011, 0111  
0101, 0100

1110, 0010 0110 1111

{Aux{O}} Aux-O O-Aux Aux-O O-Aux Aux-O O-Aux

{V{O}} V-O O-V O-V V-O V-O O-V

{Aux{V{O}}} Aux-V-O O-V-Aux Aux-O-V V-O-Aux V-Aux-O O-Aux-V

Table 3: Word order patterns and their languages in the 3-token task. The first row lists each 
word-order pattern, and the second gives each parameter setting that will achieve it. The 
first column shows the unordered inputs, while all other cells give the correct output for each 
language/input combination; these are the forms that made up the training data.

In the second task, there are only two data points per language, an {Auxiliary, Object} 
sequence, and a {Verb, Object} sequence. No language in this training data included the ternary 
{Auxiliary, Verb, Object} sequence. The 2-token typology is given in Table 4.

Head-initial Head-final Initial-over-final Final-over-initial

0011, 0001 
0000, 0110

1101, 1100, 1010  
1001, 1000, 1111

1011, 0111 
0101, 0100

1110, 0010

{Aux{O}} Aux-O O-Aux Aux-O O-Aux

{V{O}} V-O O-V O-V V-O

Table 4: Word order patterns and their languages in the 2-token task.

Since the only thing that distinguishes the +fronting word order patterns from the harmonic 
patterns is the ternary token, these languages are absorbed into the harmonic word order patterns 
in the 2-token task.

5 Results for the 3-token task
As noted in section 4.3, the learner did not differentiate between weakly equivalent languages. 
Because weakly equivalent languages were undistinguishable in the training data, the learner 
always converged on the same parameter settings for each. Therefore, the learning curves for the 
3-token task are given by pattern (as opposed to individual language) in Figure 1.
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Figure 1: 3-token learning curves by word order patterns. 

The learner reached a high degree of proficiency for all languages in the 3-token task by 50 
passes through the data (called ‘epochs’ here). The EDPL is different from a human learner in 
many respects, but crucially in that there is no cap on acquisition in terms of time or amount of 
data. Because of this, the EDPL eventually acquired all word orders with 100% certainty (all lines 
converge at 1). Therefore the learner’s ultimate success is not a good measure of a word order’s 
difficulty here. Instead, the measure of difficulty is the amount of time and data it takes for a 
learner to reach a high accuracy; that is to say, the measure of difficulty is the steepness of the 
learning curve, rather than its destination. Curve steepness can be measured by looking at how 
long it takes the EDPL to reach high accuracy for each word order pattern. I have chosen 80% 
here (0.8) for clarity. For example, the learner reaches 80% accuracy for the harmonic head-final 
pattern by about 7 passes through the data. The final-over-initial pattern, on the other hand, 
takes the learner over 20 passes through the data to reach 80%. More than twice the amount of 
data was needed for the learner to achieve high accuracy (80%) on the final-over-initial pattern 
than for the harmonic head-final pattern. So if a human learners have, for example, only 20 
epochs in which to learn, they can acquire all word orders to 80% accuracy except for the Final-
over-Initial order. Based on this, we can say that the final-over-initial is ‘harder’ to learn than 
any other pattern.
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According to this metric, the easiest language pattern for the EDPL to learn (i.e. the one 
with the steepest learning curve) was the harmonic head-final pattern (languages 1101, 1100, 
1010, 1001, 1000). The second easiest pattern was harmonic head-initial (languages 0011, 0001, 
0000), which took about 9 passes through the data for the learner to achieve 80% accuracy. This 
was closely followed by the disharmonic initial-over-final pattern (languages 1111, 1011, 0111, 
0101, 0100), which took 11 passes through the data. These are the three word order patterns 
that are frequently attested. The learner next converged on settings for the two outlier languages 
included as a prediction of the particular parameters used here. These are the head-initial with 
VP-fronting, and the head-final with AuxP fronting pattern, both of which corresponded to only 
one language each, and which trailed behind the other patterns in part because they have a 
relatively low starting probability (see section A.1 for further details). It took the learner 13 and 
15 passes through the data respectively to reach 80% accuracy on these patterns. The pattern 
with the flattest learning curve, and therefore the most difficult to learn, was the final-over-
initial pattern (20 passes through the data to reach 80%). Importantly, this is the word order 
pattern which violates the Final-over-Final Constraint.

The particular settings that the learner converged on for each of the four attested patterns 
are discussed in sections 5.1–5.4, along with an examination of why the learner arrived at each 
setting, and how that relates to the relative difficulty of each language. Data from the unattested 
patterns (Head-initial + VP fronting & Head-final + AuxP fronting) can be found in appendix 
A.1. 

5.1 Harmonic head-final (3-token)
Parameter learning curves for languages with a harmonic head-final surface order can be seen 
in Figure 2. As with the by-language and by-pattern curves, these are taken as an average over 
40 reps. The parameter values in this particular graph are for language 1000, but as noted in 
section 5, the same parameter values are consistently learned for all languages with a single 
surface pattern.

The first parameter to be learned is Headedness (P1) This parameter is set to 1 by about 
60 updates. At about 120 updates, VP-SpecYP (P3) reaches 0. After this, the learner does not 
converge on a value for the parameters NP-SpecXP (P2) or AuxP-SpecZP (P4). Given that 
harmonic head-final languages were the easiest to acquire (as demonstrated in Figure 1), this 
suggests that the settings of these parameters does not matter for the purposes of acquiring head-
final languages, at least once the first and third parameters are set.10 This is confirmed by looking 
at parameter curves for a single run (analogous to a single learner; Figure 3).

 10 To clarify; this has nothing to do with the fact that the remaining parameters would produce sting vacuous move-
ment – the learner cannot distinguish vacuous from non-vacuous movement. The parameters are irrelevant because 
no matter their setting, the learner will always produce the right string.



23

Figure 2: Head-final parameter curves.

Figure 3: Head-final parameter curves (1 run).
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What this means is that the learner can pick any setting for P2 and P4, and any combination 
of those two settings, and still produce the correct output. A closer look at the data confirms this. 
Table 5 shows to what extent the individual tokens in training data for the harmonic head-final 
languages are correlated with a setting of one for each individual parameter.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

O-V 0.7 0.6 0.4 0.6

O-Aux 0.87 0.5 0.5 0.37

O-V-Aux 1 0.4 0.2 0.4

Table 5: Preference of head-final tokens for 1

This is calculated by looking at how many times a particular token appears in a language 
with that parameter set to one (across all language patterns), and dividing that number by the 
total number of the languages the token occurs in. For example, the token O-V occurs in 10 
languages (five head-final, five initial-over-final). In seven of these languages, the first parameter 
is set to 1. Therefore, the extent to which O-V favors setting P1 to 1 is .7.

The easiest parameter for the learner to set is Headedness (P1) because the ternary token 
disambiguously prefers 1 (i.e. O-V-Aux never appears in a language where P1=0). VP-SpecYP 
(P3) is also relatively easy to set, because all three tokens push the learner towards a 0 setting, 
although none are disambiguating. The tokens are not united in which direction they push 
the learner for P2 and P4. O-Aux and O-V-Aux push the learner towards 0, while O-V pushes 
the learner towards 1. One might anticipate that in this case, both parameters will eventually 
be set to 0, since the majority of tokens favor this setting. However, it is important to note 
that the preferences in Table 5 are inherent to the training data and only hold prior to any 
learning. Once some learning has occurred, certain languages become more heavily weighted 
than others, and the parameter settings most likely to produce a match may change. For 
example, once two parameters have been set for the head-final data (i.e. P1 and P3), this 
helps eliminate some potential ‘nearby’ languages which are otherwise compatible with the 
training data:

(24) Head-final languages
1101 1101
1100 Learning 1100
1010 P1 = 1, P3 = 0 1010
1001 → 1001
1000 1000
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Because of this, the likelihood of the learner producing the correct outputs with particular settings 
of the remaining parameters changes. In this case, once P1 has been set to 1 and P3 has been set 
to 0, the settings of P2 and P4 no longer matter – every combination of settings will product a 
match with the training data. The learner therefore need not select a single setting for these two 
parameters in order to successfully learn a harmonic head-final language.

In summary: despite ambiguity in the data (i.e. many parameter settings compatible with 
the observed tokens), the harmonic head-final pattern is relatively easy for the learner because 
only two parameters need to be set for it to be successful, and one of these parameters is 
disambiguated by the ternary token. The language ultimately learned for the head-final pattern 
was 1 ~0~, where ~ indicates a parameter which did not need to be consistently set to either 
1 or 0. To clarify, this means that the grammar the learner acquired was (covertly) stochastic. 
Whenever the learner goes to use a ~ setting, it picks either 1 or 0 at random, and since any 
setting produces the right output, there is no variation in the tokens it produces (i.e. no surface 
evidence that the grammar is stochastic).

5.2 Harmonic head-initial (3-token)
The harmonic head-initial pattern was the second easiest language (i.e. had the second steepest 
curve). The average parameter curves are given in Figure 4.

Figure 4: Head-initial parameter curves.
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Here the learner quickly converges on a 0 setting for Headedness (P1) and NP-SpecXP (P2). 
For Headedness, this happens by about 50 updates, followed by NP-SpecXP at about 80. The 
other two parameters are much slower, with AuxP-SpecZP(P4) eventually converging on 1, and 
VP-SpecYP(P3) plateauing. In fact, although the learner gets very close to converging very early 
on, it actually takes around 500 updates for the AuxP-SpecZP(P4) to be completely set to 1. This 
can be seen in Figure 5.

Figure 5: Head-initial curves (500 updates).

Although it takes approximately 500 updates for P4 to be set to 1, the learner is close enough 
by around 150 updates that the fact that it hasn’t completely converged is not easily discernible 
from Figure 1. Again, looking more closely at the data sheds light on why the parameters are 
learned in this order and at this rate. The correlation of each head-initial token with parameter 
settings of 1 is given in Table 6.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

V-O 0.17 0.33 0.67 0.33

Aux-O 0.13 0.5 0.5 0.63

Aux-V-O 0 0 0.33 0.67

Table 6: Preference of head-initial tokens for 1.



27

The ternary token disambiguates the first two parameters, and this accounts for why they are 
set quickly. P2 takes slightly longer to set than P1 on account of the minority report of the Aux-O 
token which, unlike V-O and Aux-V-O , pushes the learning towards 1 instead of 0 for P2. After 
the first two parameters are set, the following languages are possible:

(25) Head-initial: Final-over-initial:
0011 0010
0001
0000

Unlike in the head-final case, setting two parameters is not sufficient for learning the head-initial 
pattern, as there is a nearby language (0010) which will not produce the right output. This 
“attractive neighbor” needs to be rejected before learning can be successful, and so additional 
parameters must be set. Specifically one additional parameter needs to be set. The two possible 
solutions for the learner are to a) set P3 to 0, in which case the setting of P4 does not matter, or 
b) to set P4 to 1, in which case the setting of P3 does not matter. The reason that P4 is set first is 
because 2/3 of the head-initial tokens prefer setting this parameter to 1, so that setting gets an 
initial boost before other learning occurs (as can be seen in (27)). The head-initial tokens do not 
push P3 towards 0 as strongly, and so P3 plateaus after P4 is set.

As noted above, despite a relatively steep learning curve, the learner is fairly slow to 
completely converge on parameter settings for this word order pattern. The reason for this 
is that, before P4 completely converges (with P1 & 2 already set), the learner is already very 
accurate. Given the languages that are highly weighted at that point (i.e. the languages in 27), 
the learner has a 75% chance of correctly producing Aux-V-O and Aux-O tokens, and 100% 
chance on V-O.

In combination with how close P4 & P3 have been pushed towards 1 and 0 respectively, this 
means that the learner is hardly ever wrong. Responsibility for matches is therefore diffused 
between both parameter settings, and it takes a long time for one to become more highly weighted 
than the other. This is one reason why the time it takes for the learner to fully set parameters for 
a language pattern is not used here as a complete measure of how learnable that pattern is. The 
head-initial pattern has a relatively steep learning curve, and the learner quickly achieves high 
accuracy, despite taking many updates to totally converge on all parameter settings.

Ultimately, the parameter values learned for the harmonic head-initial pattern were 00~1. 
Although the first two parameter settings are disambiguated by the ternary form, this pattern 
was still a bit more difficult than the head-final harmonic pattern. The reason for this is that 
more parameters needed to be set correctly in order for learning to be successful. The head-
initial pattern requires the correct setting of three parameters, while the head-final pattern only 
required two.
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5.3 Disharmonic initial-over-final (3-token)
The initial-over-final pattern (a.k.a the unmarked disharmonic pattern) was only slightly harder 
to learn than the two harmonic patterns, as in Figure 1. The parameter curves for initial-over-
final can be seen in Figure 6.

Figure 6: Initial-over-final parameter curves.

AuxP-SpecZP (P4) and NP-SpecXP (P2) are both set by about 90 updates. Headedness (P1) 
is the next to be set, more slowly, to 0, and at that point VP-SpecYP (P3) plateaus. Before any 
learning occurs, the preference of tokens for setting each parameter to 1 are in Table 7.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

O-V 0.7 0.6 0.4 0.6

Aux-O 0.12 0.5 0.5 0.6

Aux-O-V 0.25 0.75 0.5 0.75

Table 7: Preference of initial-over-final tokens for 1.

Unlike the harmonic patterns, the initial-over-final pattern has no parameter setting that is 
completely disambiguated by one or more tokens. However, all three tokens push the learner to 
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a 1 setting for P4, and 2/3 tokens push the learner towards 1 for P2, while the third is at chance. 
Both of these parameters are initially pushed towards one. At about 20 updates, the curves for 
P2 and P4 diverge, and P2 is set first, despite the fact that all tokens initially push P4 towards 1. 
To determine the source of this divergence, it is necessary to look at the approximate weight of 
each parameter at 20 updates. Table 8 gives the (approximate) probability that each parameter 
setting is 1 at 20 updates.

P1 P2 P3 P4

0.35 0.7 0.45 0.7

Table 8: Probability of P=1 at 20 updates.

Based on this, the approximate probability of each possible initial-over-final language at that 
point is as in Table 9.

1011 0111 0101 0100

0.033 0.143 0.175 0.075

Table 9: Weights at 20 updates

The combined weight of initial-over-final languages where P2 is set to 1 (0.4) has at this 
point become greater than the combined weight of languages where P4 is set to 1 (0.35). As 
learning goes forward this gets exacerbated, giving P2 a boost towards 1 that results in it being 
set before P4. Therefore, P1 and P2 are the first parameters to be correctly set. As in the head-
initial pattern, the languages remaining after the first two parameters are set are not all initial-
over-final, but include a neighbouring language:

(26) Initial-over-final: AuxP Fronting:
0101 0110
0111
0100

As in the head-initial case, there are now two possible solutions for the learner to set the final 
parameters. P3 could be set to 0, in which case the setting of P4 would not matter, or P4 could be 
set to 1, in which case the setting of P3 no longer matters. P4 is set first, because it was pushed 
towards 1 by all tokens initially, unlike P3, which was only pushed towards zero by one token.

The parameter settings the learner converges on for the initial-over-final pattern are 01~1. 
First P1 & P2 are set, and then P4 is pushed slowly towards 1. Once P4 is set, the setting of P3 
no longer matters for the pattern to be successfully learned. This is similar to the way the head-
initial pattern was learned, with three parameter settings being necessary for successful learning. 
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However, unlike the head-initial language, no parameters are disambiguated by the ternary form 
for the initial-over-final pattern.

5.4 Disharmonic final-over-initial (marked) (3-token)
The final-over-initial pattern (i.e. the marked disharmonic order) was the most difficult for the 
learner to successfully acquire. Average parameter learning curves for the example language 
0010 are given in Figure 7.

Figure 7: Final-over-initial parameter curves.

The first parameter to be learned was AuxP-SpecZP (P4), which was set to 0 by approximately 
60 updates. This was followed by VP-SpecYP (P3) being completely set to 1 by 80 updates. After 
these parameters are successfully valued, Headedness (P1) and NP-SpecXP (P2) appear to drift 
slightly towards 0 before appearing to plateau. Unlike in previous cases, however, no plateauing 
actually occurs for any parameters in the final-over-initial pattern. This becomes evident when 
looking at parameter curves for individual reps.

Figures 8 and 9 show that what is actually happening in Figure 7 is that the learner is not 
consistently landing on one parameter setting for this word order pattern. Instead, It converges 
on 1110 on just under 40% of runs, and on 0010 for the remaining (approx.) 60%. Because 
figure 7 shows curves over an average of reps, this gives the illusion of plateauing.
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Figure 8: Final-over-initial parameter curves for 1 rep (A).

Figure 9: Final-over-initial parameter curves for 1 rep (B).
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Looking at the starting preference of the final-over-initial tokens for setting parameters to 1, 
it is easy to see why parameters 3 and 4 are easy for the learner to set. Both of these parameters 
are disambiguated by the ternary form, as seen in Table 10. 

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

V-O 0.17 0.33 0.67 0.33

O-Aux 0.87 0.5 0.5 0.37

V-O-Aux 0.5 0.5 1 0

Table 10: Preference of final-over-initial tokens for 1.

V-O-Aux is only a possible output if P3 is set to 1 and P4 to 0, it does not occur in any 
languages that deviate from these settings. Once these two parameters are set correctly, the 
following languages remain:

(27) Final-over-initial: Head-final: Head-initial + fronting:
0010 1010 0110
1110

There are several sources of difficulty for the learner here. First, setting one additional parameter 
after P3 and P4 are set correctly will not make the final parameter setting irrelevant. All four 
parameters must be correctly set for the final-over-initial pattern to be learned. This contrasts 
with the other word-order patterns, which only required two or three parameters to be set before 
the language could be successfully learned. This is because the final-over-initial order has more 
nearby competitors than the other word order patterns, which had at most one neighbour to rule 
out.

A second problem is that the learner is not strongly pushed towards a particular setting 
on the first two parameters. For the first parameter, there is no obvious starting preference in 
the final-over-initial languages for a setting of either 1 or 0, so the learner is initially pulled in 
different directions. The second parameter is slightly more likely to have a setting of 0, and the 
P2 parameter curve does initially drift towards 0 in Figure 7, but this effect is not strong enough 
to consistently cause the learner to pick a 0010 setting. Adding to this problem is the fact that 
the settings of the first two parameters are dependent. For example, setting P1 to 0 obliges the 
learner to also set P2 to 0 in order to be successful. This means that, in addition to being pulled in 
different directions for the individual settings of P1 and P2, the learner can be pulled in different 
directions by a ‘disagreement’ between P1 and P2.

Something notable about the parameter curves for the final-over-initial language is that the 
source of difficulty when learning this pattern does not appear to come from how long it takes 
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the individual parameters to be set. Compare, for example, the relative number of updates for 
all parameters to be learned in Figure 6 vs. Figure 7. The difference here is that, although the 
initial-over-final and head-initial took longer for all parameters to be set, the learner quickly 
arrived at a point where it was choosing between languages which always or nearly always 
resulted in the correct outputs. On the other hand, while it took fewer updates for all the final-
over-initial parameters to be set, the learner was much more likely to be wrong at each stage of 
learning, as the ratio of correct languages to nearby languages is much smaller for the final-over-
initial order than for the other patterns. This is why the final-over-initial pattern has the flattest 
learning curve in Figure 1, and is the most difficult for the learner to acquire.

6 Results for the 2-token task
Unlike in the 3-token task, training data seen by the learner in the 2-token task was comprised of 
languages which only contained variants of {Auxiliary, Noun} and {Verb, Noun}. This means that 
the learner never saw any strings that actually violated the FOFC, only combinations of binary 
orders that would or would not predict such a violation. Learning curves for each individual 
word order pattern can be seen in Figure 10.

Figure 10: 2-token learning curves by word order pattern.
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These results diverge minimally from the results seen in Figure 1 (where there were three 
datums per language), with respect to the relative ease at which the learner acquired settings 
for each language pattern. The difference between the learnability of each pattern can again be 
illustrated by looking at how long it takes the learner to 80% accuracy. The pattern with the 
steepest curve is the harmonic head-final word order, where the EDPL reaches 80% accuracy by 
about 12 passes through the data. This is followed by the harmonic head-initial and initial-over 
final orders, which take 25 and 30 passes through the data respectively for the learner to reach 
80% accuracy. The pattern with the flattest curve (and therefore the most difficult) was the final-
over-initial pattern, which in this case predicts (but does not explicitly include) structures that 
violate the FOFC. The learner does not achieve 80% accuracy on the final-over-initial pattern 
until about 47 passes through the data, requiring more than three times the amount of data than 
was needed for the head-final pattern.

Exposing the learner to fewer tokens had the effect of slowing down learning. While the 
learner took around 50 epochs to converge (or nearly converge) on all patterns in the 3-token 
task (1), learning took around 80 epochs in the 2-token task (10). This is unsurprising. The 
absence of the ternary tokens introduced more ambiguity, since they disambiguated some of the 
languages in the 3-token task, and this took the learner longer to resolve.

There are two additional (and more interesting) differences between results for the 3-token 
and 2-token tasks. The first is that, as previously noted, the head-initial harmonic pattern and 
the initial-over-final pattern had overlapping curves in the 2-token task, but not the 3-token task. 
The reason for this is that the head-initial harmonic pattern was slightly more difficult in the 
2-token task. This can be seen by looking at the parameter curves for this language in Figure 11.

Figure 11: Harmonic head-initial parameter curves (2-token, 700 updates).
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The learner fails to completely converge on parameter settings for this pattern by 160 updates 
(by which time parameters for other patterns had all converged). This actually takes about 700 
updates to be completed. There is also a significant difference in the path of the parameter 
curves in the 2-token task. Here, P2 initially drifts towards 1 before changing course at about 30 
updates. P3 also plateaus initially before drifting towards 1, creating the pincer configuration in 
Figure 11 that is absent in Figure 4. The reason for this can be seen by looking at the preference 
of just the binary tokens for 1 in Table 11.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

V-O 0.17 0.33 0.67 0.33

Aux-O 0.13 0.5 0.5 0.63

Table 11: Preference of head-initial tokens for 1.

For P3, one token favors 1 and the other is at chance, while P4 is pushed in different directions 
by each token. This accounts for the initial drifting of P3 towards 1 and the initial plateauing of 
P4. Both P3 and P4 change course around the point where P1 is set to 0. The reason they change 
course can be seen by looking at the approximate weight of each parameter at 40 updates. This 
is given in Table 12.

P1 P2 P3 P4

1 0.8 0.45 0.45

Table 12: Probability of P=1 at 40 updates.

Given these probabilities, the approximate weight of the languages that remain after P1 
reaches 0 is as in Table 13.

0011  0001  0000  0010  0111  0101  0100  0110

0.242  0.198  0.162  0.198  0.060  0.049  0.040  0.049

Table 13: Weight of each head-initial language at 40 updates.

At this point the combined weight of the remaining languages where P4=1 is 0.551, so it is 
greater than the combined weight of languages where P4=0 (0.449). This is why P4 begins to 
drift towards 1. The only head-initial language where P3 and P4 have different settings is 0101, 
and so after P4 starts moving towards 1, these two parameters ‘push against’ each other, causing 
P3 to drift towards zero. After P2 is set to zero, only one more parameter needs to be set, as 
discussed in section 5.2. P4 converges first, and so P3 plateaus.
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The about-face that the P3 & P4 curves do in Figure 11 cause learning to be slightly more 
difficult when the learner is only exposed to 2-tokens. This additional difficulty is what allows 
the initial-over-final pattern to overtake the head-initial pattern in Figure 10, where this did not 
occur in Figure 1.

The second difference between the two tasks is that the learner consistently picked one 
parameter setting for the final-over-initial pattern in the 2-token, but not the 3-token task. All 
other parameter settings that the learner found for each word order pattern in the 2-token task 
were the same ones it found in the 3-token task, as seen in Table 14. 

3-token task 2-token task

a. Head-final 1~0~ 1~0~

b. Head-initial 00~1 00~1

c. Initial-over-final 01~1 01~1

d. Final-over-initial 1110 (40 %) / 0010 (60%) 0010

Table 14: Parameter settings learned for word order patterns in each task.

That the learner consistently arrived at a setting of 0010 for the final-over-initial order in 
the 2-token task can been seen by looking at the parameter curves for this pattern, given in 
Figure 12.

Figure 12: Final-over-initial parameter curves (2-token).

Parameter curves for the head-final and initial-over-final orders, which did not diverge 
significantly from the 3-token task, can be seen in the appendix. In Figure 12, we can see that P1 
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and P2 are consistently set to 0, where in the 3-token task, they were only set to 0 approximately 
40% of the time. The reason this difference arises can be determined by looking at the preference 
that each binary final-over-initial token has for 1 in Table 15.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

V-O 0.17 0.33 0.67 0.33

O-Aux 0.87 0.5 0.5 0.37

Table 15: Preference of final-over-initial tokens for 1 (2-token).

The general pattern here is much the same as in the 3-token task. P3 is still pushed towards 
1, since one token is correlated with a setting of 1 on that parameter, and the other is at chance. 
P4 is likewise still pushed towards 0, since both binary tokens are correlated with this setting. 
In addition, P1 is still pulled in different directions by each datum, and P2 is pushed towards 0 
by V-O, while O-Aux is not informative. What makes the learner able to consistently decide on 
parameter settings across runs in the 2-token experiment (where it was not able to when faced 
with three tokens) is the fact that the correlation of V-O with 0 has more weight in the 2-token 
experiment. That is to say, in the 2-token condition, half the tokens push the learner to 0 on P2, 
while only a third do when there are three datums. So in the 3-token condition, on a minority of 
runs the learner ends up finding the 1110 language, while in the 2-token condition, the impact 
of V-O pushes the learner towards setting P2 to 0. Since the data pushes the learner in different 
directions for P1, and since P1 and P2 must have the same setting for learning to be successful, 
this additional push towards 0 on P2 is sufficiently strong that the learner consistently lands on 
the 0010 language for this pattern.

The final-over-initial pattern still has the flattest curve in Figure 10, where all word order 
patterns are compared on the 2-token data. The reasons for this are the same reasons this pattern 
proved to be the most difficult when the learner was faced with three tokens. Firstly, all four 
parameters must be set for learning to be successful, where every other pattern required a 
maximum of three. Secondly, the learner is pulled in different directions on the first parameter, 
which must crucially have the same setting as the second. Even though it takes the learner less 
time to arrive at a solution for the final-over-initial pattern than it did for the harmonic head-
initial and initial-over final patterns, this is because mistakes are frequent before the correct 
settings are achieved in the final-over-initial pattern, where as the slow patterns were slow by 
virtue of the fact that they made very few mistakes.

7 Discussion & Conclusion
The learning tasks conducted here used a domain-general statistical learner for parameter systems 
(EDPL). There is nothing about this learner that ensured it would struggle to learn final-over-
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initial word order patterns, or easily learn head-final languages. Additionally, there was nothing 
built into the syntax which generated the training data that made final-over-initial languages 
inherently more difficult. They were fully derivable, and there were no built-in penalties that 
would make them more costly to derive.

Instead, the relative difficulty posed by each word order pattern arose from the interaction 
of the learner with the data. The extent to which a word order pattern was challenging was a 
product of how easy it was for the EDPL to locate a parameter setting in the hypothesis space that 
would result in a high degree of accuracy. The head-final harmonic pattern was the easiest (in 
both tasks) because only two parameters needed to be set and, in the case of the 3-token task, one 
of them was disambiguated by the ternary token. This is contra the prediction of Kayne (1994), 
which takes head-initial structures to be more basic and predicts that they will therefore be the 
most common. It is supported, however, by cross-linguistics data from WALS, which lists more 
SOV languages than SVO (Dryer 2013).11 In the 3-token task, the second easiest was the harmonic 
head-initial pattern, where three parameters needed to be set, and two were disambiguated by 
the ternary token. In the 2-token task, no head-initial parameters were disambiguated, which 
resulted in some additional difficulty added by a change in direction of the weighting of two 
parameters. The initial-over-final pattern was comparable to the head-initial in the 2-token task, 
and third-easiest in the 3-token because three parameters needed to be set, and none of them 
were disambiguated by any token. The hardest pattern to learn in both tasks was the final-over-
initial, which was the only pattern to contain *FOFC strings.

The reason that the EDPL struggled with the final-over-initial word order was twofold: first, 
all four parameters needed to be correctly set for the learner to achieve accuracy. There was never 
a point where any individual parameter settings ceased to matter. This was not the case with 
the harmonic orders, or the initial-over-final disharmonic order, where at most three parameters 
needed to be set before the learner reached 100% accuracy. The second reason that the EDPL 
struggled with the final-over-initial pattern is that the two possible parameter settings for this 
order pulled the learner in different directions. These parameter settings were 1110 and 0010, 
and since they have opposite settings on the first two parameters, responsibility for matches was 
attributed to both 1 and 0. P1 and P2 were also interdependent, and needed to have the same 
setting in order for the target language to be acquired. The result of this was that the parameter 
space for final-over-initial languages was not as contiguous as it was for the other word order 
patterns (i.e. 0010 and 1110 were not contiguous in the hypothesis space), and this created a 
greater challenge for the learner. In the 3-token task, the learner was unable to consistently pick 
parameter settings for the final-over-initial pattern. On about 60% of runs, it learned 0010, and 
1110 on the additional 40%, and crucially, it did so with the flattest over-all curve. In the 2-token 

 11 Thank you to an anonymous reviewer for pointing this out.
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task, the learner did consistently learn 0010, but the learning still happened at a much flatter 
curve than with any other pattern.

7.1 Relating results to the model
The syntactic system that generated the training data starts with an spine of form {ZP Z, {YP Y, {AuxP 
Aux, {XP X, {VP V, {NP N}}}}}. This unlinearized input is taken to be a part of UG in this model.12 
As stated in section 2, the null heads X, Y, Z, along with the assumptions of anti-locality, were 
adopted to optimize for a small parameter space, in order to make the results more transparent. 
It is plausible that, with additional parameters, null heads and anti-locality could be done away 
with without significantly impacting the results. Further speculation on what the mechanics 
of such a parameter system might look like are outside of the scope of this paper, but it would 
presumably need to produce an identical or highly similar typology.

The approach to linearization and the absence of rightward movement are less innocent, 
and have a significant effect on the results. First let us consider the impact of movement: One 
important factor contributing to the difficulty of the final-over-initial order was the fact that 
there were only two possible languages (parameter settings) compatible with this data, and 
they were sufficiently different from each other that the EDPL struggled to decide on the correct 
settings for each parameter. The learner got caught between two dissimilar, but equally good 
choices. Had there been additional languages, this would have smoothed out the parameter 
space by changing the correlation between final-over-initial tokens and parameter settings. For 
example, if the final-over-initial pattern had been generated by 1110, 0010, and 1010, then it 
would have been easy for the learner to set P1 to 1, since 2/3 languages would have this setting. 
Likewise P2 could have easily been set to 0, for the same reason. However, since there were only 
two languages, 1110 and 0010, there was no ‘tie-breaker’ to guide the learner to one setting over 
the other. The reason that this didn’t happen in the case of the initial-over-final order (i.e. the 
other disharmonic pattern), is that there are more weakly-equivalent initial-over-final languages. 
The presence of more contiguous, weakly-equivalent languages allowed the learner to determine 
that some settings were more likely to produce matches than others, so that no parameter ended 
up ‘tied’ between 1 and 0.

This asymmetry between final-over-initial and initial-over-final languages is reducible to the 
asymmetry between leftward and rightward movement. Although both disharmonic patterns 
have two minimal derivations (section 3), further string-vacuous leftward movements create 
a number of additional weakly-equivalent initial-over-final languages. Leftward movement 

 12 Potentially this hidden structure could also be taken as something that is learned prior to the slice of learning 
examined here. How the underlying form would be learned prior to the word order is unclear, but one possibility 
is that it could be tied to the conceptual strength of association between worlds, along the lines of Culbertson et al. 
(2019)
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does not create additional weakly-equivalent languages for the final-over-initial pattern, as 
no leftward movement applied after those in the minimal derivations is string vacuous. Any 
additional movement applied to a final-over-initial structure results in a different word order. 
In order to introduce vacuous movement that could produce more weakly-equivalent final-over-
initial languages, rightward movement would need to be introduced to the system.

This brings us to headedness, and the question of whether the asymmetry between leftward 
and rightward movement is sufficient to reproduce the attested typology under any system of 
linearization. I will not attempt to provide a fully comprehensive answer to this question here, but 
will instead focus on showing how assuming base-generation of harmonic extended projections 
contributes to the results. The first contribution is in fact a part of the justification for adopting 
this version of a linearizing parameter; defining headedness over extended projections effectively 
captures the fact that the FOFC does not appear to hold across them. For example, if determiners 
are added to the data set, along with a parameter for determining the order of D and NP, this will 
not affect the difficulty of any class of languages. The additional parameter needed to control the 
headedness of DP would double the size of the hypothesis space, but it would do so evenly across 
all patterns, so the relationship between data points and parameter settings would be unchanged.

Outside of explaining why the FOFC does not cross extended projections, defining headedness 
as underlyingly harmonic also introduces an important asymmetry between the harmonic and 
disharmonic languages. The ability to be base-generated increases the number of harmonic 
languages in a way that is contiguous, and therefore makes them easier to learn. If headedness 
was decided for each XP individually, as proposed in Abels & Neeleman (2012), this asymmetry 
would be lost, and the number of disharmonic languages would be greatly increased. Without 
this difference between harmonic and disharmonic languages, the remaining asymmetry 
between leftward and rightward movement is insufficiently strong for capturing the typological 
distribution of word order patterns. This is shown in Figure 13, which gives the parameter 
curves for a simulation identical to the 3-token task, with the exception that there were two 
separate parameters determining the headedness of AuxP and VP.

As this figure shows, when any order can be base-generated, the resulting curves bear no 
resemblance to the word order typology described in the literature. Therefore the asymmetry 
between the harmonic and disharmonic languages conspires with the absence of rightward 
movement to produce the hypothesis space that will lead the learner to mimic the frequency of 
word order patterns in natural language typology. The EDPL in particular does this because it 
is sensitive to the smoothness of the parameter space, which is why it struggles more when the 
languages within a word order pattern have discontiguous settings, as in the case of the final-
over-initial pattern. More specifically, the EDPL is sensitive to the contribution of individual 
parameter settings to a match or mismatch. This is what leads it to get stuck between 1110 and 
0010 for the final-over initial languages, as discussed above. Learners that are similarly sensitive 
to smoothness could conceivably be used to achieve comparable results.
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Figure 13: 3-token learning curves with separate headedness parameters for AuxP and VP.

7.2 Richness of the data
What I have done in this paper is to show that typologically marked orders like V-O-Aux, which 
violate the FOFC, may have a starting bias linked to how difficult it is for a learner to locate an 
appropriate grammar for them in the hypothesis space of languages. To have a more definitive 
answer about whether the FOFC stems from learning, the next step for this project is to model 
how this bias might be translated across generations. Although beyond the scope of the work 
presented here, iterated learning will stress-test the results by showing whether the bias is 
amplified as predicted, and also what word order(s) is(are) predicted to be learned in place of 
FOFC violators.

Additionally, the data used in this model is necessarily a vast oversimplification of the 
challenge that actual language learners are presented with, as is the standard in computational 
modelling work of this kind. Because of this, it is natural to wonder whether the results would be 
preserved with a richer data set that more accurately reflected the kind of input human learners 
receive. It is currently impractical if not impossible to model acquisition of the full extent of 
natural language data a human child is exposed to, of course, but a reviewer raises the question 
of a few areas relevant to the FOFC that one could imagine might affect the results. First is the 
question of how the learner might handle scrambling languages, which have variable word order 
but still seem sensitive to the FOFC. While there is no way to definitively answer this question 
without testing it, but depending on how scrambling is implemented, it is very possible that the 
results will be reserved (for instance, one might expect a similar hypothesis space to emerge if 
scrambling is implemented by making movement operations either fixed or optional). This is a 
natural next step for the project, although it is beyond the scope of the present work. There is also 
the (twofold) question of adverbs, which a) exhibit FOFC-like effects in V-Adv-Aux sequences, 
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and b) seem to disambiguate movement where it might be string vacuous in other cases. In the 
first case, since the model learns sequences of stings without really “knowing” what a word 
is, a minimally different typology with V-Adv-Aux tokens would produce the same results. It 
may be necessary to make different syntactic assumptions about the hierarchical configurations 
that generates V-Adv-Aux sequences, but since the learner never has access to this information 
anyways, it would be not be expected to effect the results of the model unless the assumptions 
generated a wildly different distribution of word orders. This is likewise true of any other FOFC-
like configuration (the head-final filter, etc). In terms of adverbs ability to provide cues for 
learning word orders, adverbs position varies greatly across and even within languages and this 
brings into question the amount of information they can really provide to a learner trying to 
acquire word order. It is not clear to me that they are predictable enough to be disambiguating. 
That being said, the question of how the model presented here behaves with a richer data set 
is an interesting one that should be investigated in future, especially in light of research in the 
Iterated Learning Framework (Kirby 1999; Smith et al. 2003; Kirby et al. 2004) that shows how 
weak biases (like the one put forward here) may be amplified into strong generalizations when 
transmitted across generations.

7.3 Broader connections
It is important to note that the source of the problem with final-over-initial pattern is the 
difficulty that the learner has trying to decide on a parameter setting for these languages. 
This means that it is not actually the *FOFC string which is challenging for the learner, but 
rather locating parameter settings that will produce that string in the hypothesis space. This 
is confirmed by the 2-token task, where the learner was never exposed to strings that violated 
the FOFC, but still struggled to acquire languages where such strings might be predicted to 
appear. The results of the 2-token task mirror the results of an adult learning study conducted 
in Culbertson et al. (2012). The purpose of their study was to investigate whether or not adult 
language learners are biased against learning typologically infrequent word order patterns in 
the nominal domain. Specifically, it dealt with Greenberg’s Universal 18, which observes that 
when adjectives precede a noun, numerals and demonstratives generally do as well (Greenberg 
1963). This universal is sometimes considered to be a part of the FOFC, as the marked word 
order Adjective-Noun-Numeral can be modelled with a *FOFC structure. In the experiment, adult 
learners were exposed to miniature artificial languages that had an inconsistent mix of word 
order patterns (an idealization of change in progress), and then tested on what they had learned. 
Culbertson et al. found that when the artificial language had dominant harmonic and unmarked 
disharmonic orders, learners shifted that language towards the majority order (i.e. produced the 
majority order at a greater frequency than it was found in the training data). When the dominant 
order was the marked disharmonic pattern, learners shifted the language towards a harmonic 
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order, instead of reinforcing the dominant order in the training data. Crucially, learners in this 
study only learned binary sequences of {Adjective, Noun} and {Number, Noun}. As in the 2-token 
learning task conducted here, the human learners in Culbertson et al. dispreferred learning 
the constructed languages which would predict a FOFC violation, without ever actually being 
exposed to a *FOFC structure.

Although the final-over-initial pattern was consistently the most difficult to learn, the EDPL 
never actually failed to converge on parameter settings for final-over-initial languages in either 
task. This result is compatible with the idea that the challenges *FOFC word orders pose to a 
learner may be a source of the rarity of those word orders. If the challenges presented by the 
final-over-initial pattern do not necessarily make it impossible for *FOFC orders to be learned, 
then this allows for the existence of exceptions to the FOFC, which have been documented in 
the literature (Bhatt & Dayal 2007; Biberauer et al. 2014; Erlewine 2017; Sheehan et al. 2017). 
Additionally, the relative order of the other word-order patterns likewise parallels the typology, 
with the exception of the ranking of head-initial and initial-over-final languages in the 2-token 
task. In both tasks, all languages were easier than the final-over-initial pattern, and in the 3-token 
task, harmonic languages were also easier to learn than disharmonic, even when the disharmonic 
language did not violate the FOFC.
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A Appendix
A.1 Head-initial + VP fronting & Head-final + AuxP fronting

Figure 14: Head-initial + VP fronting parameter curves.

In the head-initial + VP fronting pattern, all parameters are set quickly, and this is because there 
is only one possible language. Since ternary tokens are unique to a language pattern, the ternary 
form disambiguates every parameter setting in patterns containing only one language. This can 
be seen in Table 16.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

V-O 0.17 0.33 0.67 0.33

Aux-O 0.13 0.5 0.5 0.63

V-Aux-O 0 1 1 0

Table 16: Preference of head-initial + VP fronting tokens for 1.

This is likewise true for the head-final + AuxP fronting word order pattern, which consists 
of a single language comprised of the tokens O-Aux, O-V, and O-Aux-V. Parameter curves for this 
language are given in Figure 15.
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Figure 15: Head-final + AuxP fronting parameter curves.

The learner is able to set each parameter quickly because there is only one language in 
this pattern, and therefore the ternary token disambiguates each parameter setting, as seen in 
Table 17.

Inputs Headedness (P1) NP→XP (P2) VP→YP (P3) AuxP→ZP (P4)

O-V 0.7 0.6 0.4 0.6

O-Aux 0.87 0.5 0.5 0.37

O-Aux-V 1 1 1 1

Table 17: Preference of head-final+ AuxP fronting tokens for 1.

B 2-token head-final and initial-over-final pattern
The parameter curves for the head-final pattern and initial-over-final pattern in the 2-token task 
are given in Figure 16 and 17 respectively:
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Figure 16: Harmonic head-final parameter curves (2-token).

Figure 17: Initial-over-final parameter curves (2-token, 400 updates).
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