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Agreement markers that refer to the same feature or argument tend to be found in the same 
position (e.g., all subject agreement markers as suffixes, all object agreement markers as 
prefixes). However, little is known about the exceptions to this trend: cases where different 
values of the same feature are marked in different positions in the word (i.e., positional splits). In 
this study, we explore the positional properties of subject and object person-number agreement 
markers in a phylogenetically diverse sample of 227 languages. We find that the recurrence of 
a positional split is proportional to its degree of naturalness, that is, to the amount of shared 
feature values amongst the forms with the same positional arrangement. Natural patterns (e.g., 
where prefixal forms all share sg and suffixal forms all share pl) are over-represented in natural 
languages compared to a random baseline. The most unnatural patterns are underrepresented, 
and splits with an intermediate level of unnaturalness occur at around chance levels. We 
hypothesise that this graded bias for naturalness is grounded in a preference for morphological 
similarity amongst semantically similar forms during language learning. To test this hypothesis 
we conducted two online artificial language learning experiments where we trained and tested 
participants on person-number verbal agreement paradigms of different sizes with positional 
splits of different degrees of naturalness. We found that their relative learnability is also 
gradient, again proportional to the amount of feature value overlap, thus matching the observed 
cross-linguistic tendencies. Our findings support the notion that semantic similarity shapes the 
evolution of morphological structure in person-number verbal agreement systems and that it 
does so in a gradient way.
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1 Introduction
Agreement markers that index the same argument (e.g., person-number markers that express the 
subject of a transitive sentence) tend to occur in the same position within the word. For example, 
in the Baure (Arawakan) verbal paradigm in Table 1, all person-number agreement markers 
are prefixes. Mansfield et al. (2020) identified this tendency as a cross-linguistic bias towards 
category clustering. Here we explore the cases that run against this trend. One such case is 
illustrated by Fula (Atlantic-Congo), where person-number subject agreement markers are prefixes 
in some cases and suffixes in others. Our study focuses on agreement paradigms like this one in 
which markers of the same morphosyntactic role occur in different positions. When different 
values behave in different ways regarding the position they are marked in, this gives rise to a split 
(Corbett 2015) at the paradigmatic level. We will refer to these cases as positional splits.

Baure ‘arrive’ PST Fula ‘wash’ REL.PST.PASS

sg pl sg pl

1 ni-šim vi-šim lootaa-mi min-lootaa

2 pi-šim yi-šim loota-ɗaa lootaa-ɗon

3 ro-šim no-šim ‘o-lootaa ɓe-lootaa

Table 1: Subject agreement markers (in bold) in Baure (Arawakan) (Danielsen 2007: 31) and 
Fula (Atlantic-Congo) (Arnott 1970: 191–192). Same-shade indicates values marked in the 
same position. Different shades correspond, thus, to differences in the position of markers, i.e., 
to positional splits.

Variability in affix ordering and discontinuity in affix marking (i.e., agreement that is realised 
in two different positions within the same word) have attracted a lot of attention in linguistic theory 
and typology (e.g., Shlonsky 1989; Noyer 1992; Stump 1997; Hyman 2003; Crysmann & Bonami 
2016; Harris 2017). They represent descriptive and analytical challenges in the languages and 
families where these phenomena are common (Inkelas 1993; Bickel et al. 2007; Caballero 2010). 
It is hard, in many of these cases, to determine what is the mapping between form and meaning, 
or the inflectional rules morphemes follow. Many efforts have been devoted to arguing whether 
specific cases are best described with reference to morphosyntactic/semantic (Muysken 1986; Rice 
2000) or phonological principles (Rice 2011), or whether they follow morphological templates 
which are blind to the morphosyntax and semantics of morphemes (Stump 1997; Good 2016).

Here we examine positional splits in terms of the features and values that characterise them. 
We focus purely on the positional arrangements of cumulative1 person-number markers (i.e. 

	 1	 This means that individual markers provide both person and number information in a single indivisible morpheme. 
The suffix -mi in Fula, for example, indicates first person and singular number.
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their position relative to the stem as well as other markers), and gloss over the morphology of 
the markers, including the presence of the same marker across multiple paradigmatic cells. For 
example, in Fula (Table 1), we find a split between 1sg=2sg=2pl (suffixal) and 3sg=1pl=3pl 
(prefixal) markers. Examining splits in this way is motivated by research on syncretism, where 
the sharing of feature values across cells in a paradigm (often referred to as natural classes) has 
informed abstract morphological-architectural principles (Blevins 1995; Harley & Ritter 2002; 
Baerman et al. 2005; Pertsova 2007; Harbour 2016; Bobaljik & Sauerland 2018), as well as by 
debates surrounding the ‘morphome’ (i.e., a term given to a set of semantically disparate values 
characterised by the same morphological form; Aronoff 1994; Luís & Bermúdez-Otero 2016; 
Maiden 2018; Herce 2023). Saldana et al. (2022), for example, showed that unnatural syncretic 
patterns (patterns without a shared feature value across all cells) with more feature value overlap 
(i.e., higher semantic similarity) are more frequent cross-linguistically and easier to learn in 
an artificial language learning experiment. These results suggest that the degree of semantic 
similarity within patterns of syncretism impacts the learnability of more or less unnatural patterns 
of syncretism and ultimately their cross-linguistic recurrence: The higher the semantic similarity 
within a pattern, the easier it is to learn. The authors suggest that this gradient in learnability 
may reflect a general bias towards similarity-based structure in morphological paradigms 
(see also, e.g., Pertsova 2014; Nevins et al. 2015; Nevins 2015; Maldonado & Culbertson 2022), 
which previous literature has shown to play a crucial role in phonology (Moreton & Pater 2012; 
Pater & Moreton 2012; Moreton et al. 2017: e.g.,) and word learning (Landau & Shipley 2001; 
Pothos et al. 2004; Xu & Tenenbaum 2007; Dautriche et al. 2016; Silvey et al. 2019; Carr et al. 
2020) as well as in category and concept learning more generally (Bruner et al. 1956; Shepard et 
al. 1961; Neisser & Weene 1962; Gottwald 1971; Goodman et al. 2008). Together, these studies 
suggest a characterisation of naturalness as a matter of degree, computed as the average feature 
value overlap across cells in a pattern. Here we examine the applicability of this notion with 
regards to the position, rather than the form, of markers.

While positional variability and paradigmatic splits have both received substantial attention 
separately, there is, apart from occasional observations (Bickel 1994; Cysouw 2003: 310; Trommer 
2003; Campbell 2012), no substantial research bringing these phenomena together. It remains 
largely unresolved whether positional patterns follow similar principles as those governing 
patterns of syncretism or whether principles differ between these types of paradigmatic splits. 
In this study we explore positional splits in two ways: 1) First we assess their cross-linguistic 
distribution, and since (non-absolute, statistical) trends in these distributions are the product 
of transmission over time (e.g., Greenberg 1966; Kirby et al. 2004; Bickel 2007; Culbertson et 
al. 2012; Bickel 2015), 2) we ask whether trends might be driven by cognitive biases favouring 
the learning and transmission of specific patterns. To explore these questions we combine 
quantitative typology with experimental methods.
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The structure of the paper is as follows: Section 2 surveys positional splits and explains how we 
operationalise them in this study. Section 3 analyses the cross-linguistic data, asking which splits 
are over- or under-represented. Section 4 reports two artificial language learning experiments 
that we conducted to probe the learnability (by adults) of different split types. Section 5 contains 
a discussion of the cross-linguistic and experimental data and their significance. The concluding 
Section 6 summarises the paper’s findings and claims.

2 Typology of positional splits
Many factors can influence the positional properties of affixes. The most obvious one is the 
feature (e.g., person, number, tense, polarity, etc.) that an affix marks. Since regularity and 
predictability are generally preferred in language (see, e.g., Ackerman & Malouf 2013; Saldana 
et al. 2019; Mansfield et al. 2020; Saldana et al. 2021b; Mansfield et al. 2022), we expect subject 
agreement markers to appear in the same position as other subject agreement markers. This 
positional consistency of markers should hold across the two different aspects, comprised within 
the principle of category clustering (Mansfield et al. 2020):

I)	 Across the different concrete values that the affixes themselves express: i.e., if a subject 
affix expresses cumulatively number and person agreement, any combination of person 
(1,2,3) and number (sg and pl) values is expected to be marked in the same position 
because they all provide information about the same argument. By ‘position’ we refer to 
the same linear order relative to both the root and any other morphs, also known as ‘slot’ 
in templatic approaches (McCarthy 1981; McCarthy & Prince 1990). Crysmann & Bonami 
(2016: 317) call this Paradigmatic Alignment.

II)	Across any other orthogonal values: i.e., the person/number subject agreement marker 
would be expected to appear in the same position in past and present tenses, across 
different verbs (e.g., in the verb ‘kill’ and in the verb ‘split’), in declarative and interrogative 
sentences, positive and negative polarity, active and passive voice, etc. Stump (2001: 20) 
calls this Featural Coherence.

The focus of this paper is on deviations from principle I), and more specifically on subject and 
object agreement markers whose position with respect to other markers or the stem varies as 
a function of the specific person and number values they encode. The reason for this focus is 
twofold: i) subject/object agreement is exceptionally widespread cross-linguistically (and there 
is therefore more data available than for most other inflectional features), and ii) its component 
features (person and number) and values (e.g., 1, 2, 3, and sg, pl) are much easier to detect and 
separate than other semantic domains in morphology. While tense, aspect, and mood values, 
for example, are usually difficult to identify with certainty, and are often impossible to arrange 
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in a tabular structure of compatible vs incompatible values, person and number are less subject 
to such problems. We follow the traditional typological nomenclature and refer to markers of 
transitive subjects as A markers (which stands for agent, because it is most likely to be one), to 
intransitive subject markers as S markers (which stands for sole argument), and to object markers 
as P (which stands for patient, because it is most likely to be one).2

In this paper we will ignore inclusive (i.e., 1+2(+3)) forms so as to have fully orthogonal 
and mutually compatible feature values. Moreover, due to greater data availability, we will focus 
exclusively on 3×2 (person:1, 2, 3; number:sg,pl) paradigms exclusively, ignoring dual (or 
trial/paucal) in the very few languages where these are different from plural in our sample.3

Although the number and type of morphosyntactic features and values assumed in person-
number paradigms varies to some extent across theories (e.g., Harbour 2016), the existence of 
separate features of person based on the roles of participants in the speech act and number based 
on cardinality is comparatively uncontroversial (Cysouw 2003). In our analysis we assume a 
person feature with the three possible values speaker (or 1), addressee (or 2), and other 
(or 3), and a number feature containing the values singular and plural. Under this ternary 
feature analysis of person, we then assume that speaker is defined4 iff the entity denoted contains 
the speaker (and excludes the addressee in systems with clusivity and thus 1pl.inclusive forms, 
which we exclude), and addressee is defined iff the entity denoted contains the addressee and 
excludes the speaker (Schlenker 2003; Heim 2008); other is then specified only in competition 
with speaker and addressee and thus iff the entity denoted does not contain neither the 
speaker nor the addressee. singular is defined iff the cardinality of the entity denoted is equal 
to 1, and plural iff the cardinality of the entity denoted is greater than 1. Table 2 summarises 
our assumed person-number feature structure.

A word of clarification is also needed regarding the possible splits in A/P/S agreement 
markers. Along with the features and values that concern us here (i.e., the person and number 
values that the morphs themselves encode), any other orthogonal features and values may be 
associated with a different order of the agreement markers. Differences in the positioning of 
these affixes sometimes depend on factors independent of person-number, such as tense-aspect-
mood (TAM hereafter) (like in Amele, see Table 3; Roberts & Roberts 1987), lexical class, 
(like in Somali, Saeed 1999), polarity (like in Mari, Ackerman & Malouf 2016), or voice. For 

	 2	 As section 3.2.1 will explain, languages tend to encode S identically to either A or P. We will not count markers twice 
just because they index more than one role.

	 3	 We only have 28 languages containing du and thus 3×3 paradigms. The surveyed data for these paradigms can be 
found in the supplementary materials in osf.io/hy76j/.

	 4	 Note that we here give a presuppositional semantics to features (Cooper 1983; Heim & Kratzer 1998; Heim 2008). 
Also note that in this study we focus on verbal agreement paradigms, that is, on paradigms of agreement targets, for 
which we assume the semantics of the controllers they agree with.

https://osf.io/hy76j/
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example, in Table 3 we observe that in certain TAM values of Amele (e.g., in the habitual past), 
person-number affixes follow the TAM marker (-lo), while in other TAMs (e.g., today’s past) they 
precede the TAM marker (-a). This is a positional split that violates featural coherence, but not 
paradigmatic alignment. When factors other than the person-number values of the affixes are 
held constant, no positional differences are found (i.e., -ig, -i, -u, -si, etc. are all found in the same 
position). These cases do not count, therefore, as instances of paradigmatic positional splits as 
defined for our purposes.

person number

1SG speaker singular

2SG addressee singular

3SG other singular

1PL speaker plural

2PL addressee plural

3PL other plural

Table 2: Decomposition of the assumed person-number feature structure.

Habitual past Today’s past

sg pl sg pl

1 ho-l-ig ho-lo-b hu-g-a ho-q-a

2 ho-lo-g ho-lo-ig ho-g-a ho-ig-a

3 ho-lo-i ho-lo-ig ho-i-a ho-ig-a

Table 3: Partial person-number subject verbal agreement paradigms in Amele (Trans-New 
Guinea) for the verb ho ‘come’ (Roberts & Roberts 1987). These illustrate a tense-based 
positional split: Person-number markers (in bold) in habitual past appear following the TAM 
marker and in today’s past they follow the stem and precede the TAM marker.

In the most complex cases, the positioning of affixes may depend simultaneously on the 
person and number values of the markers themselves, as well as on orthogonal features like TAM, 
inflection class, polarity, voice, etc. In Fula (Table 4), for example, the position of A/S markers is 
not only dependent on their person-number values but also on TAM (see also Nepali in Crysmann 
& Bonami 2016). Notice in Table 4 that the order of the 1sg marker mi with respect to the stem 
is different in the relative past and in the subjunctive passive. These cases count as infringements 
of both paradigmatic alignment and featural coherence. We register these cases as two different 
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(although not independent) splits in the same language, (i.e., in the case of Fula, 1sg/2 vs 1pl/3 
in the relative past and 2 vs 1/3 in subjunctive passive).

Relative past passive Subjunctive passive

sg pl sg pl

1. ex lootaa-mi min-lootaa mi-lootee min-lootee

1. incl – lootaa-ɗen – lootee-ɗen

2 loota-ɗaa lootaa-ɗon loote-ɗaa lootee-ɗon

3 ‘o-lootaa ɓe-lootaa ‘o-lootee ɓe-lootee

Table 4: The verb loot- ‘wash’ in two different tenses in Fula (Atlantic-Congo) (Arnott 1970: 
191–192). The positional split is different in the relative past than in the subjunctive passive: 
the 1.sg morph mi follows the stem in the former and precedes the stem in the latter, which 
leads to two different splits of suffixal and prefixal positional patterns (marked in different 
shades of grey).

GUMER Imperfective KOASATI Active BASQUE Present

sg pl sg pl sg pl

1 ə-kəft nɨ-kəft-ɨnə há:lo-l il-há:l na-bil ga-bil-tza

2 tɨ-kəft tɨ-kəft-o is-há:l has-há:l za-bil-tza za-bil-tza-te

3 yɨ-kəft tɨ-kəft-o há:l há:l da-bil da-bil-tza

Table 5: The verb kft ‘open’ in Gumer (Semitic) (Völlmin 2017: 122), the verb há:lon ‘hear’ in 
Koasati (Muskogean) (Kimball 1985: 55), and the verb ibili ‘walk’ in Basque (Isolate) (Hualde & 
De Urbina 2011: 234)

Following the taxonomy in Saldana et al. (2022) we classify positional splits according to 
their relative degree of naturalness, defined as semantic similarity and computed as the proportion 
of feature-value overlap between the cells that share identical positional properties. Consider 
the splits in Table 5. In all three paradigms we can find three person-number cells that share 
their positional properties. In Gumer (Semitic), 1pl, 2pl, and 3pl are positionally identical, 
since these values, and no others, are characterised by both a prefix and a suffix. In Koasati 
(Muskogean), 1pl, 2sg, and 2pl are characterised by being prefixal. In Basque, 1pl, 2sg, and 3pl 
are all characterised by a prefix and a suffix—note that the 2pl form za-bil-tza-te (which could be 
glossed as 2-walk-pl/2sg-2pl) has two suffixes rather than one. Following Saldana et al. (2022), 
these patterns of positional identity will be referred to as N (natural), L (least unnatural, shaped 
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like an L), and X (most unnatural, diagonally arranged) respectively. They are defined as follows 
for patterns of three cells:

N:	� All cells in the N-pattern share a value not found elsewhere (e.g. pl in the Gumer case in 

Table 5).

L:	� All cells in an L-pattern share a value with some other cell, but not with all other cells 

(e.g. prefixes in Koasati).

X:	� In X-patterns, one cell (the 2sg in the Basque example) does not share any value with the 

other positionally identical cells.5

Patterns of two or four cells (see Figure 1) can also be classified into a scale of naturalness 
comparable mutatis mutandis to that of patterns of three cells. Within a 3×2 person-number 
paradigm, two cells may lack any shared values (e.g., 1pl, 2sg, type X), share a value also 
present in other cells (e.g., pl in 1pl, 2pl, type L), or share a value to the exclusion of other cells 
(e.g., 1 in 1pl, 1sg, type N). Possible four-cell patterns must, in a 3×2 paradigm, necessarily 
spread over more than one person and number values. However, they will also differ in two 
respects: 1) as for whether they adopt a distribution with less feature-value overlap (e.g., 1sg, 
2sg, 2pl, 3pl: X, 25%),6 or more (e.g., 1sg, 2sg, 3sg, 3pl; 1sg, 2sg, 1pl, 2pl, 33.3%), and 2) 
as for whether they spread over values present (1sg, 2sg, 3sg, 3pl: L) vs absent (1sg, 2sg, 1pl, 
2pl: N) from the rest of the cells.7 Note that this second aspect (i.e., whether or not the feature 
shared within a pattern is present outside it) is what allows us to classify patterns of two and four 
cells into three bins of (un)naturalness which can then be compared to the gradient described 
for patterns of three cells (which do not require reference to this additional second aspect for a 
three-way classification). Figure 1 displays graphically this naturalness continuum in patterns 
of two, three, and four cells. Patterns of positional identity smaller than two cells (e.g., Koasati 
1sg) cannot be classified into our different degrees of naturalness, so they are irrelevant for our 
purposes. We also ignore patterns of positional identity larger than four cells because they cannot 
distinguish different degrees of naturalness in 3×2 person-number paradigms.

	 5	 An even more unnatural pattern would have no cells sharing values with any other cells (e.g., 1pl, 2sg, 3du). Three-
cell patterns of this kind rely on the existence of a third number value (e.g., ‘dual’ or ‘paucal’) which is cross-linguist-
ically less common and are hence beyond our purview in this section. This most unnatural type (XX) will appear, 
however, in the experimental section 4.

	 6	 There are six pairs of cells among these: 1sg/2sg, 2sg/2pl, 2pl/3pl, 1sg/2pl, 1sg/2pl, and 2sg/3pl, the first three 
of which share half (50%) of their values (number, person, and number respectively) and the last 3 of which share 
no values (0%). The average is, hence, 25%.

	 7	  Notice how neither of the person values over which the latter pattern spreads (1 and 2) appears in any other cells, 
while the values 1 and 2 occur in cells both inside and outside the L pattern.
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Figure 1: Naturalness types in patterns of different sizes.

Following the degrees of naturalness described for the different types and patterns sizes, and 
based on the results that Saldana et al. (2022) obtain for similarity-based patterns of syncretism, 
we expect to find that our most natural N-type positional splits are more probable in natural 
languages and easier to learn than our L-type, which in turn is expected to be more probable and 
learnable than splits of the most unnatural type X.

3 Cross-linguistic data
3.1 Data on N, L, and X types of positional splits
Regarding cross-linguistic data, we have two goals. The first one is to assess the recurrence of 
positional splits. That is, we assess just how (un)common are deviations from the paradigmatic 
alignment principle introduced in section 2. The second goal is to quantify the probability of 
occurrence of the different types of splits N, L, and X cross-linguistically, taking into account 
their expected chance probability.

3.2 Materials and methods
3.2.1 The typological data
We obtained data on the position of person and number agreement markers on the verb from 
AUTOTYP’s (Bickel et al. 2017) database of grammatical markers. To achieve wider cross-
linguistic coverage, we supplemented the data in AUTOTYP with an independent diversity 
sample: the 100-language sample proposed in WALS (Dryer & Haspelmath 2013). For these 
additional 100 languages, the same information was registered (i.e., position of A, S, and 
P-indexing morphology) as was mined from AUTOTYP. The aggregation of these two sources 
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resulted in a sample of 325 paradigms from 227 languages (26 of which had no person or 
number agreement) from 97 different stocks (i.e., language families of the deepest demonstrable 
level). Among these, we found 128 paradigms, in 88 different languages from 41 different 
stocks, that required reference to two or more positions. Remember from Table 4 that a single 
language can have more than one person-number paradigm with different positional profiles, 
and hence more than one split. The majority among these (88 paradigms) involve two positions, 
18 more involve three positions, 15 involve four positions, six involve five positions, and one 
six positions.

Figure 2 shows the geographical distribution of the languages in our sample, and which of 
these have any of the splits of interest. The distribution basically mirrors the increased head-
marking and high-synthesis frequencies that have been noted around the Pacific, with outliers in 
what has been called the Eurasian enclaves (Bickel & Nichols 2013). A second frequency spike 
characterises the Rift Valley and various branches of Afro-Asiatic in Africa. On a global scale, 
split patterns are in the minority (39% of languages, 37% of paradigms), which is consistent 
with the importance of the principle of paradigmatic alignment of morphs and, more generally, 
of category clustering (Mansfield et al. 2020; 2022). Affixes expressing the same grammatical 
category (e.g., agreement with A) tend to appear in the same morphological position in the 
word.

Figure 2: Geographic location of the languages in our sample. Green triangles indicate that the 
language has positional splits, while yellow circles indicate absence of splits.
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Looking at the presence and absence of positional splits across language families reveals, in 
addition, that violations of this principle seem to be highly inheritable. Thus, languages from the 
same family tend to be comparatively homogeneous regarding whether they do (e.g., Algonquian, 
Kiranti, Afro-Asiatic, Uto-Aztecan) or do not (e.g., Tupi-Guarani, Indo-European, Dogon) display 
positional splits, and of which type. While it is unknown whether this homogeneity reflects slow 
rates of change or a diachronic bias favouring certain splits (or both), we take a conservative 
approach and take phylogenetic relatedness (i.e., language family) as a key control in our data 
analysis below.

In languages showing positional splits, we acquired further information about the number 
of positions available to A, P, and S morphs, and the positional properties of all person-number 
values in the paradigm. Some qualifications are needed regarding how exactly these data were 
coded in specific cases. First, when the same markers in the same positions index different roles 
(e.g., A and S as in Armenian, or less commonly, S and P as in Quiche), we counted them only 
once, that is, as a single paradigm.8 Secondly, we identified a split only in paradigms with at 
least two positions involved in the expression of person-number information in a paradigm with 
everything else held constant (i.e., same role, TAM, polarity, inflection class, voice, etc.). Thus, 
we did not consider paradigms involving only zero vs non-zero markers as split. Even in multiple-
position systems, we disregarded patterns whose positional identity derives from the absence 
of markers, like 3sg/3pl in Koasati in Table 5. We decided to do this because the number and 
position of morphological zeros is much more subjective and analysis-dependent than that of 
overt markers. A third clarification concerns the cumulation/separation of person and number. 
We excluded those positional splits (only four) resulting from separative affixes for person and 
number: one from Imonda (Seiler 1985) and Acoma (Miller 1965), and two from Wichí (Terraza 
2009).

Applying these criteria leaves us with 84 paradigms among the two-position systems—we 
exclude systems with more available positions because they are too scarce to test their naturalness 
gradient statistically. We classified all the two, three, and four-cell same-position patterns (141 
in total) that these 84 paradigms included into our naturalness types N, L, and X, as defined 
in section 2 (see also 1). The counts of the positional-splits data collected are summarised in 
Table 6.

	 8	 As advanced in the previous section (see Table 4), we do count multiple paradigms in the same language when differ-
ent TAM, inflection class, polarity, or voice values are associated with differences in the placement of person-number 
agreement markers. Hence, we include as many different paradigms as different positional splits exist in the lan-
guage, regardless of whether these paradigms are A or P, present or past, active or passive, etc. We control for the 
relatedness of paradigms within the same language family in our statistical model.
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N-type L-type X-type

two cells 23 36 18

three cells 8 24 3

four cells 13 13 3

Table 6: Counts of positional splits of different types and sizes (two position systems only).

3.2.2 Data Analysis
In absolute terms L-type syntagmatic patterns are more common than N-type patterns (Table 6). 
This seems surprising at first sight. However, the raw numbers need to be interpreted relative 
to baseline expectations since each type has a different probability of occurring by chance (e.g., 
there are less logically possible configurations of N-type patterns than L-type patterns). That is, 
taking as an example 3-cell patterns in a 6-cell person-number paradigm, only two sets of cells are 
natural (i.e. 1sg/2sg/3sg, and 1pl/2pl/3pl), while twelve are of the L-type (e.g. 1sg/2sg/2pl, 
1sg/2sg/1pl, 1sg/3sg/1pl, 1sg/3sg/3pl, 2sg/3sg/2pl, 2sg/3sg/3pl, etc.). In response to 
these asymmetries we will take into account the baseline probability of each of these type of 
patterns to correct for the results from our statistical model predicting the likelihood of the cross-
linguistic occurrences by pattern type (N-type, L-type and X-type).

3.2.2.1 The baseline

We adopted all the possible combinatorial arrangements as the comparative baseline to assess 
whether a given pattern type was over- or under-represented cross-linguistically. For our analysis, 
we only take into account a baseline for 3×2 paradigms and two positions (e.g., before and 
after the stem). As explained in section 3.2.1, these constitute the majority of our data and thus 
the only patterns we can test statistically. For each pattern of n number of cells (two, three, or 
four) within this six cell paradigm, with two possible affixal positions, we generated all possible 
permutations with replacement. For each of the permutations, we dummy-coded whether or not 
they contained a pattern of positional identity of type t (N, L or X), excluding zero-marking. The 
probability of occurrence extracted from this binary variable (i.e., P(N) = 0.126, P(L) = 0.527, 
P(X)=0.416, for 3×2 paradigms and patterns of 2, 3 or 4 cells) will later be used to correct the 
posteriors obtained form our Bayesian regression model predicting the likelihood of occurrence 
of each pattern type in our cross-linguistic data.

A general formula to calculate the baseline probability of a pattern tn (of type t and size n) in 
a paradigm of size m within a system of s possible affix positions is shown in 1,

(1) P (tn|m, s) =
τt,n · 2s · (m− n)2

s−1

2sm
,
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where:

(n) = size of pattern, i.e., number of cells with the same positional identity.

(m) = size of the paradigm by number of cells.

(s) = number of available positions. In each of them a marker can be either present (1) or 
absent (0). Therefore, with two available positions, there are 22 = 4 logically possible positional 
arrangements, e.g. prefixal (i.e., [1,0]), suffixal (i.e, [0,1]), circumfixal (i.e., [1,1]), and ∅(i.e., 
[0,0]).

(τt,n) = number of possible sub-patterns of the same type t and size n (e.g., there are two 
3-cell patterns of the N type in a 2×3 paradigm, i.e., 1sg/2sg/3sg and 1pl/2pl/3pl).

This general formula calculates the chance probability of having some pattern of a particular 
type (N, L, X) and size (two, three, or four cells), in paradigms of a given magnitude (3×2, 3×3, 
etc.) and a given number of available positions. Thus, for example, N-type patterns of three cells 
(tn = N-type3) in a six-cell paradigm (m=6) with two positions (e.g., prefix and suffix) (s=2), 
have a baseline probability of P(N-type3|m=6, s=2) = 0.053.9 This is the probability we expect 
by chance for N-type patterns of 3 cells (e.g., Gumer in Table 5) in this type of paradigm. The 
Koasati pattern in Table 5, in turn, would be P(L-type3|m=6, s=2)= 0.316, and the Basque one 
P(X-type3|m=6, s=3)= 0.4. Our formula calculates all logically possible positional arrangements 
of a paradigm (denominator), and how many of them contain a given pattern type (numerator). 
The resulting ratio, therefore, is the proportion of paradigms that contain a given pattern type. 
Note that a given 3×2 paradigm can, of course, contain more than a single two or three-cell 
pattern, and logical incompatibilities exist regarding which of them can co-occur, which are 
reflected in the baseline.

3.2.2.2 Statistical models

We use R’s brms package (Bürkner 2018) as an interface to Stan (Carpenter et al. 2017) to 
run Bayesian binomial mixed-effects regression models predicting the occurrence of positional 
splits in the cross-linguistic data by the type of pattern N, L or X. Our dependent variable is the 
presence or absence of the given pattern in a 3×2 paradigm (for each of the 84 paradigms in our 
cross-linguistic data). Languages can be represented with more than one paradigm in the data. 
As fixed effects, we only include pattern type with three levels (N, L and X) and no intercept. As 
random effects, we include intercepts for language and stock to control for the relatedness that 
paradigms have within languages and within stocks. We set a student-t prior for the fixed effects 

	 9	 Note that 1/4th of these will be instantiated by zero, which we disregarded from the cross-linguistic language data on 
ontological grounds. The number of logically possible non-zero Ns in this paradigm is thus only 162 (0.04 on average 
per paradigm). This is the comparative baseline against which we can assess the over-/under-representation of the 
cross-linguistic data.
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(DF=6, μ=0, σ= 1.5); for the random effects, we set a half-Cauchy prior with scale parameter 
10 (McElreath 2016).

The model’s estimates show whether positional splits of a given type in the cross-linguistic 
data are more or less likely than P = 0.5, which is the chance level the binomial model assumes 
and does not reflect the empirical baseline probability for either pattern type. The posterior 
estimates are thus later corrected with the baseline probability calculated as described in section 
3.2.2.1. In order to do so, we transform the model’s posterior probability predictions with brms’ 
scaled inverse logit-link function and subtract the baseline probability from these transformed 
posterior distributions. Table 7 shows the raw (non-modelled) probabilities for each of the 
pattern types in our cross-linguistic data and in the baseline.

N-type L-type X-type

data 0.357 0.536 0.167

baseline 0.126 0.527 0.416

Table 7: Proportion of N, L and X patterns of 2,3 or 4 cells in 3×2 paradigms in our cross-
linguistic data and on the baseline. Remember that in our cross-linguistic data there are 84 
different paradigms containing split patterns and proportions are based on those (i.e., 30/84 
for N, 45/84 for L and 14/84 for X).

3.3 Results
Figure 3 shows the model’s corrected posteriors distributions, with the point mean estimates and 
90% credible (equal-tailed) intervals. We find that the most natural patterns N are more likely in 
the cross-linguistic data that we would predict by chance (β̂ = 0.130, 90%CI= [0.041,0.223]); 
we find that 99.3% of the posterior samples are above 0 (i.e., P(β̂ > 0) = 0.993). The most 
unnatural X-patterns, in turn, have a below chance probability of occurrence cross-linguistically 
(β̂ = –0.255, 90%CI = [–0.317,–0.184], P(β̂ > 0) = 0). Intermediate-unnaturalness L-patterns 
occur with a similar probability as expected by chance (β̂ = 0.001, 90%CI = [–0.100, 0.095], 
P(β̂ > 0) = 0.491).

These results are consistent with the N-type > L-type > X-type gradient that we predicted 
based on the degree of naturalness of the paradigms. They are also consistent with what has 
been observed for morphological patterns of syncretism (Saldana et al. 2022). We suggest that 
the gradient derives from a cognitive bias towards similarity-based structure, that is, towards 
paradigm partitions where cells behaving in the same way have (1) more feature values in 
common, and/or (2) more values that are not shared with other cells.

We fitted an additional model with the same structure to test whether we find the same 
gradient if we considered the degree of semantic similarity (i.e., feature value overlap) exclusively. 
While taking into consideration the degree of similarity alone does not make any difference for 
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patterns of three cells, it does impact patterns of two and four cells, as L and N patterns have the 
same similarity scores for those pattern sizes (see section 2). Results from the Bayesian regression 
model ratify the predicted gradient of occurrence. We find that patterns with a higher value 
overlap are more likely.

Figure 4 shows the model’s posterior distributions (corrected for their baseline probability) 
for each group of patterns with a given similarity score. Similarity scores are calculated as the 
mean feature value overlap across all pairs of cells within a pattern, taking into account the 
structure presented in Table 2.10 Our model results suggest that the two patterns with higher 
similarity scores are more likely to occur in our cross-linguistic data than predicted by chance 
(P(β̂ > 0) > 0.99), the two patterns with the lowest similarity scores show a below-chance 
likelihood of occurrence (P(β̂ > 0) < 0.01), and the patterns with with an intermediate similarity 
score are as likely as predicted by chance (P(β̂ > 0) = 0.497).11

Figure 3: Posterior distribution densities for each pattern type (X, L or N) corrected for their 
baseline probability (i.e., model predicted probabilities minus the baseline probability). We 
show the corrected mean point estimates (solid black line) and 90% credible intervals (dashed 
grey lines). Posterior samples above or below 0 suggest that the patterns occur in the cross-
linguistic data above or below chance respectively; posterior samples around 0 suggest that the 
observed data is at chance.

	 10	 Patterns with 0% similarity refer to 2-cell X patterns, those with 17% to 3-cell X patterns and those with 25%, to 
4-cell X patterns. Both 3-cell L patterns and N/L 4-cell patterns have 33% similarity scores and both 3-cell N patterns 
and 2-cell N/L patterns 50%.

	 11	 Following the discussion with one of our reviewers, we furthermore fitted the same model with similarity scores 
based on an alternative binary minimal feature structure with the features of [±speaker], [±participant] and 
[±singular]. With this feature structure, there are even more bins of different similarity scores (i.e., 0%, 33%, 
38%, 44%, 49%, 55% and 66%) and our data becomes too sparse to make reliable inferences about each of the types. 
However, a general tendency exists whereby most patterns with higher similarity scores (44%, 55% and 66%) tend 
to be more likely than predicted by chance, while this is not the case for patterns with lower similarity scores, which 
are suggested to be either less or equally likely than what would be predicted by chance. Results can be seen in the 
analysis script available at osf.io/hy76j/.

http://osf.io/hy76j/
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Figure 4: Posterior distribution densities for each similarity score corrected for their baseline 
probability. We show the corrected mean point estimates (solid black line) and 90% credible 
intervals (dashed grey lines). Posterior samples above or below 0 suggest that the patterns 
occur in the cross-linguistic data above or below chance respectively; posterior samples around 
0 suggest that the observed data is at chance.

In the following section we will probe whether the same bias towards higher semantic 
similarity, with the same gradient, can also be elicited from adult learners in a controlled setting. 
We will only focus on testing the differences in the learnability of positional split patterns N, L 
and X of three cells uniquely—and thus focus on a naturalness gradient based on the degree of 
semantic similarity alone. To do so, we use artificial language learning experiments (Saldana 
et al. 2022), assuming that they reflect similar cognitive biases as those that drive asymmetries 
in cross-linguistic distributions when languages evolve over time and space (Smith et al. 2003; 
Reali & Griffiths 2009; Culbertson et al. 2012; Saldana et al. 2021a; 2022; Fedzechkina et al. 
2012; Kirby et al. 2004; Bickel 2015). The results from artificial language learning experiments 
with adult learners can help us uncover cognitive biases during the acquisition of patterns of 
positional splits in an otherwise unattainable controlled setting. The assumption is that the 
biases that are detectable in such a setting should reflect (at least) some aspects of those active 
during the learning process involved in language change, and that patterns that are more easily 
learned by adults will ultimately be more robustly transmitted over time. This assumption is 
plausible because language change necessitates a stage where new variants (e.g., a new pattern 
of positional splits) are learned by an increasing number of speakers, mainly adolescents and 
adults (Blythe & Croft 2021). The evolutionary dynamics of language transmission are in the end 
shaped by thousands of learning trials, favouring the selection and maintenance of cognitively 
preferred patterns (Bickel 2015; Smith 2018; Reali & Griffiths 2009)

4 Learnability experiments
We conduct two artificial language learning experiments. In a first experiment we test the 
learnability of the naturalness gradient natural > L-type> X-type in 3×2 paradigms. And even 
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though the typological data is too scarce to explore any gradient of naturalness in 3×3 paradigms 
(i.e., those including number:du), we can still experimentally probe their learnability. In a 
second experiment we thus test the gradient in 3×3 paradigms. Experiment 1 has the advantage 
of comparability with the cross-linguistic data from section 3, and with the experiments that 
Saldana et al. (2022) conducted on syncretism. Experiment 2 allows us to explore the naturalness 
gradient in a more complex morphosyntactic space, and to include an additional degree of 
unnaturalness (i.e., we test four rather than three degrees: natural > L-type> X-type > XX-type).

4.1 Materials and methods
The two artificial language learning experiments described here are based on Saldana et al. 
(2022). We use an ease-of-learning paradigm where we train and test participants on a person-
number paradigm with a specific pattern of morphological positional splits and compare how 
accurately they learn them during testing. The only difference between Experiment 1 and 2 is 
that number is a binary feature (sg and pl) in the former and a ternary feature (sg, pl, and 
du) in the latter; person remains a ternary feature across experiments (i.e., 1st, 2nd and 3rd). 
Consequently, paradigms contain 3×2 cells in Experiment 1 and 3×3 cells in Experiment 2. 
Within each experiment, we run different conditions with verbal paradigms containing positional 
splits of person-number agreement bundles of varying degrees of (un)naturalness: natural, L-type 
or X-type patterns.

Person-number verbal agreement is marked cumulatively in a single affix and can appear 
in a different position (e.g., suffixation, prefixation or zero-marking) depending on the 
person-number feature value bundle. Paradigms contain only two (3×2, Experiment 1) or 
three (3×3, Experiment 2) different syntagmatic arrangements for agreement markers, each 
present in half (in 3×2) or a third (in 3×3) of the cells of the paradigm respectively, which 
partition the person-number space according to the experimental conditions illustrated in 
Figure 5—where each cell colour represents a different positional arrangement (e.g., suffix, 
prefix, or ∅).12

As illustrated in Figure 5, in Experiment 1 (3×2 paradigms), we have three conditions 
with positional splits: natural, L-type, and X-type paradigms. Natural paradigms have a different 
syntagmatic arrangement depending on number (e.g., prefixes for sg and suffixes for pl markers, 
across all different person values). The L-type paradigms have six different configurations. An 
example of an L-type pattern could contain suffixes for 1sg, 1pl and 2pl (i.e., 1=2pl) and 
prefixes for 2sg, 3sg and 3pl (i.e., 2sg=3). The X-type pattern has three different configurations; 

	 12	 Although we decided to exclude ∅-based patterns in section 3.2.1 due to the analytic challenge zero-morphs pose in 
natural languages, we did not consider that they would negatively impact our experiments because all pattern types 
appear redundantly within the same paradigm. Thus, under the L-type condition for example (see below), a paradigm 
will have a prefixal and a suffixal 3-cell L patterns, and never just a ∅-based one.
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for instance, it could contain suffix markers for 1sg, 2pl and 3pl and prefix markers for 1pl, 2sg 
and 3sg. These three conditions in Experiment 1 mirror those tested in Saldana et al. (2022) for 
patterns of syncretism.

Figure 5: Patterns of positional splits within each of the experimental conditions in 
Experiment 1 (left hand side, 3×2 cell paradigms) and Experiment 2 (right hand side, 3×3 
cell paradigms). Each colour represents a different position for the marker in a given cell. 
In Experiment 1, only suffixes and prefixes are possible, and in Experiment 2, we include 
three possible arrangements: suffixes, prefixes, and ∅. For example, in the natural pattern of 
Experiment 1, all singular persons could be marked with prefixes and all plural persons, with 
suffixes. In the leftmost natural patterns of Experiment 2, all singulars could be marked with 
∅, all plurals could be marked with suffixes, and all duals with prefixes.

In Experiment 2 (3×3 paradigms), we have four conditions with positional splits: natural, 
L-type, X-type and XX-type paradigms. Natural paradigms can have a different syntagmatic 
arrangement for number or for person values. The L-type and X-type patterns can have twelve 
different configurations each (see Figure 5). The additional, most unnatural condition is where 
all cells differ in all feature values (possible for 3×3 paradigms but not for 3×2), and we call 
this the XX-type.
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For each experiment, we run a further condition without positional splits. In these no-split 
conditions, all number-person markers are placed in the same position, that is, either all markers 
are prefixes or all markers are suffixes. These conditions serve as a baseline for maximum 
learnability. We expect natural patterns to be closest in learnability to these baseline no-split 
conditions, L-type patterns to be more difficult, X-type patterns to be more difficult still, and 
XX-type patterns to be the most difficult.

4.1.1 Participants
We recruited 767 participants through Amazon Mechanical Turk, each randomly assigned 
to an experimental condition. Participants were all over 18 years old, based in the US and 
with approval ratings >95%. There were no further requirements for participation aside 
from successfully completing a series of bot-screening questions to start the experiment, and 
finishing it in less than 50 and 90 min for Experiment 1 and 2 respectively. Uninterrupted 
sessions nonetheless lasted up to 15 and 30 minutes for Experiments 1 and 2 respectively. 
Participants were paid a base rate of $2.5 or $3.5 respectively plus they received a bonus of 
$0.02 for each correct response. Participants could obtain a bonus reward of up to $1.56 in 
Experiment 1 (18+60 trials), and $4.32 in Experiment 2 (36+180 trials). We exclude the 
data from participants who failed to provide at least 80% of correct responses in the final 
block of vocabulary testing during the training phase. Following this criterion, we excluded 
215 participants.13 After exclusions, our analysis thus contains the data from 552 participants 
in total, 247 in Experiment 1 and 303 in Experiment 2. For Experiment 1, we have 65, 60, 62 
and 62 participants in the no-split, natural, L-type, and X-type conditions respectively. For 
Experiment 2, we have 60, 61, 61, 60, and 60 participants in the no-split, natural, L-type, 
X-type and XX-type conditions respectively.

4.1.2 The artificial lexicon
The artificial lexicon in Experiment 1 comprises six pronouns, three lexical verbs and six person-
number cumulative agreement markers. The semi-nonce subject pronouns (based on Tok-Pisin, 
an English-based creole language spoken in Papa New Guinea) are composed of the person 
morphs mi (1st person), yu (2nd person) and le (3rd person), followed by the number morphs -∅ 
(sg), and -pela (pl). The semi-nonce lexical verbs (based on Basque) are gidatu, figeri and moineza 
which correspond to ‘to cycle’, ‘to swim’ and ‘to walk’ respectively. The agreement markers are 
selected from an array of six CV syllables {na, gu, te, po, ki, so}, and randomly assigned to each 

	 13	 A summary of (included and excluded) participants’ performance in vocabulary tests can be found in the analysis 
script at osf.io/hy76j/.

http://osf.io/hy76j/
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of the six person-number bundles. These markers can be either suffixes (in three cells) or prefixes 
(in the other three cells); these correspond to the colour splits in the experimental conditions 
shown in Figure 5—note that the prefix/suffix position for each split of three cells is asssigned 
randomly. In the no-split condition, however, all the agreement markers are either suffixes or 
prefixes.

The artificial lexicon for Experiment 2 is as per Experiment 1 but with the addition of a 
dual number. It thus includes nine rather than six pronouns (i.e., additional 1du, 2du and 3du 
pronouns); these additional dual pronouns are composed of the same person morphs mi (1st 
person), yu (2nd person) and le (3rd person), followed by the dual (du) morph -tu. The number of 
verbs and agreement markers is as per Experiment 1. Agreement markers can be either, prefixes, 
suffixes, or ∅. Because three paradigm cells have ∅ agreement, we only require six person-
number overt markers just as in Experiment 1, three of which are prefixes, and the other three, 
suffixes (see Figure 5). In the no-split condition, however, we have nine markers (from the 
following array {na, gu, te, po, ki, so, pa, lu, ze}, one for each cell) and all of them are either 
prefixes or suffixes.

4.1.3 Experimental procedure
The experimental procedure is divided into two phases. In the first phase, we train and test 
participants on the artificial lexicon without verbal agreement, that is, only on the pronominal 
forms and the uninflected lexical verbs (i.e., in isolation, without agreement affixes). In each 
training trial, participants see an image of an action or a pronoun, and their corresponding 
forms in the artificial language (as shown in Figure 6). In each testing trial, participants are 
shown an image and are asked to select the corresponding form in the artificial language 
out of an array of two, that is, the target, and a randomly selected form of the same lexical 
category (pronoun or verb) as the target. They receive feedback after each selection and a 
bonus of $0.02 for each correct response. Participants see each mapping three times during 
training, and twice during the vocabulary testing in Experiment 1 (across two blocks of all 
nine lexical items each), or thrice in Experiment 2 (across three blocks of all 12 lexical items 
each).

In the second and critical phase, we train and test participants on the verbal paradigms with 
the agreement affixes. For this phase, we use feedback learning whereby training and testing are 
simultaneous. In each trial, participants see an image combining a pronoun and an action and 
after 800 ms, two (Experiment 1) or three (Experiment 2) verbal forms are displayed with the 
same stem and affix form, but in different positions. Participants have to select which form they 
think is the one that corresponds to the specific pronoun+action combination, in other words, 
they have to select the verbal form they think agrees in person and number with the given 
pronoun. They receive feedback on their selection so they can learn the correct correspondence 
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as they move along testing. In Experiment 1, participants are only told whether their selection 
is correct or incorrect; if they select the incorrect form, they know that the correct one is the 
only other form (see Figure 7 for an illustration of a complete critical test trial in Experiment 
1). However, in Experiment 2 there are three alternatives, so if participants select the wrong 
one, they cannot know which one is the correct one straightaway; we thus add feedback about 
the correct form when participants select the incorrect form to facilitate learning (see Figure 8 
for an illustration of a complete critical test trial in Experiment 2). As in the previous phase, 
participants receive a bonus of $0.02 for each correct response. This phase comprises 10 blocks 
of six trials in Experiment 1 and 20 blocks of nine trials in Experiment 2; each block contains 
all different person-number agreement combinations (i.e., the whole verbal paradigm, but with 
randomly chosen verb stems at each trial).14

Figure 6: Visual stimuli used to teach and illustrate the actions and pronouns along with their 
corresponding descriptions (i.e., uninflected verbs, and pronouns respectively). All of these 
were included in Experiment 2, where we included dual number but not in Experiment 1, 
where we only implement a binary number feature (i.e., with sg and pl uniquely).

	 14	  After the completion of the experiment, participants are also asked to translate English phrases into the artificial lan-
guage (one for each person-number combination). We include this translation survey to further monitor participant’s 
vocabulary attainment during learning. A summary of the results from these translation surveys can be found in the 
analysis script at osf.io/hy76j/.

http://osf.io/hy76j/
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Figure 7: Example test trial in the critical phase of Experiment 1. Participants are shown 
an image of a pronoun+action combination and after 800ms were asked to select the 
corresponding inflected (verb-affix) form of the verb in the artificial language out of an array 
of two. They are provided with feedback after they submit their response. The feedback 
displays whether their choice is correct as well as the bonus amount accumulated so far in the 
experiment (and it remains on screen for 2000 ms). The feedback allows participants to learn 
the correspondence between the position of the affixes and the person-number feature values as 
they move along testing.

4.1.4 Data analysis
4.1.4.1 Preregistered Confirmatory Analysis

We use R’s brms (Bürkner 2018) as an interface to Stan (Carpenter et al. 2017) to run a Bayesian 
binomial regression model predicting participants’ performance by condition and test block. We 
run separate models for Experiments 1 and 2, with the same model structure.

Our dependent variable is participants’ responses for each of the critical test trials (coded as 1 
if correct, and 0 if incorrect). As fixed effects, we include Condition, Block, and their interaction. 
Block is coded as a centered continuous variable, and we interpret its slope as the learning rate. 
We apply Helmert contrast coding to the categorical predictor of Condition. In Experiment 1 
we compare L-type to X-type, natural to the average of the two, and no-split to the average of 
all the rest. In Experiment 2, we compare X-type to XX-type, then L-type to the average of the 
two, Natural to the average of the previous three levels, and No-split to the average of all other 
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levels.15 As random effects, we included intercepts for participants as well as by-participant 
slopes for the effect of Block.

We set the same student-t prior on all fixed effects as well as on the intercept (DF=6, μ=0, 
σ= 1.5) (Kurz 2019); for the random effects, we set a half-Cauchy prior with scale parameter 
10 (McElreath 2016). Further details on all models reported in this paper can be found in the 
analysis script available in osf.io/hy76j/.

Figure 8: Example test trial in the critical phase of Experiment 2. Participants are shown an 
image of a pronoun+action combination are asked to select the corresponding inflected (verb-
affix) form of the verb in the artificial language out of an array of three. The feedback they 
receive after they submit their responses displays whether their choice is correct and the bonus 
amount accumulated so far in the experiment (which remains on screen for 2500 ms); for 
incorrect responses, participants are also told which is the correct form out of the three.

	 15	 Note that in our pre-registration (available at osf.io/yzcxp) we specified the reverse order for the levels in Condition 
because we assumed that the difference between the no-split and the natural conditions would be very small; how-
ever, the data suggests that the difference is actually quite large and renders the original order of the levels in the 
pre-registered model inadequate. Comparing any level to an average containing the no-split condition will exagger-
ate any difference in learnability and wrongly suggest very strong evidence for any difference between the levels. We 
nevertheless provide the results from the model with the pre-registered order of levels in the analysis script available 
at osf.io/hy76j/.

http://osf.io/hy76j/
http://osf.io/yzcxp
http://osf.io/hy76j/
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4.1.4.2 Non-preregistered Exploratory Analysis

Following Saldana et al. (2022), we explored the learnability of individual cells within L-type 
patterns. We fitted a Bayesian binomial regression model predicting participants’ performance 
by cell type and testing block. Cell type is a three-level categorical variable as there are three 
cells in each of the positional arrangements within a paradigm: one type of cell only overlaps 
by number value with another cell (called here cells connected by number, e.g., the 2sg in 1sg, 
2sg, 1pl or pink cell in ), another type of cell only overlaps by person value (cells connected by 
person, e.g., the 1pl in 1sg, 2sg, 1pl or red cell in ), and the third type of cell overlaps with 
the other two cells, one by number value and another by person value (connecting cells, e.g., the 
1sg in 1sg, 2sg, 1pl or blue cell in ). For each L-type paradigm in Experiment 1, there are two 
cells of each type (e.g., ); in Experiment 2, there are three cells of each type. Our dependent 
variable is participants’ responses for each of the 60 critical test trials (coded as 1 if correct, and 
0 if incorrect). As fixed effects, we include Cell type as well as Block and an interaction term. 
The categorical predictor Condition is Helmert contrast-coded so we compare cells connected 
by person to those connected by number, and the connecting cells to the average of the two; 
Block is coded as a centered continuous variable. As random effects, we included intercepts for 
participants as well as by-participant slopes for the effect of Block and Cell Type. We use the 
same priors as in the confirmatory models.

4.2 Results
4.2.1 Learnability gradient of (un)natural patterns of positional splits
Based on our hypotheses, we predict X-type paradigms to be the least learnable, followed by 
L-type, natural, and no-split paradigms. Figure 9 shows participants’ accuracy scores and the 
Bayesian model’s predicted means for Experiments 1 and 2 respectively: Figure 9A and 9C show 
the accuracy by block as well as condition and Figure 9B and 9D show the overall accuracy across 
all 60 trials by condition. A visual inspection of the results suggests the predicted gradient of 
learnability no-split > natural > L-type > X-type across experiments. We observe no difference, 
however, in the learnability of X-type and XX-type patterns in Experiment 2.

Results from the Bayesian binomial regression models largely confirm our predictions. 
Figure 10 shows Experiment 1 model’s posterior probability distributions for all fixed effects 
along with their means (solid grey lines) and 90% credible intervals (dashed grey lines).16 We 
find that accuracy scores for L-type and X-type are similar half-way through the experiment (β̂ 
= 0.097, 90%CI = [–0.100, 0.298], SE = 0.122, P(β̂ > 0) = 0.786) but they increase more 
by block in L-type than in X-type (β̂ = 0.038, 90%CI = [0.005, 0.072], SE = 0.021); 97% of 
the posterior samples are above 0 (i.e., P(β̂ > 0) = 0.970) thus making it highly probable that 

	 16	 The model’s diagnostics are available at osf.io/hy76j/.

http://osf.io/hy76j/
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L-type paradigms are learned faster than X-type paradigms, although the difference is relatively 
small. We also find that natural paradigms show both higher accuracy scores (β̂ = 0.302, 90%CI 
= [0.185, 0.425], SE = 0.073, P(β̂ > 0) = 1) and faster learning rates (β̂ = 0.034, 90%CI = 
[0.014, 0.056], SE = 0.013, P(β̂ > 0) = 0.998) than L and X-type paradigms. Further, no-split 
accuracy scores are overwhelmingly higher (β̂= 0.640, 90%CI = [0.548, 0.738], SE = 0.058, 
P(β̂ > 0) = 1), and the learning rates are faster (β̂ = 0.084, 90%CI = [0.065, 0.103], SE = 
0.011, P(β̂ > 0) = 1) than the average of all other conditions.

Figure 9: Accuracy scores in Experiment 1 (top, 3×2 paradigms) and 2 (bottom, 3×3 
paradigms. (A&C) Accuracy by testing block for each of the four conditions. Shaded dots 
represent participants’ individual scores, and larger dots represent more individuals as 
per the legend; thick lines represent the model’s predicted accuracy means conditioned on 
experimental condition and block. The shaded area shows the 90% credible intervals. (B&D) 
Overall accuracy by condition. Shaded dots represent participants’ individual scores; black-
circled dots represent the model’s predicted mean accuracy scores conditioned on experimental 
condition, and the error bars represent the model’s predicted 90% credible intervals.
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Figure 10: Experiment 1’s Bayesian model fit: Posterior distribution densities for all fixed 
effects along with their mean point estimates (solid black line) and 90% credible intervals 
(dashed grey lines).

Figure 11: Experiment 2’s Bayesian model fit: Posterior distribution densities for all fixed 
effects along with their mean point estimates (solid black line) and 90% credible intervals 
(dashed grey lines).

Figure 11 shows the results form the model fits of Experiment 2. We found no difference 
between X-type and XX-type; neither in accuracy at the intercept (β̂ = 0.015, 90%CI = 
[–0.222, 0.250], SE = 0.142, P(β̂ > 0) = 0.545) nor in the learning rate (β̂ = –0.001, 90%CI 
= [–0.024, 0.022], SE = 0.014, P(β̂ > 0) = 0.472). However, we did find higher accuracy 
scores in L-type than in X-type and XX-type (β̂ = 0.151, 90%CI = [0.014, 0.292], SE = 0.085, 
P(β̂ > 0) = 0.965). The learning rate does not seem to diverge as much, as we only find 
relatively weak evidence for a slight advantage of L-type over X-type and XX-type (β̂ = 0.008, 
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90%CI = [–0.006, 0.022], SE = 0.008, P(β̂ > 0) = 0.828). As in Experiment 1, we also found 
that natural paradigms show both higher accuracy scores (β̂= 0.305, 90%CI = [0.207, 0.407], 
SE = 0.061, P(β̂ > 0) = 1) and faster learning rates by block (β̂= 0.030, 90%CI = [0.021, 
0.040], SE = 0.006, P(β̂ > 0) = 1) than unnatural paradigms, and that no-split accuracy scores 
(and their increase by block) are also overwhelmingly higher (β̂= 0.568, 90%CI = [0.489, 
0.648], SE = 0.048, P(β̂ > 0) = 1; β̂= 0.023, 90%CI = [0.015, 0.032], SE = 0.005, P(β̂ > 0) 
= 1) than the average of all other conditions.

4.2.2 Learning strategies in L-type patterns
Saldana et al. (2022) showed that the difference in learnability between L-type and X-type patterns 
of syncretism was not driven by any preference for a specific pattern or sub-pattern within L-type 
patterns. Instead, it seemed derived from the fact that participants learned connecting cells in 
L-type patterns (i.e., those that share a feature value with each of the other two cells of a syncretic 
pattern; blue in ) earlier than any other individual cell type. Connecting cells are learned better 
because they form natural sub-patterns with each of the other cells. Consistent with a bias towards 
similarity-based structure, the connecting cells act as an anchor of the similarity relations within 
the L-type patterns. In Experiment 1 and 2 we replicate these results for positional split patterns: 
connecting cells reach higher accuracy scores overall (see Figure 12).

Figure 12: Accuracy by cell type in L-type paradigms and predicted estimates from the 
Bayesian binomial regression model in Experiment 1 (A) and 2 (B). Shaded dots represent 
participants’ individual scores, and larger dots represent more individuals; thick lines represent 
the model’s predicted accuracy means conditioned on experimental condition and block, and 
the shaded area shows the 90% credible intervals.
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The results from the binomial regression model fit for Experiment 1 suggest that accuracy is 
higher for connecting cells than for the average across the other cell types (β̂ = 0.062, 90%CI = 
[0.009,0.116], SE = 0.033, P(β̂ > 0) = 0.972). We further found an effect of block suggesting 
that accuracy increased as participants progressed through the testing phase (β̂ = 0.143, 90%CI 
= [0.100,0.187], SE = 0.027, P(β̂ > 0) = 1). This increase is comparable across cell types 
(max P(β̂ > 0) = 0.683). The model fit for the data in Experiment 2 is very similar. We find that 
accuracy is highest for connecting cells (β̂ = 0.096, 90%CI = [0.057,0.137], SE = 0.025, P(β̂ > 
0) = 1), and that accuracy increases by block (β̂ = 0.102, 90%CI = [0.077,0.128], SE = 0.016, 
P(β̂ > 0) = 1) comparably across cell types max P(β̂ > 0) = 0.858).

5 Discussion
5.1 A naturalness gradient in paradigmatic splits
This paper explores, with both cross-linguistic and artificial language data, a naturalness 
gradient in the cross-linguistic recurrence and learnability of positional splits. In contrast to the 
dichotomous natural vs unnatural distinction in much of the literature, our results concur with 
other recent research (Herce 2020; Saldana et al. 2022) in identifying naturalness as a matter of 
degree. According to definitions of naturalness that rely on the sharing of distinctive values (e.g., 
Bierwisch 1967; Harley & Ritter 2002; Round & Corbett 2017; and see Mielke 2004 regarding 
phonology), a set of cells will either be, or not be a natural class, depending on whether they 
share some feature value (e.g., +speaker, -addressee or +singular) to the exclusion of all other 
cells. Instead, we posit a scale N > L > X, defined by their decreasing degree of naturalness. 
Naturalness is defined as the proportion of shared feature values.17

Learning morphology or an ordering rule is easiest when they apply over a set of contexts 
sharing the same value (e.g. 1sg, 2sg and 3sg in the person-number paradigms explored here). 
Saldana et al. (2022) show this to be the case for syncretic morphological exponents, and 
the present paper shows the same principle at work in position assignment (Figure 9). This 
might explain why natural patterns are the most widespread ones cross-linguistically relative 
to their chance-expected prevalence (see Figure 3). When a set of morphosyntactic contexts 
falls short of this full naturalness, a higher degree of value overlap (i.e., type L, relative to 
type X) correlates with a higher cross-linguistic probability, and with higher learnability in 
experimental settings.

	 17	 Although other approaches to naturalness (e.g., Natural Morphology: Dressler 1999; Andersen 2008) have also con-
ceived of it as a scale, the scale on those accounts is not defined in terms of the semantic space alone but integrates 
a variety of measures, including markedness, frequency, simplicity, and observed synchronic and diachronic prefer-
ence for a category or structure.
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The implications of these results are manifold. First, they ratify the relevance of naturalness 
and semantic similarity in grammatical (and morphological) architecture (Bierwisch 1967; 
Baerman et al. 2005; Pertsova 2014), a fact which has been recently challenged. Thus, for 
example, (Blevins forthcoming) suggests that “the contrast between ‘natural’ and ‘unnatural’ classes 
appears to reflect a priori assumptions about descriptive ‘economy’ and ‘naturalness’ which have never 
been shown to be relevant to language structure, acquisition or use.” Our results are not compatible 
with this assessment. The fact that seemingly unnatural structures exist in some languages, and 
the fact that these are sometimes productive and robustly transmitted (e.g., in Romance, Maiden 
2018), should not detract from the fact that (more) natural ones are nonetheless preferred in 
cross-linguistic probability and learnability.

Second, our results with respect to the ‘unnatural’ types L and X replicate the learnability and 
cross-linguistic probability asymmetries found by Saldana et al. (2022) in the domain of whole-
word morphological syncretism. That the same gradient applies to very different morphological 
phenomena suggests that it is driven by a general cognitive bias (Culbertson & Kirby 2016). While 
whole-word syncretism might be plausibly affected by competing biases like expressivity (i.e., to 
minimise ambiguity in the encoding of the different values of person and number), the present 
findings are largely orthogonal to the discriminability of the different values. For example, both 
Baure and Fula in Table 1 express all combinations of person and number unambiguously. They 
differ only in whether or not the expression is split between positions. Positional properties of 
different values concern (more clearly than syncretism) just the ability of language users to 
generalise over different sets of contexts, with no impact on discriminability or communicative 
expressivity. We find that, even when a given property or rule, like affix order, contributes 
little or nothing to the expressivity of a paradigm, (more) natural classes are still preferred. We 
have shown that this applies to both the cross-linguistic probability of the different naturalness 
degrees (Section 3), as well as to their learnability in artificial language learning experiments 
(Section 4). A cognitive bias towards similarity-based structure, which favours more natural 
patterns, might therefore shape the evolution of paradigmatic structures when languages change 
in time and space, leading to different probabilities in extant languages.

We have considered L patterns as more natural than X throughout this paper because they 
have a greater proportion of values shared by their cells (33.3% for L, 16.6% for X). The question 
remains, however, whether this is the (gradient) factor that motivates this asymmetry. We need 
to ask what the learning strategy is that language users follow to learn L patterns better than X 
patterns. In syncretisms within a 3×2 paradigm, Saldana et al. (2022) found that the connecting 
cell in L (i.e., the one that shares values with all other cells in its pattern, blue in Figure 12) is 
learned better. We replicate this preference in this paper as well (see Table 12). In L patterns, this 
cell shares a value with the other two cells and can be understood to behave as a semantic centre 
to the category; a centre that is missing from X. However, the presence of structural consistency 
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across number for some person values in L but not in X in 3×2 paradigms,18 suggests that 
factors other than value overlap might also be driving the preference for L. Evidence for such an 
additional driver is provided in Saldana et al. (2022), who found a slightly enhanced learnability 
for connected-by-person cells within patterns of syncretism (which lead to the underspecification 
of the number feature for a given person value). However, contrary to Saldana et al. (2022), we 
found no learnability advantage here in 3×2 paradigms for the cell connected by person. At the 
same time, in 3×3 paradigms—where cells connected by person never spread across all number 
values—we found that the connecting cell was still significantly easier to learn than connected 
cells, thus confirming the connecting cell’s ancillary role as a category centre within the pattern. 
This allows us to conclude that structural consistency across all cells with a particular person 
or number value is not the factor driving the preference for L over X. Instead, it seems to be 
the higher feature value overlap of L-pattern (connecting) cells that drives this type’s enhanced 
learnability, which supports our understanding of naturalness and the similarity-based structure 
bias as a gradient, rather than a dichotomous, preference for more natural patterns.

It needs to be acknowledged that we did not find a significant learning advantage of X over 
XX, and this runs against the similarity-based structure bias that accounts for the rest of our 
results. We do not believe, however, that this undermines the postulated naturalness gradient. 
We rather think that the lack of difference in learnability and learning rates between X and XX 
is mainly due to the intrinsic difficulty of these patterns. Because X and XX patterns are the most 
dispreferred, we expect any difference between them to be very hard to detect. This is plausible 
because the learnability difference heavily decreases already from N vs L (Figure 9) to L vs X, 
leading us to expect a yet smaller hard-to-detect difference between X and XX. This observation 
could in fact motivate an additional interpretation of our findings: there does not seem to be 
a linear, but an exponential gain in learnability given progressively higher degrees of feature-
value overlap. This non-linear association between naturalness and learnability could well be 
the reason that categorical approaches to naturalness have been widespread and often seemingly 
successful.

5.2 Relation to category clustering and other related biases
Positional splits (of any kind) are a minority, although by a relatively narrow margin (found in 
39% of languages, and 37% of paradigms regarding the A, S, and P agreement morphs surveyed 
here). This might be so because split systems violate another cognitive bias, category clustering 
(Mansfield et al. 2020; 2022), which privileges the accumulation of similar categories in unique 
and featurally consistent positions. Phenomena like multiple (Caballero & Harris 2012) and 

	 18	 In 3×2 paradigms with L patterns, number is structurally consistent in two out of three persons, which might make 
L more learnable. This does not hold in 3×2 paradigms with X patterns, nor in 3×3 paradigms in either condition. 
In these, positional differences are found inside every person and number value.
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distributed exponence (Carroll 2022), as well as the positionally-split systems we analyse in 
this paper, constitute deviations from this simpler one-to-one mapping between roles and 
positions. What our present findings suggest, in addition, is that violations of such preferred 
configuration are not random but subject to a cognitive bias themselves, the similarity-based 
structure bias.

The relation between the category-clustering and the similarity-based-structure biases is 
not straightforward. Our interpretation is that a category-clustered (i.e., no split) system is the 
optimal configuration, and most frequent result of the similarity-based-structure bias. A no-split 
system where all A markers appear in one position and all P markers appear in a different one 
maximises the match between positions and roles. Analogously, a system with a natural split 
where sg markers appear in a different position from PL markers maximises the match between 
positions and number values. However, even when a pattern falls short of this (L, X), more 
similarity (L) between a pattern’s component cells is also associated to higher cross-linguistic 
probability and higher learnability.

Although the positionally split systems we have focused on here run against category 
clustering in a narrow sense, they might also bear witness to its preferred status in a different 
way. If positional splits are regarded as deviations from a preferred configuration where all 
person-number values of the same argument are expressed in a single position, then we should 
expect this to be reflected in the cross-linguistic frequency of different pattern sizes. That is, 
paradigms where most person-number values are marked in the same place should be more 
frequent than those where there is greater variation because they are closer to being category-
clustered. The number of positional split patterns of different sizes shown in Table 8 suggests 
that this might be the case: four-cell patterns are over-represented relative to two and three-cell 
patterns.

Counts (Proportion)

Type Two cells Three cells Four cells

cross-linguistic data 77 (0.55) 35 (0.25) 29 (0.20)

baseline 2430 (0.64) 1080 (0.29) 270 (0.07))

Table 8: Overall count (and proportion) of empirical and baseline data for two, three, and 
four-cell patterns.

Leaving aside the naturalness types that constitute the main focus of this paper, we also 
explored the positional properties of agreement paradigms to assess which values tend (not) to 
share their positional properties. This provides independent evidence on the extent to which 
positional splits reflect morphosemantic structure. Considering the positional properties of the 
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different person-number values across all the paradigms in our sample, we can count how often 
any two values (e.g., 1pl and 3pl) show different positional properties. Because some languages 
in our sample are related, and some are more closely related than others, we need to correct 
our raw counts for this lack of independence. Table 9 corrects for this with phylogenetically 
weighted proportions (Round 2021) and shows that the most positionally similar values are 
1sg/2sg which are distinct 62 times in our sample, or 43.51% of the (weighted) times, followed 
by 1pl/2pl, 2sg/2pl, 2sg/3sg, 1sg/3sg, and 1sg/1pl. All of these are pairs of cells that share 
a value. The most positionally dissimilar values, on the other hand, are 3sg/2pl (113 times 
different in our sample, or 86.95% of the times), followed by 1sg/2pl, 1pl/3pl, 3pl/1sg, and 
3pl/2sg. All of these pairs of cells except for one do not share values. Positional affinities and 
differences, therefore, reveal a trend—driven by a similarity-based-structure bias—for forms with 
shared values to be positionally more similar. Positional affinities appear to run overall parallel 
to the structure of person-number feature values. They further contribute to the literature on 
the architecture of person as a feature (e.g., Harbour 2016; Aalberse 2007; Wyngaerd 2018) 
by pointing towards the greater affinity of speech-act participants (1/2) over other person 
combinations (i.e. 2/3 and 1/3).

 1sg 2sg 3sg 1pl 2pl

2sg 0.4351   

3sg 0.6271 0.6226  

1pl 0.66 0.6563 0.7432 

2pl 0.8227 0.5954 0.8695 0.4924

3pl 0.7761 0.7315 0.6311 0.803 0.7142

Table 9: Proportion of different positional properties between the different person-number 
values

Also with regard to the positional properties of the different person-number values, it might 
be interesting to note that 3 tends to use fewer positions than 2 and 1. At the same time, pl values 
tend to use more positions than sg ones, and they also tend to be expressed/indexed later on 
average within the word (i.e., suffixally, rather than prefixally). These findings are summarised 
in Table 10, again reporting phylogenetically weighted proportions.

1sg 2sg 3sg 1pl 2pl 3pl

Average number of positions 1.045 1.103 0.717 1.519 1.622 1.293

Average position –0.484 –0.6202 –0.1227 0.2644 0.2868 0.4706

Table 10: Positional properties of the different person-number values
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These tendencies, similar to those found regarding the segmental length of markers (Seržant 
& Moroz 2022), could provide a window into the idiosyncrasies of positionally split systems 
and their emergence. Table 10 presents preliminary quantitative evidence for a few things 
that have been noted in the literature. The first is the tendency for languages to mark 1 and 
2 more robustly (i.e., in more positions in this case) than 3 (Watkins et al. 1969; Bickel et 
al. 2015), and pl more robustly than sg. The second is that the suffixing preference that has 
been proposed for bound morphology in general (see e.g., Cutler et al. 1985) does not seem 
to apply to the domain of person marking (notice that the average position for singular person 
values is below 0, i.e., prefixal, in Table 10). This confirms findings in (Cysouw 2003: 31), 
who also found a related generalisation that prefixal person-number agreement morphology is 
prone to horizontal syncretisms (i.e., no number marking) which are often resolved by means of 
(number) suffixes. Languages like Turkana, Georgian, Basque, Muna, Ayoreo, Tapieté, etc. use 
a suffixal marker in those plural values that would be otherwise homophonous with the sg. A 
bias towards homophony avoidance (Song & White 2022; Trott & Bergen 2022), together with a 
formal markedness of pl (vs sg) could potentially explain the tendency found in this paper for 
plural values to be associated to more and later positions within the word. This might explain the 
findings in Trommer (2003), where it is shown that in cases of more-or-less separative marking 
of person and plural number, the latter marker occurs almost unexceptionally in a later position, 
regardless of the affixes’ order with respect to the stem (cf. Maldonado et al. 2020).

In sum, this paper’s findings have implications regarding the descriptive and theoretical 
analysis of affix order (Noyer 1992; Aronoff & Xu 2010), the interface between paradigmatic and 
syntagmatic complexity (see, e.g., Good 2015), the feature structures and hierarchies of person 
and number (e.g., Harbour 2016; Aalberse 2007; Wyngaerd 2018), the relationship between 
the morphological form and the position of affixes (Stump 2001; Spencer 2003; Crysmann & 
Bonami 2016), and, most importantly, with respect to the conceptualisation and formalisation of 
(un)naturalness as a gradient property.

6 Conclusion
This paper has explored positional splits in human languages. These are cases where information 
about “the same thing” appears in different positions within the word. Taking the morphology 
of person/number agreement in the verb as a test case, we have explored to what extent such 
splits are natural in the sense that they reflect “natural” overlaps in feature values. We found 
that, cross-linguistically, positional splits are less frequent than non-split systems (slightly under 
40%). Within split systems, those with a higher degree of naturalness, that is, more overlap in 
feature values, are more probable cross-linguistically relative to what is expected by chance. 
That is, patterns where values marked in the same position share more meaning (e.g., 1pl, 2pl, 
3pl, all sharing pl) are cross-linguistically more probable than those where they share less or 
no meaning (e.g,. 1pl, 2sg, 3sg). Relying on a sample of 325 paradigms from 227 languages we 
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found that the most natural ones were decisively over-represented when compared to what is 
expected by a chance baseline of logically possible arrangements. Meanwhile, the most unnatural 
ones were significantly underrepresented, and intermediate naturalness splits occurred at around 
chance levels.

Parallel to this, we conducted artificial language learning experiments to probe the learnability 
of such splits across different degrees of naturalness. The experimental results provide a striking 
parallel with the cross-linguistic data, with non-split systems easiest to learn, natural positional 
splits (i.e., sg vs pl) easier to learn than intermediate naturalness splits (e.g., 1sg/3 vs 1pl/2), 
and these easier to learn than low naturalness splits (e.g., 1sg/2pl/3pl vs 1pl/2sg/3sg).

Together, our findings constitute a successful replication of the naturalness gradient N≫L>X 
proposed in Saldana et al. (2022), suggesting that it is robust both in terms of cross-linguistic 
probability and learnability. This supports the notion that the gradient reflects a cognitive bias 
towards similarity-based structure in morphology, mirroring similar notions in general category 
and concept formation. Altogether, we provide further evidence for a more nuanced view of 
the natural-unnatural distinction in morphology—conceptualised as a gradient rather than a 
dichotomous property—and suggest a causal link between a general cognitive bias and the ease 
in which paradigms are transmitted, both in language change and in laboratory settings.

Our findings furthermore contribute to the literature on the syntagmatic (Crysmann & 
Bonami 2016) and paradigmatic (Corbett 2015; Stump 2001) architecture of grammar. These 
two dimensions have mostly been treated separately. Here, however, we learn that the positional 
properties of markers appear to be subject to very similar cross-linguistic probabilities and 
cognitive biases as other more characteristically paradigmatic phenomena like syncretism 
(Saldana et al. 2022). We contribute as well to the typological literature by further clarifying 
the possible types of positional splits, and by providing a large cross-linguistic sample of them. 
Within the experimental literature, our findings provide evidence for the cognitive relevance 
of (a gradient notion of) naturalness in a novel domain, and the generality of the proposed 
similarity-based structure bias in morphological learning.

The combined use of typological and experimental approaches (and their striking agreement 
in this particular case) constitutes an ideal outcome for the progress of the discipline. A similar 
agreement of learning complexity and cross-linguistic probability has been found in the domain 
of phonological features and contrasts Pater & Moreton (2012); Moreton & Pater (2012); 
Moreton et al. (2017). Future research could be profitably aimed at exploring the generality of 
this bias further, by checking its applicability to other traits—for example, deeply morphological 
ones such as the predictive structures within paradigms (see Ackerman & Malouf 2016). The 
phenomenon can be explored not only in more breadth, but also in more depth, for example by 
confirming whether there are indeed exponential, not linear, gains of naturalness, and why this 
might be so. These and related avenues of research will be left for the future.
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