
Modelling German Word Stress
Fabian Tomaschek, Seminar für Allgemeine Sprachwissenschaft, Eberhard Karls University of Tübingen, Germany, 

fabian.tomaschek@uni-tuebingen.de

Ulrike Domahs, Institut für Germanistische Sprachwissenschaft, Philipps-Universität Marburg, Germany,  
domahsu@staff.uni-marburg.de

Frank Domahs, Seminar für Sprachwissenschaft, University of Erfurt, Germany, frank.domahs@uni-erfurt.de

Standard linguistic and psycholinguistic approaches to stress assignment argue that the 
position of word stress is determined on the basis of abstract information such as syllable 
weight and number of syllables in the word. In the present study, we contrasted this approach 
with a perspective based on learning analogies according to which speakers learn to associate 
word form cues to stress position. To do so, we use a simple two-layer neural network trained 
with an error-driven learning mechanism to predict stress position in German morphologically 
simple and complex words. We find that networks trained on word forms outperformed networks 
trained on cues that represent abstract information. Moreover, most standard approaches assign 
stress from right to left. We tested this proposal and found that in morphologically simple words, 
assignment from right yielded better results than assignment from left, supporting the standard 
approach. By contrast, in morphologically complex words assignment from left outperformed 
assignment from right. We discuss the implications of our results for psycholinguistic theories 
of stress assignment by taking into account word form cues, abstract cues, assignment direction, 
and the representation of stress in the mental lexicon.
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1 Introduction
In languages with free stress, like German, the question arises what factors determine the 
position of stress in a word. In the present study, we investigate this question by testing how 
different kinds of cues provided to a simple two-layer neural network determine the network’s 
accuracy in predicting stress position in German morphologically simple and complex words. 
We test an approach, according to which stress is assigned on the basis of similarity of word 
forms, where the similarity is learned through an error-driven learning process. We contrast 
this similarity-based approach with an approach using cues that represent more abstract types 
of information such as number of syllables or syllable structure that are typically considered in 
more traditional linguistic and psycholinguistic approaches.1 We find that assignment based on 
similarity outperforms assignment based on cues that represent abstract information. Moreover, 
we find that in morphological simple forms, assignment from right yields better results than 
assignment from left, supporting the standard approach. By contrast, in morphologically 
complex words assignment from left outperforms assignment from right. When analyzing how 
the network represents knowledge about stress assignment, we demonstrate that individual cues 
are not capable to predict a specific stress position when they are considered in isolation. Only 
in context with other cues, they demonstrate their predictive power about a stress position. In 
the remainder of this introduction, we present the theoretical and empirical background on word 
stress assignment in German. Subsequently, we discuss the material used in the present study as 
well as the computational method to investigate stress assignment. After presenting the results 
of our computational experiments, we discuss the implications of our results for psycholinguistic 
theories of stress assignment by taking into account word form cues, abstract cues, counting 
direction, and the representation of stress in the mental lexicon.

1.1 Word stress in German
1.1.1 Syllable weight
Several factors have been proposed to play a role in stress assignment. According to parametric 
accounts (e.g., Hayes 1995) and constraint-based accounts (e.g., Kager 1999) of word stress 
assignment, parameter settings or constraint rankings can be defined based on properties like 
edge-marking (left- vs. rightmost), number of feet (one vs. more than one), foot-type (trochaic 
vs. iambic), parsing direction (left- vs. rightwards), and quantity-sensitivity (Féry 1998; Jessen 
1999). However, the suggested analyses of where to place stress in German are controversial. 
Apart from accounts assuming that word stress has to be lexicalized as it is largely idiosyncratic 

	 1	 We are aware of the fact that phonemes, graphemes and syllables present some kind of abstract linguistic units. 
However, as the same given syllable structure (or CV-skeleton) represents different phoneme/grapheme sequences, 
we consider specific sequences of phonemes/graphemes as less abstract than constructs like “number of syllables” or 
“syllable structure”. For convenience, we will use the term “abstract” to refer to the latter type of constructs.
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(Levelt et al. 1999), proposals differ basically according to the question whether syllable weight 
influences stress assignment or not. Following theories neglecting syllable weight, stress is 
assigned to the initial or penultimate syllable by default or – in cases deviating from the default 
– specified lexically to occur on the non-initial or final / antepenultimate syllable (Levelt et al. 
1999; Wiese 2000). By contrast, in quantity sensitive accounts, not only the syllable structure of 
the rhyme, but also the position of syllables with a certain structure seem to play a role in stress 
assignment (Giegerich 1985; Vennemann 1991; Féry 1998). For example, Domahs et al. (2014b) 
analyzed the probability of stress positions in German trisyllabic words taken from the CELEX 
lexical database (Baayen et al. 1993) and found that words with a heavy final syllable are likely 
to receive either final stress or antepenultimate stress if the penultimate syllable is light (σLˈH 
or ˈσLH). In words with a light final syllable, the penult is most likely stressed, even more so if 
the penult itself is heavy (ˈLL or ˈHL). Syllable structure of the antepenultimate syllable is less 
commonly discussed as relevant, but there is evidence for a weak influence of antepenultimate 
rhyme structure on the stress pattern of German words (Röttger et al. 2012).

The observation that the word stress position depends on the structure of the final syllable 
is interpreted as evidence for the existence of trochaic foot structure in German (Giegerich 
1985; Féry 1998; Janssen 2003). A heavy final syllable can be parsed as a monosyllabic foot 
and additional syllables to the left as additional bisyllabic feet (e.g., Vitamin [(vi.ta)F.(‘miːn)F] 
‘vitamin’). This way, trisyllabic words ending in a heavy syllable can be parsed into two feet, while 
those with a light final syllable only into one (e.g., Zitrone [tsi.(‘troː.nə)F]) ‘lemon’). In addition, 
also the number of syllables within a word and their parity (even or odd) may affect the parsing 
of syllables into feet (Ernestus & Neijt 2008). Words with an even number of syllables tend to 
build bisyllabic feet where the rightmost foot receives main stress (i.e. penultimate stress), while 
words with an odd number of syllables tend to receive final or antepenultimate stress (Janßen & 
Domahs 2008). In contrast to the rhyme structure, onset complexity seems to have only a small 
influence at best (Mengel 2000; Röttger et al. 2012).

1.1.2 Non-phonological factors in stress assignment
Most accounts to stress assignment consider phonological properties of spoken language. 
However, other lexical aspects have also been shown to affect stress assignment. For example, 
when it comes to reading, orthographic properties become relevant as well. While, in alphabetic 
scripts, orthographic structure typically reflects phonological structure, this relation may 
not always be free from ambiguity. Using complex graphemes which code simple phonemes, 
Röttger et al. (2012) have demonstrated that orthographic syllable weight can influence stress 
assignment in German independently from phonological syllable weight. In consequence, models 
for stress assignment should be specific on the modality they are operating on (spoken vs. 
written language).
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Another factor that very likely affects stress assignment is part of speech. In English 
for example, initial stress is more often assigned to nouns, whereas disyllabic verbs tend to 
bear stress on the final syllable (e.g. Davis & Kelly 1997). For German, too, stress patterns 
have been described to depend on lexical class. Eisenberg (1991), for instance, considers 
stress patterns of word forms organized in paradigms rather than patterns of stems and 
suggests a trochaic word pattern at the end of inflected nouns (e.g., Magazine [ma.ga.’tsiː.nə]  
‘magazines’), while inflected adjectives often end in a dactylic pattern (e.g., größere  
[‘gʁøː.sə.ʁə] ‘bigger SG-FEM’).

Furthermore, stress position may also be influenced by morphological structure (Giegerich 
1985; Wiese 2000; Eisenberg 2016; Alber & Arndt-Lappe 2020). In the framework of lexical 
phonology, the stress position depending on suffixes has led to a crucial distinction between 
stress attracting and stress neutral suffixation (Giegerich 1985; Wiese 2000; Eisenberg 2016). 
This distinction was supported in reading experiments with suffixed pseudowords for which 
it has been found that suffixes may either attract stress or modify stress positions (Rastle & 
Coltheart 2000). Both simplex and derived forms have been argued to obey the three-syllable 
window, meaning that word stress is assigned to one of the three final syllables of words 
(Vennemann 1991; Jessen 1999). In contrast, however, compound words are not restricted 
by the three-syllable window. Since they are often stressed on the initial constituent, main 
stress is placed outside of the three-syllable window whenever polysyllabic words are combined  
(Wiese 2000).

1.1.3 Direction of stress assignment
Another question strongly debated in the field of stress assignment concerns the direction of 
assignment. Does stress assignment operate from left to right or the other way around? Given 
that, within a word, the structure of the final and prefinal syllables are particularly relevant for 
stress assignment (Mengel 2000; Röttger et al. 2012; Domahs et al. 2014b), processing from right 
to left (i.e., starting at the word’s end) seems most expedient for stress assignment. Moreover, the 
end of the word may be particularly informative for establishing analogies (Burani et al. 2014) 
and for analyzing stress-relevant morphological suffixes (Rastle & Coltheart 2000). Additionally, 
the three-syllable window highlights the particular relevance of a word’s right edge in stress 
assignment. In fact, a psycholinguistic study investigating the direction of stress assignment via 
its correlation with working memory supports the proposal that stress assignment proceeds from 
right to left (Domahs et al. 2014a). However, there are also alternative accounts that argue for 
stress assignment taking place from left to right (e.g. Levelt et al. 1999; Mattys & Samuel 2000; 
Schiller et al. 2006). This assumption is predominantly motivated by the fact that a huge amount 
of native words in German is bisyllabic, ending in an (unstressable) schwa syllable (Eisenberg 
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1991; Féry 1998; Alber 2020). Indeed, from a historical perspective, German can be described 
as a language with fixed stress on the first syllable until the 16th or 17th century (Speyer 2009).

1.1.4 The role of analogy
A further factor to be considered is the role of analogy which has been demonstrated in a number 
of languages including Italian (Burani et al. 2014) and English (Guion et al. 2003; Arciuli et al. 
2010; Moore-Cantwell 2020). According to the analogical approach, stress is assigned on the 
basis of similarity between word forms. Domahs et al. (2014b) demonstrated this for English, 
where words ending in -y typically have stress on the antepenult syllable. Specifically, sets of 
words sharing an ending and a stress pattern (i.e., ‘friends’) seem to be a relevant factor in 
assigning stress to words in reading Italian (Burani et al. 2014). A similar process may also be 
assumed in German.

1.2 The present study
As we have argued above, the allocation of word stress in German seems to involve both 
phonological and morphological properties that can be considered best if stress is assigned from 
right to left. However, these assumptions are not uncontroversial.

First, in some words phonological and morphological principles may conflict with each other. 
Since directionality interacts likewise with syllable structure and morphological structure, we will 
test the influence of directionality on stress assignment. Second, most discussed accounts of stress 
assignment are based on some kind of abstract structures that are defined in a top-down fashion. 
Nevertheless, word stress data are not fully explainable by structural phonological rules (Giegerich 
1985; Daelemans et al. 1994; Van Oostendorp 2012; Domahs et al. 2014b). Accordingly, the 
current study follows a naïve approach that is deprived of rules and abstract suprasegmental 
units, but instead focuses on stress assignment on the basis of phonological similarity among word 
forms. Finally, most empirical accounts of German word stress are based on morphologically 
simple disyllabic or trisyllabic words (e.g. Janssen 2003; Röttger et al. 2012; Domahs et al. 2014b) 
that constitute a small subset of the lexicon (as we will demonstrate below in Figure 2). Thus, 
morphologically complex words are typically ignored when investigating the position of primary 
stress. The current study also takes this part of the lexicon into account and investigates to what 
degree stress assignment varies in morphological simple words and morphological complex words.

In light of these problems and given the many different theoretical accounts, we approach 
the question of word stress assignment from a naïve perspective. We follow the approach by 
Arndt-Lappe et al. (2022) and train a simple, yet powerful two-layer neural network, the Naïve 
Discriminative Learner (NDL, Baayen et al. 2011; Arppe et al. 2018) (more details on the network 
below in the Methods section). Crucially, studies favoring rule based accounts fail to explain how 
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these rules are actually learned. The use of NDL may provide an answer to this question, since 
it is trained with a learning mechanism that has been demonstrated to be cognitively valid, 
mirroring human learning behavior (Ramscar et al. 2010, 2013a; Ramscar 2021). Accordingly, 
the present study proposes a model of how stress assignment might be acquired.

To predict stress position, the network is provided with relatively unstructured orthographic 
and phonological cues, which do not contain any information related to suprasegmental 
structures as discussed above. Then, we test to what degree the trained network is capable to 
predict the stress position for a given word (which we regard as the assignment process), when 
it is provided with these specific cues in contrast to more abstract cues. For this purpose, we 
consider various features and factors that previous studies have argued to determine word stress 
positions – the direction of stress assignment (leftward vs. rightward), structure (heavy vs. light), 
and number of syllables (both, absolute number and parity), linguistic modality (phonological 
vs. orthographic), word class (noun, adjective, verb, function word), as well as morphological 
structure (simplex vs. complex forms). In sum, we want to investigate what cues and factors 
are relevant that the network is capable to successfully predict the notoriously complex stress 
assignment in German.

2 Methods
2.1 Material
A total of 85,495 lemma types with a frequency count of at least 1 was selected from the German 
CELEX corpus (Baayen et al. 1993) to serve as training and test material in the present study. The 
morphologically simple and complex word forms that served as the study’s material consisted 
of 35,733 nouns, 26,297 verbs and verbal participles, 23,335 adjectives and 130 articles. Word 
forms were tagged with information about syllable structure and part of speech – both types 
of information were provided in CELEX. German word forms are often homophones such that 
they represent multiple inflected forms (i.e., syncretisms). To account for these syncretisms, we 
created one entry for each inflected form. In this way, the total number of inflected word forms 
used to train the network amounted to 199,626 lexeme tokens.

The modelling approach in the present study follows the approach in Arndt-Lappe et al. (2022) 
who used the same two-layer neural network as the present study to classify stress position in 
English on the basis of orthographic bigram and trigram cues. Stress position was counted either 
from the onset of the word (stress from left) or offset of the word (stress from right). Accordingly, 
we use these two types of counting directions as outcomes in the present study, representing 
stress assignment processes in different psycholinguistic theories (Levelt 1999; Schiller et al. 
2006; Domahs et al. 2014a). Figure 1 (left and mid) illustrates the frequencies of stress positions 
depending on the counting direction.
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Figure 1: Left and mid: Frequency of occurrence of stress positions depending on counting 
direction. Right: Type frequency depending on number of syllables.

Like in Arndt-Lappe et al. (2022), we used phonological and orthographic bigrams and 
trigrams as cues in the present study. However, linguistic and psycholinguistic research has 
repeatedly shown that information from higher levels of abstraction may also be relevant for the 
stress position in German. These pieces of information include number of syllables and parity 
(Alber 1998; Janßen & Domahs 2008), syllable structure (Giegerich 1985; Alber 1998; Féry 
1998; Domahs et al. 2008; Janßen & Domahs 2008; Röttger et al. 2012, see Turk et al. 1995 
for English), and part of speech (Eisenberg 1991, 2016). Accordingly, we also tested how the 
network’s classification accuracy differed when these pieces of information were used as cues on 
their own as well as jointly during training.

In the corpus, word length measured by the number of syllables ranged between one and 
ten. Figure 1 (right) illustrates their frequency distribution. Trisyllabic word tokens were most 
frequent in the corpus, followed by disyllabic and tetrasyllabic ones. Notice the relatively small 
number of monosyllabic word tokens. The number of different syllable structure combinations 
including syllables with ambisyllabic consonants amounted to 58 (not illustrated). The four 
different word class categories summed up to 163 different types of inflectional categories, once 
grammatical information such as person, number, mode and tense for verbs, number and case 
for nouns and articles, and number, case and positive, comparative and superlative forms for 
adjectives were taken into account.

Figure 2 illustrates how many stress tokens our data set contains by taking into account the 
stress position and the number of syllables in a word. The left panel focuses on morphologically 
simple words, the right on morphologically complex words. Clearly, morphologically simple 
words are in the minority and basically restricted to a word length of one to four syllables: 
Our data contained 9,817 morphologically simple, in comparison to 189,809 morphologically 
complex words.
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Figure 2: Number of tokens depending on word length (in syllables) and stress position 
counted from left in morphologically simple (left panel) and complex words (right panel).

A note on morphological complexity. Upon checking the information about morphological 
complexity provided by the CELEX corpus, we found that a larger number of morphologically 
complex words was wrongly classified as morphologically simple. This is why the information 
provided by CELEX was replaced by information which we constructed on our own. Using 
an automatic process, we checked whether mono-, bi-, and trisyllabic words were present in 
words with a higher number of syllables. Through this procedure, the majority of words in our 
corpus was classified as “morphologically complex”. We manually checked a sample 500 words 
classified as morphologically complex and found that only eleven were misclassified (i.e. 2.2%). 
In other words, we regard our approach to deliver a more reliable classification of morphological 
complexity than the information provided by CELEX. We understand that there may be some 
words that have been incorrectly classified. However, given the large number of morphologically 
complex words, we did not manually correct all of them. By contrast, we wanted to ensure that 
the list of morphologically simple words was correct. This is why the subset of morphological 
simple words was manually corrected. To this end, all verbs, including the infinitive forms, were 
counted as morphologically complex.

2.2 Modelling approach
We use the Naïve Discriminative Learner (NDL, Arppe et al. 2018; Baayen et al. 2011) to model to 
what degree orthographic and phonological cues are predictive of stress position. NDL presents 
a simple two-layer neural network with one input and one output layer. We used the Danks 
Equilibrium Equations (Danks 2003) provided by the NDL package to calculate the connection 
weights between the input and the output layer. The Danks Equilibrium Equations allow a fast 



9

computation of connection weights between cues and outcomes by estimating a state when 
training using the error-driven learning equations by Rescorla and Wagner (Rescorla & Wagner 
1972) reaches an equilibrium.

The functionality of the two algorithms has been successfully demonstrated to capture 
discriminative learning (Bröker & Ramscar 2020; Ramscar 2021) of morphological processes 
including inflection (Ramscar & Yarlett 2007; Ramscar et al. 2013b, 2010; Nieder et al. 2021, 
2022), of processing in the context of reading and listening to morphological simple and complex 
words (Baayen et al. 2011; Arnold et al. 2017), and also in other domains such as the learning 
of phonetic categories (Olejarczuk et al. 2018; Nixon 2020; Nixon & Tomaschek 2020, 2021) 
and speech production (Ramscar & Yarlett 2007; Tomaschek et al. 2019; Baayen et al. 2019; 
Tomaschek & Ramscar 2022). An introduction to using NDL can be found in Tomaschek (2020) 
and an excellent overview of how the dynamics of connection weights depend on cue-to-outcome 
constellations is presented by Hoppe et al. (2022).

Since these studies have extensively explained the mathematical details of the Danks and 
Rescorla-Wagner equations, we present their functionality in a nutshell. These algorithms learn 
to associate cues to outcomes through prediction and prediction-error (which is the case for all 
learning algorithms that take into account some kind of error). This means that changes to the 
connection weights during training are proportional to the difference between prediction strength 
of the predicted and the experienced outcome – with the difference depending on the amount 
of phonological/orthographic overlap between these two instances. Moreover, connection 
weights are also adjusted on the basis of non-occurrences between cues and outcomes. Since 
the error-driven learning algorithm adjusts connection weights on the basis of occurrences and 
non-occurrences between cues and outcomes, it indirectly takes into account similarities among 
words and how these relate, in the present case, to stress. In this way, the algorithm is able to 
represent stress assignment on the basis of phonological/orthographic neighbors, as has been 
demonstrated in previous studies (e.g. Guion et al. 2003; Arciuli et al. 2010; Burani et al. 2014; 
Moore-Cantwell 2020).

Training our network can be considered to be equivalent to the learning task that speakers face 
when learning how to associate word forms to a stress position. Testing our model is equivalent to an 
experiment during which speakers/readers have to pronounce words and stress them appropriately. 
Specifically, our test operationalizes the moment during cognitive preparation of speech, when the 
stress position is selected on the basis of the information presented by the word form.

2.3 Cue-to-outcome structure
To demonstrate how we constructed our cues and outcomes for the learning networks, take the 
word Modell ‘model’. This disyllabic word has as outcomes stress from left = 2 and stress from 
right = 1. Table 1 illustrates the cue types for the word.
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type of cue cue

inflectional information noun, nominative, singular

number of syllables 2

parity even

syllable structure #.CV, CV.CVC, CVC.#

orthographic bigrams <#M, Mo, od, de, el, ll, l#>

orthographic trigrams <#Mo, Mod, ode, del, ell, ll#>

phonological bigrams [#m, mo, od, dε, εl, l#]

phonological trigrams [#mo, mod, odε, dεl, εl#]

Table 1: Cue structure for the word ‘Modell’ (Engl. model), which has as outcomes stress from 
left = 2 and stress from right = 1. Syllable structure was included as bisyllabic sequences 
where each syllable is separated by a dot. The hashtag represents the word edge.

The upper part illustrates the cue types containing abstract higher level information 
(inflectional information, number of syllables, syllable structure). We constructed a power set 
of these cue types. The subsets of the power set are permutations of one type, two types, three 
types and all four types of cues, including an empty set. All these sets were trained either on 
their own, or combined with one type of n-gram cues, illustrated in the lower part of Table 1. 
These could be either orthographic bigrams, orthographic trigrams, phonological bigrams or 
phonological trigrams.

Combining different types of n-gram cues with different types of abstract cues amounted to 
80 different cue type combinations to be tested. Since we also tested counting stress position 
from left and from right as an outcome, the total number of cue structures used to train and test 
the network amounted to 158.

2.4 Testing trained networks
Training the network modulated the association weights between cues and outcomes. Cue-
outcome-combinations in which the cues are informative about the outcome obtain positive 
weights; cues that are uninformative about an outcome obtain negative weights. Once a network 
was trained on the presented input, we used it as a classifier to predict stress position. This was 
accomplished by presenting the network with a set of cues, such as those in Table 1. The weights 
between the presented cues and all possible outcomes were summed resulting in an activation 
value which operationalizes how strongly the set of cues supports a stress position outcome. The 
stress position outcome with the highest activation was selected as the winner of the classification 
for a specific cue set. In this way, we obtained a stress position predicted by the network. This 
predicted stress position was compared to the stress position provided by the CELEX corpus. A 
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match between the predicted and CELEX stress position was coded as CORRECT, a mismatch was 
coded as INCORRECT. We used this coding to assess the accuracy of the networks by counting the 
number of correctly predicted stress positions. In the next section, we will discuss the performance 
of the networks trained based on different cue-to-outcome combinations.

3 Results
3.1 Evaluating network performance
The accuracy for all networks ranges between 34.7% and 91.8%, measured as the number of 
correctly identified stress positions divided by the number of individual word-forms in the data 
set. The high upper bound indicates that, given the appropriate cue structure, stress position 
can be reliably predicted without any type of rules. However, to evaluate network performance, 
accuracy is inadequate because it is based only on true positives, but misses false positives 
and false negatives. This shortcoming is alleviated by the F-score which is typically used in 
computational modelling studies. It is calculated by combining the measures ‘precision’ and 
‘recall’. Precision takes into account the number of true positives and false positives and as such 
“measures the percentage of system-provided [items] that were correct” (Jurafsky 2000, p. 489). 
Recall takes into account the number of true positives and false negatives and “measures the 
percentage of [items] actually in the input that were correctly identified” (ibd.). F-scores are 
bound between 0 and 1, with 0 representing a network that completely failed in the classification 
task and 1 representing a network that is excellent at classification.2

To gauge network performance, we calculated weighted average F-scores, by multiplying the 
F-scores for each stress position by the number of items with that specific stress position and 
dividing the summed F-score by the total amount of items. In this way, stress positions with 
many items (e.g. stress from left = 1) weigh heavier than stress positions with only a few items 
(e.g. stress from left = 8) in the estimation of the weighted average F-score.

In the following paragraphs, we used beta regression (package betareg, Version 3.1–4 Cribari-
Neto & Zeileis 2010) to test differences in F-scores. Beta regression allows the researcher to model 
dependent variables bound between 0 and 1.3 To do so, beta regression transforms the values 
ranging between 0 and 1 into logits and calculates the difference between factor levels in logits.

Whenever we report the results of beta-regression below, we used a model structure in which 
F-scores were fitted as a function of the variable of interest. All figures below that illustrate 

	 2	 Precision is calculated by dividing the number of true positives by the sum of the number of true positives and false 
positives. Recall is calculated by dividing the number of true positives by the sum of the number of true positives and 
false negatives. F-score is calculated by dividing the two times product of precision and recall by the sum of precision 
and recall.

	 3	 Linear regression could not be performed here because it assumes that the dependent variable can theoretically range 
between plus/minus infinity.
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F-scores were obtained by averaging F-scores for the combination between variables plotted on 
the x-axis and the variables illustrated by means of line-type.

Figure 3 illustrates weighted average F-scores as a result of different kinds of cue-combinations. 
Overall, we find that counting the stress position from left, i.e. from word onset, yields a better 
accuracy than counting from right, i.e. from word offset (β = 0.75328, sde = 0.08993 , z = 
8.377, p < 0.0001). The result makes sense if we consider that the corpus contains a large amount 
of suffixed words. Suffixation in German typically changes a word’s number of syllables, while in 
many cases the stressed syllable remains the same. Accordingly, counting the stress position from 
right is reflected by greater uncertainty about the stress position than counting from left.

Figure 3: Average weighted F-scores for all 158 networks tested with the training material. The 
x-axis illustrates the results depending on counting direction. The plots in the top panel (above 
the line) illustrate changes in F-score depending on whether n-grams were used (left) and n-gram 
type (mid and right). The plots in the mid and bottom row below the line illustrate the results 
from models which always contained n-grams as cues in addition to the presence or absence 
of the cue indicated in the title: Thus, they contrast to what degree the addition of number of 
syllables, parity, syllable structure and inflectional information as cues increased F-scores.
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Turning our attention to the type of cues used, we find that the network is better when 
it was trained with abstract cues in combination with n-grams than when it was trained only 
with abstract cues (Figure 3, top left, β = 0.93434, sd = 0.10501, z = 8.897, p < 0.0001). 
We observe that using trigrams improves network performance in contrast to using bigrams (β 
= 0.6195, sd = 0.0624, = 9.928, p < 0.0001). Note that using trigrams when counting stress 
from left yields the best network accuracy of roughly 90%. Furthermore, using phonological cues 
results in greater accuracies than using orthographic cues.

Next, we turn our attention to the performance of networks that always contained n-grams as 
cues and a combination between n-grams (orthographic and phonological bigrams and trigrams) 
and an abstract cue (Figure 3, below the line). In this way, we contrasted to what degree the 
inclusion of a specific abstract cue changed the F-scores of these networks.

We find that adding the number of syllables as cue does not provide the network with 
additional information when stress is counted from left (β = 0.07196, sd = 0.21586, z 
= 0.333, p = 0.739), but it improves the network when stress is counted from right (β 
= 0.6132, sd = 0.1629, z = 3.763, p = 0.000168). Providing the network with a more 
abstract representation of syllable number, namely parity, did not change network accuracies 
significantly (β = 0.08391, sd = 0.22977, z = 0.365, p = 0.715). The same holds true for 
higher level information about inflectional information (β = 0.02881, sd = 0.23778, z = 
0.121, p = 0.904). However, in line with multiple psycholinguistic studies, we find that adding 
information about syllable structure significantly improves the network: this improvement is 
significant when stress position is counted from right (β = 0.4256, sd = 0.1620, z = 2.628, 
p = 0.00859), but failed to be significant, when it is counted from left (β = 0.2074, sd = 
0.2066, z = 1.004, p = 0.315).

3.2 Cross-validation of results
It is very likely that the networks’s high classification accuracy is only due to the fact that it was 
tested on seen data and might differ when tested on unseen data. We therefore performed twenty 
10-fold cross-validation analyses, in which we trained the network on 90% of the word forms 
that were randomly selected and tested the network’s performance on the remaining 10%.

For the sake of simplicity, we wanted to test networks with a specific combination of n-grams 
and abstract cues in the cross-validation. The question therefore arose what cues should be 
tested? As can be seen in Figure 3, the addition of number of syllables and syllable structure to 
n-grams as cues increased the F-scores of the networks. This indicates that the addition of these 
cues adds predictive information to the networks. Accordingly, we tested number of syllables 
and syllable structure, in addition to phonological or orthographic bigrams/trigrams as cues. As 
outcomes, we tested both stress assignment from left and stress from right.
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Figure 4 illustrates how the weighted F-scores differed depending on the n-gram type 
(bigrams left, trigrams right, orthographic vs. phonological illustrated by line type) provided to 
the network (ignoring effects of number of syllables and syllable structure, as these were present 
in all networks), averaged across the 10 cross validation trials. As can be seen, trigrams as cues 
outperform bigrams and phonological cues outperform orthographic cues. The best network 
– stress counted from left discriminated by means of phonological trigrams as cues – yields 
an average F-score higher than 0.9. Accordingly, we are confident that the results reported in 
Figure 3 are valid (given the clear differences between the types of n-grams, we did not perform 
any statistical analysis).

Figure 4: Average weighted F-scores depending on types of cues in twenty 10-fold cross 
validation trials (trained with 90%, tested with the remaining 10%).

Having tested the networks’ classification performance when n-grams were used as cues 
during training, we focus in the next section only on the effects of abstract cues.

3.3 Effect of abstract cues
Most of the networks discussed above contained n-grams as cues. The question, however, arises 
to what degree abstract features are able to predict stress positions when the networks do not 
provide the fine-grained sublexical n-gram cues. The accuracies for these networks are illustrated 
in Figure 5. Overall, we see that the F-scores for networks missing n-grams as cues drop to around 
0.6, i.e. a decrease of 0.1 to 0.3 in F-score in comparison to when n-grams are included. Figure 
5 shows that when stress is counted from left, the performance is equally good independently of 
whether the number of syllables is provided or not. However, when stress is counted from right, 
then F-scores strongly decrease without the number of syllables.
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Figure 5: Average weighted F-scores from networks depending on types of cues for networks 
without n-grams as cues.

3.4 Directionality, morphological complexity, and stress position
Our analysis so far showed that stress counting from left outperformed counting from right. This, 
however, contrasts with assumptions from generative phonology and previous evidence from 
corpus analyses (e.g., Domahs et al. 2014b) and psycholinguistic experiments (Domahs et al. 
2014a). However, note that these analyses focused on morphologically simple words consisting 
of two to four syllables. To investigate whether previous findings were due to the restricted set 
of stimuli used, we performed additional analyses on such a subset of trisyllabic, morphologically 
simple words.

When predicting stress in trisyllabic morphologically simple words, weighted F-scores range 
between 0.65 and 0.74 when stress is counted from right. However, when stress is counted from 
left, accuracy drops dramatically to an F-score between 0.34 and 0.36. This result supports the 
above mentioned conclusions from previous work that in trisyllabic, morphologically simple 
German words stress assignment seems to operate from right.
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To investigate the influence of morphological complexity in more detail, we calculated the 
differences between the two directions of counting depending on morphological complexity, 
stress position and the number of syllables in a word. The differences per position and word 
length (number of syllables) are illustrated in Figure 6 for words with 1 to 8 syllables (9 and 10 
were excluded due to data sparsity). Positive differences indicate that the count from left network 
yielded a higher accuracy than the count from right network; negative differences indicate that 
the count from right network yielded higher accuracy than the count from left network.

Figure 6: Differences in classification accuracy between the counting from left and counting 
from right models, depending on number of syllables per word (y-axis) and the stress position 
counted from left. Positive values indicate that the count from left network yielded a higher 
accuracy than the count from right network; negative values that the count from right network 
yielded higher accuracy than the count from left network. Positive values are marked red, 
negative blue. Question marks indicate missing information.

We first turn our attention to morphologically simple words. There is a negligible difference 
between count from left and count from right in disyllabic words. In trisyllabic words, the negative 
difference between 3%P and 11%P indicates that the count from right network performs better 
than the count from left network. This is also the case for words with four and five syllables, 
with very large negative differences emerging in four-syllable words. The negative differences 
indicate that count from right yields a higher classification accuracy than count from left. This 
result mirrors findings in the previously discussed literature on stress assignment.

The picture changes when we inspect morphologically complex words. Whether the count 
from left network or count from right network performs better depends on the distance of the stress 
position from the left and the right edge of the word. The count from right network performs better 
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when stress is located on the last or second last syllable of the word (this is true for most cases). 
The count from left network performs better when stress is located at the onset of words up to 
four syllables and in the centre of the longer words. This division of labour between the types of 
counting and stress position raises the question whether a network considering counting from left 
and counting from right jointly would better represent stress position. We tested this hypothesis 
by training a network to classify such a stress position on the basis of number of syllables and 
phonological bigrams and trigrams. However, this network yielded worse classification accuracies 
than the equivalent network trained to classify stress position counted from left (with accuracy 
being 2.8%P and 4.9%P worse, for bigrams and trigrams respectively). This network performed 
7.8%P and 6.4%P better than the equivalent counted from right network. In conclusion, while the 
performance of networks considering different counting directions depends on the position of 
stress in the word, overall counting from left is the more adequate algorithm for a corpus in which 
the majority of words is morphologically complex (compare number of tokens in Figure 6, top).

3.5 Reflections of suffixation
Having discussed how the networks classify stress on the basis of cues, two further questions arise: 
First, on what basis are the networks able to accomplish this task? Second, how is information 
about relations between cues and outcomes represented in the network? We will answer these 
questions by illustrating how weight strength in the network represents the informativity of cues 
about a specific stress position. We first illustrate this for selected suffixes, following the example 
of (Arndt-Lappe et al. 2022). Subsequently, we consider weight distributions for all word final 
cues in the corpus. For the sake of simplicity, we will use orthographic cues for this illustration.

In German, a set of word final graphemes or grapheme sequences that act as suffixes almost 
never attract stress to the final syllable. These include <-n, -l, -r, -m, -t, -s> following a schwa 
(i.e. <e>), or unstressed syllables like <-te>, represented by the trigrams <en#, el#, er#, 
em#, et#, es#, te#>. Likewise, word final syllables that end in <-ee, -ie, -ll, -ion, -on>, 
represented by the trigram cues <ee#, ie#, ll#, on#>, attract word final stress. This rough 
classification is supported by the percentage of words that end in word final stress in the above 
listed sequences: <en#> 0.2%, <el#> 1.9%, <er#> 1.8%, <em#> 3.3%, <et#> 18.9%, 
<es#> 4.2%, <te#> 0.0%, <ee#> 53.6%, <ie#> 61.7%, <ll#> 37.2%, <on#> 81.2%. 
From this follows that trigram cues representing words that tend to divert stress from the final 
syllable should have a low or negative connection weight to final stress. By contrast, (pseudo-) 
suffix cues should have a high positive weight for final stress.

Figure 7 demonstrates that our assumption is correct. The schwa-syllable cues all have 
negative weights associated with the final syllable (stress from right = 1). Note that these cues 
have a positive weight associated to the penultimate syllable (stress from right = 2), indicating 
that they predict penultimate stress very well. Cues for <-ee, -ie, -ll, -on> endings all have 
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positive weights for the final syllable, supporting stress on the final syllable when these cues are 
present. By contrast, they have negative weights for the penultimate syllable, disfavoring this 
stress position.

Figure 7: Connection strength between selected word final cues (x-axis) and stress position 
counted from right. Positive numbers + red circles indicate positive weights, supporting the 
selection of an outcome; negative numbers + blue circles indicate negative weights, supporting 
the non-selection of an outcome.

These examples demonstrate how the network represents systematic relations between cues 
and outcomes that are present in a language. However, for this example we selected cues for 
which we know that they systematically co-occur with final or penultimate stress, respectively. 
What about all other word-final cues in our corpus for which the relation is less clear?

To test this question, we inspected the connection weight of all word-final cues to all stress 
positions in the final, penultimate and antepenultimate syllables. We analyzed the relationship 
between a cue’s probability of co-occurring with a specific stress position and the cue’s connection 
weight to a specific stress position in the network. The results of this inspection are illustrated 
in Figure 8: (a) illustrates this relationship for antepenultimate stress; (b) and (c) illustrate this 
relation for penultimate and final stress, respectively. The positive regression line demonstrates 
that higher co-occurrence probability with a stress position yields a higher weight between a cue 
and an outcome. However, this is not consistently the case since weights are not equivalent to 
probability. The reason for this is because, as we have elaborated in the Introduction, weights 
represent how well a cue predicts an outcome and depend on both co-occurrence and non-
occurrence between cues and outcomes. Due to this cue competition, some cues never co-occur 
with a stress position, as indicated by a probability of zero, yet the learning algorithm attributes 
them positive weights (this phenomenon is called spurious excitement (Kapatsinski 2021), which 
we will discuss in more detail in the Discussion section). Other cues always co-occur with a 
specific stress position, indicated by a probability of one. Most of these cues have positive 
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weights to that specific stress position. But note that the weights are distributed along the broad 
continuum with some weights falling even into the negative domain. This distribution of weights 
between positive and negative values for cues that occur with a specific outcome in 100% of 
the time illustrates a very important aspect of error-driven learning: neither individual cues nor 
cue combinations can predict an outcome with absolute certainty. We will discuss this relation 
between cues and stress position in more detail in the Discussion section, too.

Figure 8: The x-axis illustrates the probability with which a word-final cue co-occurs with 
a specific stress position in a word (illustrated in columns). The y-axis illustrates the cue’s 
connection weight to that specific stress position. See text for more details.

4 Discussion
4.1 Summary
Traditional linguistic theories typically predict stress position on the basis of discrete and 
abstract cues (e.g., Hayes 1995; Féry 1998; Kager 1999; Wiese 2000; Domahs et al. 2014b). 
In the present study, we contrasted these traditional approaches with a less abstract approach 
to stress assignment. We investigated how well a simple two-layered learning network (Naïve 
Discriminative Learner, NDL, Arppe et al. 2018) can predict stress position in German word 
forms when trained with an error-driven learning mechanism (Rescorla & Wagner 1972). We 
regard the prediction of the network to represent the assignment process.

We tested how different types of cues changed network performance. On the one hand, we 
tested abstract cues that are typically used in traditional approaches such as number of syllables, 
syllable structure, or morphological information. On the other hand, we tested cues that are 
more naïve about such abstract structures: n-gram cues representing a word’s phonological or 
orthographic form (i.e. the word form). Overall, we found that assignment from right to left 
yields a higher accuracy in morphologically simple words than in morphologically complex 
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words while assignment from left to right yields better results for morphologically complex 
words. Moreover, we found that the naïve approach using word forms as cues to stress position 
outperforms a more abstract approach to stress assignment. In the following sections, we will 
discuss our results in more detail.

4.2 Counting direction
Previous analyses and experimental studies on stress assignment argue that word stress in German 
is assigned by anchoring the direction of assignment at the word offset – i.e. stress is assigned 
from right to left (Vennemann 1991; Giegerich 1985; Féry 1998; Jessen 1999; Domahs et al. 
2014b). In parametric accounts following Hayes’ principles of stress assignment (Hayes 1995), 
metrical trochaic feet are supposed to be constructed starting from the right edge of a word. 
Psycholinguistic evidence for German has been interpreted in favor of this assumption (Domahs 
et al. 2014a). However, in these accounts directionality is typically defined over morphologically 
simple words. When it comes to morphologically complex words, stress assignment is additionally 
guided by a number of morphological-phonological regularities that hold for different types 
of morphologically complex words or affixes, making stress assignment quite complex. Note, 
however, that NDL is agnostic with regard to both the prosodic and morphological units of 
complex words. Nevertheless, across the whole range of morphologically complex words, it was 
more successfull to assign stress when starting from left.

The fact that for morphologically simple words stress assignment was more successful when 
starting from right, while for complex words when starting from left also depending on word length 
implies that when a naïve approach to stress assignment is used, as in the present study, both 
directions of assigning stress are possible. These findings may also have cognitive implications. 
At an abstract level, certain phonological and orthographic characteristics of words such as word 
length and certain strings of graphemes and phonemes, may be associated with morphological 
structures, such as compounding or affixation. Linguistic theory suggests that different kinds of 
abstract morphological structure is in turn associated with specific stress positions (Giegerich 
1985; Wiese 2000; Alber & Arndt-Lappe 2020). Our study, though, implies that stress position 
can be inferred directly from the formal characteristics of phoneme or grapheme sequences 
themselves, bypassing an abstract representation of morphological structures. In order to produce 
main stress in a specific position, this direct (non-abstract) relation has to be learned by speakers 
and readers during development (see e.g. Burani et al. 2014).

4.3 Naïve vs. abstract cues
We have found that NDL networks can predict stress position in German words based on their 
sequences of phonemes or graphemes with a very high accuracy (cf. Figure 3). This result 
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indicates that most cues about the stress position are provided by the word forms themselves, 
as Arndt-Lappe et al. (2022) have already demonstrated for English word stress. Moreover, this 
finding is compatible with the assumption that the position of word stress can be determined 
by means of analogy (Guion et al. 2003; Arciuli et al. 2010; Burani et al. 2014; Moore-Cantwell 
2020).

How can these findings be related to previous studies that based stress assignment 
predominantly on abstract cues? When networks were trained with individual abstract cues and 
their combinations, prediction accuracy was about 30%P lower in contrast to when word form 
cues were provided. This means that, in spite of this drop, stress position could still be predicted 
fairly well with average accuracy of 60% when using abstract cues only. When we contrasted 
different types of cues, we found that the number of syllables and syllable structure, i.e. those 
types of cues typically used in traditional approaches, strongly improved network accuracy (cf. 
Figure 5). This means that, in line with traditional approaches, abstract cues are able to predict 
stress position to a certain degree, when this is the only type of cues the network has to associate 
with stress position.

Thus, our findings do not contradict abstract approaches to stress assignment per se (for 
German: Domahs et al. 2008; Janßen & Domahs 2008; Röttger et al. 2012; Domahs et al. 
2014b; for Dutch: Kager 1989; Trommelen & Zonneveld 1999; Zonneveld & Nouveau 2004; for 
English: Liberman & Prince 1977; Giegerich 1985; Trommelen & Zonneveld 1999). They rather 
expand the types of cues that need to be taken into account when stress position is considered. 
Concretely, by using word forms as cues, we have demonstrated that the position of word stress 
can be determined on the basis of more fine grained pieces of cues than typically assumed. Our 
study furthermore demonstrates that once these more fine grained pieces of information are 
taken into account, word stress may not be ‘calculated’ or assigned through rules. Instead, it is 
more likely to be decided on the basis of the discriminative power of word form cues through an 
analogical process.

Another aspect concerns how abstract cues emerge from fine grained cues. Abstract cues 
are those pieces of information that are predictive about an outcome when variability across all 
instances of word forms is ignored. We argue that cues for stress position can be learned through 
prediction and prediction error (Ramscar et al. 2010, 2013b). Our networks demonstrate that 
it is possible to learn to associate those parts of the word form that predict a particular stress 
position and learn to ignore – i.e. unlearn – those parts of the word form that do not predict 
a particular stress position. Through this process, more abstract information such as syllable 
structure or number of syllables can be conceived as the results of generalizing information about 
a stress position across many, similar fine grained cues. (But note that we have not modelled this 
process since this would entail either a different type of cue-to-outcome set-up or a network with 
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hidden layers). These considerations raise the question of where exactly in the word form the 
decisive cues are located. We will discuss this question in the next section.

4.4 Individual vs. contextual cues
Traditional approaches to stress assignment argue that the position of main stress is decided on 
the basis of a set of very few cues. For example, when the final syllable is light, the penult is most 
likely stressed (Domahs et al. 2014b). From a probabilistic perspective, the assumption would be 
that the probability of assigning a stress position based on a particular cue is proportional to the 
frequency that this cue occurs with that stress position. However, from the learning perspective 
taken in the present study, this relation is not so straightforward. It turns out that how well a 
cue predicts a certain stress position (measured by its weight) is not directly proportional to the 
probability in which it co-occurs with that stress position (cf. Figure 8). This becomes visible 
when cues are considered that are unambiguous from a probabilistic perspective but obtain 
weights which are contrary to our naïve understanding how associations are formed. In the 
following, we will discuss how these cues are represented in the network by also discussing how 
the network learns specific associations.

On the one hand, there are some cues that, even though they never occur with a particular 
stress position, have positive weights. This positive weight (erroneously) indicates that a stress 
position should occur with that particular cue. The attribution of positive weights between cues 
and outcomes that never co-occur together is called spurious excitement (Kapatsinski 2021). This is 
a known property of the Rescorla-Wagner and Danks learning equations. It is considered to be the 
result of a particular mathematical constellation during the estimation of weights (exactly how 
they come into being is illustrated in Tomaschek 2020). Kapatsinski (2021) argues that spurious 
excitement is an error in the learning equations and that humans do not show this behavior.

On the other hand, there are some cues that have negative connection weights to that stress 
position, even though they occur 100% of the cases with a particular stress position. In such 
cases, the weight (again erroneously) indicates that this stress position should not occur with 
that cue. This effect is rooted in the weight estimation mechanism, too. Recall that how well a 
cue predicts an outcome depends on the relationship between how well the outcome matches the 
prediction on the basis of all the present cues. This means that the mechanism that estimates the 
weight takes into account how often a specific cue serves to predict other outcomes in addition 
to the amount of cues present during the learning event (which is argued to be cognitively 
plausible, see various publications by Ramscar and colleagues). From this follows that cues 
in isolation, as often analyzed in traditional approaches, can never predict a particular stress 
position with absolute certainty – even if they tend to occur frequently or even always with that 
position, as is the case for schwa syllables or certain suffixes (especially given that whether or not 
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a word final phoneme sequence constitutes a suffix is the result of top-down abstract analyses). 
Individual cues always have to be considered in the context of other cues. It could be that even 
though one particular cue predicts, for instance, final stress, other cues in that word rather 
predict penultimate stress. Thus, how well a cue predicts a particular outcome always has to 
be considered in relation to how strongly the other cues predict that particular outcome. In our 
modelling, we consider our cue-to-outcome structure to be a model of the cognitive mechanisms 
of stress assignment used by speakers. But what are the exact implications of the present results 
for psycholinguistic theories of stress assignment? This will be discussed in the next section.

4.5 Cognitive aspects
In our modelling, we have used the network in a generative fashion: This means that we provided 
it with a set of cues and asked it to predict the position of stress in a word. This network 
set-up implies that stress is assigned as part of a procedural speech production process, similar 
to psycholinguistic models of both speaking and reading that draw a distinction between 
the production of familiar words and unfamiliar or pseudo-words (e.g. Levelt et al. 1999; 
Caramazza et al. 2001; Grainger et al. 2012). In these models, unfamiliar words involve an 
online computation of the word form, including the assignment of its stress position. By contrast, 
familiar words involve access to word forms stored in the mental lexicon, potentially including 
its stress position.

The network set-up used in the present study seems to reflect the online computation of stress 
position based on an input of segmental strings (phonemes or graphemes). In fact, it learned 
stress assignment on a subset of words and was successfully able to generalise to previously 
unseen words which, in principle, could also be pseudo-words. Thus, these algorithms could be 
considered to represent sublexical processing. However, they do not support accounts of sublexical 
processing that claim any kind of default stress position (e.g. Eisenberg 1991; Levelt 1999; Wiese 
2000). Clearly, we did not find evidence for the existence of a default stress position in German. 
Importantly, the two-layer representation of inputs and outputs does not reflect a notion of 
lexical processing in speech production or reading that involves static lexical representations in 
the mental lexicon. By contrast, they are compatible with the notion of lexical representations 
as states of a cognitive system that arise dynamically as a consequence of external or internal 
stimuli (Baayen et al. 2019). This means that the representation of a word’s stress position in 
the mental lexicon is best considered as knowledge which is not only influenced by frequency of 
use but also by the position of stress in the ever changing constellation of neighboring words. As 
such, the presented set-up can be taken to model the abstraction or generalization process that is 
necessary to yield sublexical mappings from lexical input.
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