As opposed to syntactic operations (such as Merge), morphology has been seen as the source of language variation. But few attempts have been made in the field of Distributed Morphology to explicitly and formally identify the role of postsyntactic rules in language change. By analyzing the change in the Japanese addressee-honorification system (Yamada 2019c), this paper proposes that the emergence of the new grammar — which seems to be an instance of a microparametric change in the Agree operation (Kayne 2000; 2005; Biberauer & Roberts 2012; Barbiers 2013) — is, in fact, explained as a morphological reanalysis: the reanalysis is caused by overgeneralization of vocabulary insertion rules resulting from abductive reasoning in pursuit of default rules. It is also suggested from a quantitative corpus survey using Time Series Analysis (the Dynamic Generalized Linear Mixed Effects Model) that the reanalysis is facilitated particularly in the configuration where the addressee-honorific marking is immediately followed by a sentence-final particle.
1 Introduction

In the transition from the P&P model to the Minimalist Program (MP), the view of language variation underwent important changes. In the P&P model, variations are seen as a parametric property attributed to a module of mental grammar (e.g., word order variation is to the X-bar module). These parameters can globally determine a cluster of syntactic variations (macroparameters; e.g., the null Subject Parameter, Rizzi 1982). In the MP, however, only universal operations, such as Merge, are considered in the domain of syntax, and what is learned — and, therefore, is subject to variation — is placed outside the syntax (lexicon, PF, third factors, etc.). Furthermore, the existence of macroparameters has become controversial, with several researchers alternatively proposing the importance of microparameters (Kayne 2000; Biberauer & Roberts 2012; Barbiers 2013). As Kayne (2005: 10) writes, “macroparameter differences might all turn out to dissolve into arrays of microparametric ones.”

In addition to researchers of diachronic syntax, those working within the field of Distributed Morphology have also adopted the same assumption for grammatical architecture, attempting to elucidate the role of the postsyntactic module of grammar in (synchronic) language variation (Parrott 2007; Embick 2008; Nevins & Parrott 2010; Havenhill 2016). By examining the recent grammatical change in the Japanese addressee-honorification system from the perspective of Distributed Morphology, the current paper develops this direction, aiming to flesh out the role of postsyntactic rules in language change in a more explicit way than has been discussed in the literature. It is proposed that a microparametric change in Agree is caused by an abductive reanalysis in the postsyntactic module, in pursuit of general default vocabulary insertion rules (i.e., a change in learned lexicons).

This paper is organized as follows. Section 2 provides detailed descriptions of Japanese addressee-honorific (AH) markers, and their historical change. Section 3 presents the main analysis, discussing how the grammars before and after the change are to be analyzed, and why the language changed. Examining data from a historical corpus, Section 4 empirically and quantitatively supports the proposed analysis. The present paper concludes in Section 5 with a summary and future remarks.

2 Japanese addressee-honorific markers

AH markers — or honorific allocutive markers — are morphemes encoding the speaker’s respect for the addressee.¹ They have been playing a central role in the recent surge of Performative Hypothesis-based models of the structure of clause periphery, as well as other discourse-oriented expressions (pragmatic markers/particles, Haegeman & Hill 2013; vocatives, Hill 2014; tense

¹ AH markings are found in genealogically unrelated languages; see e.g., (Souletin) Basque (Isolate, Oyharçabal 1993; Haddican 2018), Thai (Tai-Kadai, McCready 2014), Tamil (Dravidian, McFadden 2017), Punjabi (Indo-European, Kaur 2017), Magahi (Indo-European, Alok 2021), Korean (Koreanic, Pak 2008; Portner et al. 2019) and Japanese (Japonic, Harada 1976; Miyagawa 2017; Yamada 2019c).
ordering, Giorgi 2010; sentence-final particles exhibiting phi-agreement, Zu 2018). For example, observe an example from Korean.

(1) Inho-ka choysen-ul ta ha-ess-supnita.
 Inho-NOM best-ACC all do-PST-AH.DECLFORM
 ‘Inho did his best’ (Portner et al. 2019: 6)

Here the AH marker supnita appears at the end of the sentence to encode the speaker’s respect for the addressee. Given its orientation to the addressee and its distribution in clause periphery, Portner et al. (2019), for example, propose the structure in (2), where c(ontext)P exits to encode information about discourse relations, and analyze supnita as the direct reflex of this head.²

(2)

Contemporary Japanese also has an AH system. However, unlike in Korean, where the choice between different AH markers reflects semantic/pragmatic differences, the difference between Japanese AH markers — -mas and des — is subject to purely morphosyntactic rules, as listed in (3) (Yamada 2019c).

(3) The use of Japanese AH depends on:
 a. whether the sentence is used in a copular sentence
 b. whether it is used in a negative sentence, and
 c. whether it is used in a past-tense sentence

But this system underwent an important change in the twentieth century. The older system (Grammar 1) still survives as the prescriptive grammar. But additionally, a new grammatical system (Grammar 2) started being used in a colloquial register. In what follows, we examine how AH markers are distributed in each system.

2.1 Grammar 1

By examining 16 monographs written by renowned linguists published from 1916 to 2009 and government-designed textbooks, Kawaguchi (2014) has revealed that people in the early twentieth century agreed on the summary table in (4). Let us closely examine each case with examples.

² More accurately, they analyze c and SentMood as being fused and supnita as the spellout of the complex head.
Grammar 1

<table>
<thead>
<tr>
<th></th>
<th>affirmative</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRS</td>
<td>PST</td>
</tr>
<tr>
<td>verb</td>
<td>-mas</td>
<td>(5)</td>
</tr>
<tr>
<td>noun</td>
<td>-mas</td>
<td>(22)a</td>
</tr>
<tr>
<td>noun</td>
<td>des- (low)</td>
<td>(15)a</td>
</tr>
<tr>
<td>noun</td>
<td>des- (low)</td>
<td>(15)b</td>
</tr>
<tr>
<td>noun</td>
<td>*</td>
<td>(22)c</td>
</tr>
</tbody>
</table>

2.1.1 Affirmative sentences

Verbs. Observe an `AH` marker used with a verb. Of the two `AH` markers, the only permitted form is `-mas`, as shown in (5).

(5) a. Alex-wa hasiri-{-mas/*des}-u ka nee.
 Alex-TOP run-AH-PRS Q SFP
 ‘Does Alex run?’

 b. Alex-wa hasiri-{-masi/*desi}-ta ka nee.
 Alex-TOP run-AH-PST Q SFP
 ‘Did Alex run?’

As mentioned above, the Korean `AH` marker is seen as the direct spell-out of the c-head. Maintaining this commonly-adopted assumption of Performative Hypothesis that there exists a super-structure representing discourse participants, the literature has also analyzed `-mas` as being involved with such a highest projection (Miyagawa 2012; 2017; Yamada 2019c). However, `-mas` does not appear in the clause periphery, as it is sandwiched between the verb and the tense morpheme, distinct from sentence-final elements, such as an interrogative mood marker `ka` and a sentence-final particle `nee`.³

To explain this, Yamada (2019c) proposes that the head of ΣP (or NegP) and the head of cP enter into agreement via the AH feature, analyzing `-mas` as the reflex of the features present in ΣP, as in (6)b.⁴

³ To be more precise, `-mas` is pronounced in a position between an aspectual marker and negation marker:

(i) Mitome-rare-te i{-mas-en desi-ta}ka nee?
 recognize-PASS-CV PRG-AH-NEG COP.AH-PST Q SFP
 ‘Was (it) not being recognized?’

⁴ Two comments are in order. First, some may wish to propose a new functional projection in place of Σ, but the subsequent discussion does not hinge on the choice of a functional projection, as long as it is located somewhere between V and T. Second, in (6)b, an interpretable feature is in a higher c-commanding probe, and the uninterpretable feature
(6) a. Korean: \[\mathrm{EP} \rightarrow \mathrm{TP} \rightarrow [\mathrm{TP} \rightarrow [\mathrm{VP} \rightarrow [\mathrm{VP} \rightarrow \Sigma] \mathrm{T}] \rightarrow \mathrm{c} \] \\
\[\downarrow \]
\[\text{supnita} \]

\[\begin{array}{c}
\text{AGREE} \\
\mathrm{mas} \quad \text{[Neg: -]} \quad [\text{AH}: +] \\
\mathrm{mas-en} \quad \text{[Neg: +]} \quad [\text{AH}: +]
\end{array} \]

da. Japanese: \[\mathrm{EP} \rightarrow \mathrm{TP} \rightarrow [\mathrm{TP} \rightarrow [\mathrm{VP} \rightarrow [\mathrm{VP} \rightarrow \Sigma] \mathrm{T}] \rightarrow \mathrm{c} \] \\
\[\downarrow \]

\[\begin{array}{c}
\text{mas} \quad \text{[Neg: -]} \quad [\text{AH}: +] \\
\text{mas-en} \quad \text{[Neg: +]} \quad [\text{AH}: +]
\end{array} \]

Nouns and nominal adjectives. When an AH marker is used with nominal and adjectival predicates, another AH marker des- is utilized instead of -mas:

(7) \[\text{Alex-ga (gakusya/siawase) des-u.} \]
\[\text{Alex-NOM scholar/happy AH-PRS} \]
\[\text{‘Alex is a scholar/happy.’ (noun/nominal adjective)} \]

To better understand this, however, we need to understand the system of (i) the copula construction and (ii) classes of adjectives.

Japanese has two types of copulas (Nishiyama 1997; 1999): the predicative copula and the dummy copula. Let us see the PREDICATIVE COPULA, first. Although no overt copula is manifested in English small clauses (= (8)), Japanese obligatorily pronounces a copula even in a non-tense environment (= (9)), and this is called the predicative copula (I use PRED for the gloss).

(8) \[\text{Bernie consider [Alex smart].} \]

(9) a. \[\text{Bernie-ga Alex-o (gakusya/siawase) ni si-ta.} \]
\[\text{Bernie-NOM Alex-ACC scholar/happy PRED do-PST} \]
\[\text{‘Bernie made Alex a scholar/happy.’} \]

b. \[\text{Bernie-ga [Alex-o utukusi ku] si-ta.} \]
\[\text{Bernie-NOM Alex-ACC beautiful PRED do-PST} \]
\[\text{‘Bernie made Alex beautiful.’} \]

The predicative copula is pronounced either \textit{ni} or \textit{ku}. This choice is solely dependent on the category of the preceding element; a noun always takes \textit{ni}, but adjectives are split into two types: (i) the one that takes \textit{ni} is called the NOMINAL ADJECTIVE, (ii) while the one with \textit{ku} is the CANONICAL ADJECTIVE.

is located in a lower projection in Σ, which is an assumption different from that in Chomsky (2000; 2001). However, in later studies, the valuation and interpretability are considered two independent properties (Pesetsky & Torrego 2007). Under this view, the honorific feature in Σ is unvalued when externally-merged. Alternatively, one can assume that an Agr-node with a feature is post-syntactically introduced when c-commanded by a triggering feature (Kramer 2009; 2010; Norris 2015; Baier 2015). The analysis of Yamada (2019c) in (6)b adopts the latter strategy.
In the affirmative, tensed-environment, *ni* and *ku* are pronounced *de* and *ku* respectively:

(10) a. Alex-ga {gakusya/siawase} de at-ta.
 Alex-NOM scholar/happy PRED COP-PST
 ‘Alex was a scholar/happy.’ (noun/nominal adjective)

 b. ?Alex-ga utukusi ku at-ta.
 Alex-NOM beautiful PRED COP-PST
 ‘Alex was beautiful.’ (canonical adjective)

Furthermore, they can be optionally contracted with the following element *ar-* (*at-* is its allomorph) to be pronounced *dat-* and *kat-* respectively:

(11) a. Alex-ga {gakusya/siawase} dat-ta.
 Alex-NOM scholar/happy PRED.COP-PST
 ‘Alex was a scholar.’

 b. Alex-ga utukusi kat-ta.
 Alex-NOM beautiful PRED.COP-PST
 ‘Alex was beautiful.’

Note that this contraction is only permitted when the two elements are adjacent. When a focus particle is attached to the PredP, no contraction is triggered:

(12) a. Alex-ga [(gakusya/siawase) de]-wa at-ta.
 Alex-NOM scholar/happy PRED-FOC COP-PST
 ‘It is true that Alex was a scholar/happy.’

Although non-contracted examples of *ku* are rarer (when compared with *de*) — this is why I put a question mark in (10)b — there are few cases where the contraction is unaccepted. First, with *beki* ‘should,’ the non-contracted form is obligatory:

(i) Hana-ga utukusi {ku ar/"kar"}-u beki da.
 flower-NOM beautiful PRED COP/PRED.COP-u should COP
 ‘Flowers should be beautiful.’

As in (ii), the *-u* preceded by a non-contracted form does not alternate with *-ta*. Thus, it is likely that the contraction is sensitive to the position where the *ar*-support takes place (i.e., whether it is in T or not).

(ii) *Hana-ga utukusi {ku at/kat}-ta beki da.
 flower-NOM beautiful PRED COP/PRED.COP-u should COP
 ‘Flowers should have been beautiful (intended).’

Second, the contraction is prohibited with *-mas-en:

(iii) Hana-ga utukusi (ku ari/"kari")-mas-en.
 flower-NOM beautiful PRED COP/PRED.COP.AH-NEG
 ‘Flowers are not beautiful.’
b. Alex-ga [utukusi ku]-wa at-ta.
 Alex-NOM beautiful PRED-FOC COP-PST
 ‘It is true that Alex was beautiful.’

The second type of copula is the DUMMY COPULA. It is the element with which the predicative copula is fused. As the name suggests, it is used when a suffix needs morphological support, just as the English do-support. Without ar-, the sentences are ungrammatical:

(13) a. *Alex-ga {gakusya/siawase} de -ta.
 Alex-NOM scholar/happy PRED -PST
 Alex was a scholar/happy (intended).'

b. *Alex-ga utukusi k -ta.
 Alex-NOM beautiful PRED -PST
 ‘Alex was beautiful (intended).’

The negation marker also triggers a dummy element, again just like in English (e.g., I *(do)-ed not know):

(14) a. Alex-wa hasit-ta.
 Alex-TOP run-PST
 ‘Alex ran.’

b. Alex-wa hasir-anak *(at)-ta.
 Alex-TOP run-NEG COP-PST
 ‘Alex did not run.’

Having understood the basics of Japanese copular sentences, let us now turn to the AH system in the affirmative copular sentence. In the polite sentence, the head amalgam dat-in (11) is replaced by des- (desi is its phonologically-conditioned allomorph):

(15) Alex-ga {gakusya/siawase} {desi/*masi}-ta.
 Alex-NOM scholar/happy PRED.COP.AH-PST
 Alex was a scholar/happy.’ (noun/nominal adjective)

One cannot use -mas in this copula position. Conversely, des- cannot be placed where -mas is supposed to appear. They are, thus, in complementary distribution.

Canonical adjectives. What becomes crucial in the subsequent discussion is that neither -mas nor des- is permitted with a canonical adjective:

(16) a. *Alex-ga [utukusi ku]-masi-ta.
 Alex-NOM beautiful PRED-AH-PST

b. *Alex-ga utukusi desi-ta.
 Alex-NOM beautiful PRED.COP.AH-PST
 ‘Alex was beautiful (intended).’
First, -mas cannot be used, because it is not a copula. Second, des- is illicit, because it is the replacement of dat- but not of kat-. Therefore, the AH meaning fails to be expressed with a canonical adjective: the AH system in Grammar 1 is ‘incomplete.’

A natural question to be addressed is how people convey the intended meaning. The aforementioned survey by Kawaguchi (2014) reveals that up until the 1970s, grammarians recommended the following construction to meet the demand:

(17) Alex-ga utukusy-uu gozai-masi-ta.
 Alex-NOM beautiful-ly exist.AHU-AH-PST
 ‘Alex was beautiful (lit., Alex existed in a beautiful manner).’

Here, the canonical adjective utukusi ‘beautiful’ is converted into the adverb utukusy-uu ‘beautiful-ly,’ accompanied by a verb of existence: because there is a verb, -mas can be attached. However, as its idiosyncratic property, this verb gozar- (gozai is its allomorph) enhances the politeness level already encoded by -mas (hence it is called an AH UPGRADER, AHU; Yamada 2019c; Ikawa & Yamada 2022); the politeness level of (17) is higher than the intended level (i.e., that of (15)). In the strictest sense, this construction is, thus, not a genuine alternative; for this reason, an asterisk is placed in the bottom left corner of (4).

2.1.2 Negative sentences

Verbs. When the sentence is negated, the AH marking exhibits different patterns depending on the tense. When a verb phrase is used with the present tense, -mas is followed by the negation marker -en:6

(18) a. Alex-wa hasira-nai ka nee?
 Alex-TOP run-NEG Q SFP
 ‘Does Alex not run?’ (plain)

b. Alex-wa hasiri-{mas/*des}-en ka nee?
 Alex-TOP run-AH-NEG Q SFP
 ‘Does Alex not run?’ (polite)

In the past tense, the sentence is slightly more complex because of the dummy copula. Earlier, we saw that the negation marker triggers the ar-support. In a polite sentence, the dummy copula must be replaced by des-, although the AH meaning is already encoded by -mas.9

6 For gozar-, see Section 2.3.3.1.
7 As for nouns and nominal adjectives, gozai-mas can also be used to encode the highest level of politeness; hence, three honorific levels are clearly identified. Based on this observation, Mikami (1959 [2002]: 157) convincingly argues that the canonical adjective lacks the intermediate polite meaning.
8 When the negation marker is adjacent to -mas, -nak (-nai is its allomorph) changes its from to -en (Yamada 2019c).
9 In contrast, such an ar-support is not obtained with a present tense marker. The so-called present tense marker -u
(19) a. Alex-ga hasiri-masi-ta.
 Alex-NOM run-AH-PST
 'Alex ran.'

 Alex-NOM run-AH-NEG COP-AH-PST
 'Alex did not run.'

Despite the multiplicity of AH markers, the politeness level of (19)b is no higher than that of (19) a. Hence, unlike the previous des- 'PRED.COP.AH,' this des- ‘COP.AH’ is considered a realization of an uninterpretable honorific feature introduced only for morphosyntactic reasons, not for semantic purposes, just as the gender feature spreads out in the nominal in well-studied languages (e.g., lg casq blancq). For presentational purposes, I call it des- (concord) ‘COP.AH,’ and the one in an affirmative sentence des- (low) ‘PRED.COP.AH.’

Nouns and nominal/canonical adjectives. Below are examples of a plain form with nonverbal-predicates in a past-tense, negative environment:

(20) a. Alex-ga {gakusya/siawase} de-wa nak-at-ta.
 Alex-NOM scholar/happy PRED-FOC NEG-COP-PST
 'Alex was not a scholar/happy.'

b. Alex-ga utukusi ku(-wa) nak-at-ta.
 Alex-NOM beautiful PRED-FOC NEG-COP-PST
 'Alex was not beautiful.'

Notice that de/ku and ar- are no longer adjacent, so neither dat- nor des- is available. If the intended meanings are conveyed in a polite form, -mas is used with the verb ar-, as in (21). Here, too, des- (concord) is obligatory:

(21) a. Alex-wa {gakusya/siawase} de-wa *(ari)-mas-en desi-ta.
 Alex-TOP scholar/happy PRED-FOC be-AH-NEG COP-AH-PST
 'Alex was not a scholar/happy.'

b. Alex-wa utukusi ku(-wa) *(ari)-mas-en desi-ta.
 Alex-TOP beautiful PRED-FOC be-AH-NEG COP-AH-PST
 'Alex was not beautiful.'

does not seem to be a genuine tense suffix, but it is more reasonable to see it as a postsyntactically inserted vowel (Yamada 2019a; 2020). By seeing that the stranded affix filter is only applicable to the suffix present in the narrow syntax, we can explain the absence of the ar-support in (18).

Technical analysis of how it concords with -mas does not affect the subsequent discussions (for an attempt at a detailed analysis, see Yamada 2019c; 2020); for our purposes, it suffices to state that there is a concord between the two positions.

In most cases, a focus particle -wa in inserted to mark the scope of the negation.
Unlike the past tense suffix, the present tense does not require an ar-support. Thus, the des(i)- is also absent:

(22)
a. Alex-wa (gakusya/siawase) de-wa *(ar)-mas-en.
 Alex-TOP scholar/happy PRED-FOC be-AH-NEG
 ‘Alex was not a scholar/happy.’
b. Alex-wa utukusi ku(\-wa) *(ar)-mas-en.
 Alex-TOP beautiful PRED-FOC be-AH-NEG
 ‘Alex was not beautiful.’

2.2 Grammar 2

Grammar 1 has still been used even by the latest/youngest Japanese native speakers. But in the 20th century, a new grammar system also emerged originally starting from a colloquial register, and started competing with the old system. In this new system, a sentence like (23) can be felicitously generated, enabling a canonical adjective to be used with des- *(u is considered an epenthetic vowel):

(23)
 [[__ Alex-ga utukusi k-at-ta] (des/*mas)-u].
 Alex-NOM beautiful PRED.COP-PST AH-u
 ‘Alex was beautiful.’

There are several reasons for treating the new variant differently from des- (low/concord). First, the des- in (23) does not appear in the expected dummy copula position; it is located after the past tense marker (clause periphery). Notice also that, unlike in (16)b, the predicative copula in (23) remains as kat-, not des-.

Second, the new des- does not alternate with de ar-/dat-. Compare (23) with (24):

(24)
 [[__ Alex-ga utukusi k-at-ta] (*{de ar-u/da})].
 Alex-NOM beautiful PRED-COP-PST PRED COPY-PRS/COP
 ‘Alex was beautiful.’

Third, it is well-known that clauses differ in size (Minami 1974), and the new des- cannot be distributed in what is considered to be a reduced clause. For example, while des- (low) can be present in te- and tara-clauses (= (25)a and (26)a), the des- in (23) is completely ungrammatical when embedded, as demonstrated in (25)b and (26)b, suggesting the need to treat it differently from des- (low).

12 Nowadays, some (young) people use Grammar 2 even in a formal context, and the boundary is quite complex.
13 This also applies to des- (concord):

(i)
 *Alex-wa utukusi ku-wa ar-mas-en (de at/dat)-ta.
 Alex-TOP beautiful PRED-FOC COP-AH-NEG PRED COP/COP-PST
 ‘Alex was not beautiful (intended).’
(25) a. Alex-wa [gakusya desi-te], amerika-ni ryuugaku si-tei-masi-ta.
 Alex-TOP scholar PRED.COP.AH-CV America-to study abroad do-PROG-AH-PST
 ‘Alex, being a scholar, studied abroad in the US.’

 b. *Alex-wa [utukusi k-at-ta desi-te], moderu-o si-tei-masi-ta.
 Alex-TOP beautiful PRED-COP-PST AH-CV everything know-PROG-AH-PST
 ‘Alex, having been beautiful, was a model (intended).’

(26) a. [Gakusya desi-tara] suzuki sensei-o syookai si-mas-yoo ka?
 scholar PRED.COP.AH-if Suzuki prof.-ACC introduce do-AH-shall Q
 ‘If (you are looking for) a scholar, shall I introduce Prof. Suzuki?’

 beautiful PRED-COP-PST AH-if dried flower-into make-PST may-AH-NEG
 ‘If (it) was beautiful, I would have made it into a dried flower (intended).’

Given these observations, I call this new variant desi- (high) ‘AH’ to distinguish it from the
 aforementioned uses of des- for presentational purposes.

2.2.1 Negative sentences

Now that a canonical adjective can be used with an AH marker (des- high), there seems to be
 no necessity for more change. Nonetheless, the expansion of the use of des- is seen in other
 environments in Grammar 2.

 As an alternative to the -mas + des- concord construction, people have started using des- (high),
 as shown below (Tanomura 1994; Noda 2004; Ozaki 2004; Kawaguchi 2014; Yamada 2019b; c;
 Ogawa et al. 2020):

(27) a. [_{tp} Alex-ga hasir-anak at-ta] des-u].
 Alex-NOM run-NEG COP-PST AH-u
 ‘Alex did not run.’

 b. [_{tp} Alex-ga {gakusya/siawase} de-wa nak-at-ta] des-u].
 Alex-NOM scholar/happy PRED-FOC NEG-COP-PST AH-u
 ‘Alex was not a scholar/happy.’

 c. [_{tp} Alex-ga utukusi ku(-wa) nak-at-ta] des-u].
 Alex-NOM beautiful PRED-FOC NEG-COP-PST AH-u
 ‘Alex was not beautiful.’

14 The sentences sound more natural when the nominative marker -ga is replaced by -wa, the focus particle. However,
 for expository purposes, the current paper uses a sentence with a nominative subject.
In all of these sentences, -mas is no longer present. Consequently, des- (concord) is suppressed. Instead, just like (23), the AH marker is found in the clause periphery. Clearly, they are distributed after the tense marker, and as shown below, they do not alternate with de ar-/dat-, and cannot be embedded in a te-clause or a tara-clause. For these reasons, I will also use des- (high) to refer to these instances.

(28) a. *[{TP Alex-ga gakusya de-wa nak-at-ta] de ar/dat-u].
 Alex-NOM scholar PRED-FOC NEG-COP-PST PRED COP/PRED.COP-PST-u
 ‘Alex was not a scholar (intended).’

 b. *[Alex-wa {gakusya de-wa nak-at-ta desi-te}, amerika-ni ryuugaku
 Alex-TOP scholar PRED-FOC NEG-COP-PST AH-te America-to study abroad
 do-PRG-AH-PST
 ‘Alex, not being a scholar, studied abroad in the US.’

The same holds for present-tense sentences:

(29) a. [{TP Alex-ga hasir-anai] des-u].
 Alex-NOM run-NEG AH-u
 ‘Alex does not run.’

 b. [{TP Alex-ga {gakusya/siawase} de-wa nai] des-u.]
 Alex-NOM scholar/happy PRED-FOC NEG AH-u
 ‘Alex is not a scholar/happy.’

 c. [{TP Alex-ga utukusi ku(-wa) nai] des-u].
 Alex-NOM beautiful PRED-FOC NEG AH-u
 ‘Alex is not beautiful.’

2.2.2 Affirmative sentences

In an affirmative sentence, the use of des- (high) is less common. Yet we can find the following real-use instances:

15 Some native speakers (especially people in older generations) may not like the examples in (27) through (31), because they sound too casual. But in younger generations, some speakers who do use (27), (28), (29), and (31) find (30) too colloquial to use, with a nuance of the speaker’s being jokey or deliberately cutesy/childish. A possible reason for this may have to do with the fact that a verb is the only part-of-speech that requires -mas, but not des-, in Grammar 1. The strong connection with -mas may have a negative ‘carry-over’ effect in Grammar 2, to the extent that people are less comfortable using a verb with des- particularly in formal situations, so they are limited in very casual registers. Marked as they are, it remains true that they are produced in a daily conversation, so following the literature (Ogawa et al. 2020), this paper takes the widest scope treating examples found in casual registers as also reflecting the mental grammar of contemporary Japanese native speakers.
(30) Verb
a. Moo tukare-ta des-u-ne.
 already get tired-PST AH-u-SFP
 ‘(We) already got tired.’16
b. Minasan-to onazi-yooni, […] watasi-mo ganbar-u des-u.
 you-with same-way I-also try to do my best-PRS AH-u
 ‘Like you, […] I will do my best.’ (Ogawa et al. 2020: 259)

(31) Noun/nominal adjective
a. [[Ii mise dat-ta] des-u].
 good restaurant PRED.COP-PST AH-u
 ‘(It) was a good restaurant.’ (noun)17
b. [Pan-wa [“kyarottopan”-toka suki dat-ta] des-u-ne].
 bread-TOP carrot bread-such as fond PRED.COP-PST AH-u-SFP
 ‘As for bread, I was fond of (bread) such as “carrot bread”.’ (nominal adjective)18

Note that as for the affirmative, present-tense sentence, the difference between the prescriptive form and new form is neutralized when it is preceded by a noun or nominal adjective; the following sentence is analytically ambiguous:19

(32) Noun/nominal adjective
Alex-wa {gakusya/siawase} des-u.
Alex-nom scholar/happy (PRED.COP.)AH-PRS/u
‘He is a scholar/happy.’

19 This is because of the ambiguous status of -u. In Grammar 1 (e.g., the sentence in (i)), the -u is analyzed as a non-past (present tense) marker, because it triggers an ar-support. In contrast, in Grammar 2 sentence like (ii), -u is considered a vowel inserted only for phonological purposes.

(i) Alex-ga gakusya de ar-u.
 Alex-NOM scholar PRED COP-PRS
 ‘Alex is a scholar.’

(ii) [[Ii mise dat-ta] des-u].
 good restaurant PRED.COP-PST AH-u
 ‘(It) was a good restaurant.’ (noun)

On the one hand, if -u is analyzed as a tense marker, the sentence in (32) is seen as an instance of des- (low). On the other hand, if it is seen as an epenthetic vowel, the same sentence can be seen as an instance of des- (high).
The table in (33) summarizes the observations so far. As previously mentioned, Grammar 1 is still permitted. So the case in point is not only an instance of diachronic change in that a new grammar system has evolved, but at the same time it is a case of synchronic competition of multiple grammars (aka Grammar Competition, Kroch 1995; Pintzuk 1999; 2002; Embick 2008). Gradualness of language change has been attributed to an individual’s having multiple grammars, the alternation of which is regulated by certain conditions. Roughly speaking, the alternation in question can be characterized as genre-conditioned multiple grammars: Grammar 1 is favored in a formal/prescriptive genre, whereas Grammar 2 is preferred in a colloquial/casual context (though genre is not the only factor, with some other intra- and extra-linguistic factors jointly affecting the choice between the old and new variant in a probabilistic manner, as we will see in Section 4.3). Our goal is to provide a theory explaining how Grammar 2 emerged — though limited to certain genres — and started competing the older system.

(33) Grammar 2

<table>
<thead>
<tr>
<th></th>
<th>affirmative</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRS</td>
<td>PST</td>
</tr>
<tr>
<td>verb</td>
<td>(30)b</td>
<td>(30)a</td>
</tr>
<tr>
<td>noun</td>
<td>(7)a/ (32)</td>
<td>(31)a</td>
</tr>
<tr>
<td>nominal</td>
<td>(7)b/ (32)</td>
<td>(31)b</td>
</tr>
<tr>
<td>canonical</td>
<td>(23)</td>
<td></td>
</tr>
<tr>
<td>adjective</td>
<td>(23)</td>
<td>(23)</td>
</tr>
</tbody>
</table>

2.3 Comments on possibly related constructions

A reviewer asks some questions about constructions that seem to be related. We will now turn to these before building our analysis in the subsequent sections.

2.3.1 The gozar-construction

When we discuss a gap in Grammar 1, it is mentioned that the gozai-mas-construction was recommended by renowned linguists, although the politeness level is higher than the intended level. However, some readers may wonder if gozar- could be used alone without -mas, as shown below:

(34) Alex-ga utukusyuu gozet-ta.
 Alex-NOM beautifully exist.AHU-PST
 ‘Alex was beautiful (lit., Alex existed in a beautiful manner).’
This kind of construction was indeed used in the past around in the Muromachi and Edo periods (Yuzawa 1982: 163–166, Kinsui 2011), but during the Edo period, the use of gozar- gradually disappeared, save for the gozai-mas-construction (Yuzawa 1954: 205, Sato 1990: 306), and by the time Grammar 1 was used (the early twentieth century), the construction in (34) did not compete with other AH constructions. Hence, the present paper does not examine this archaic expression any further.20

2.3.2 The no des-construction

One might also wonder if the new variant in (35)a is derived as a phonological reduction from the no des-construction, as shown in (35)b.

(35) a. Alex-ga utukusi i des-u.
 Alex-NOM beautiful PRED.PRS AH-PRS
 ‘Alex is beautiful.’

 b. Alex-ga utukusi i no des-u.
 Alex-NOM beautiful PRED.PRS COMP PRED.COP.AH-PRS
 ‘It is that Alex is beautiful.’

However, this analysis is difficult to maintain. First, if an (optional) erosion of no is possible, the sentence in (36)a should also be as accepted, contrary to the fact.

(36) a. Alex-ga utukusi i dat-ta.
 Alex-NOM beautiful PRED.PRS COP-PST
 ‘Alex was beautiful (intended).’

 b. Alex-ga utukusi i no dat-ta.
 Alex-NOM beautiful PRED.PRS COMP AH-PST
 ‘It was that Alex was beautiful.’

20 Looking at the CHJ, we can find some examples of the gozar-, even in the government-designed textbook published in 1947. This paper, however, maintains that the ‘gap’ did exist in Grammar 1, as has been proposed in the literature. First, the apparent counter-examples in CHJ turn out to be examples from sections designed to familiarize students with old Japanese cultures (e.g., to learn Kyoogen texts, which were written in early Edo period Japanese); hence, such examples are not representative of twentieth-century Japanese. Second, if gozar- had been used in the twentieth century, linguists should have mentioned as such, which is convincingly denied by the survey of Kawaguchi (2014). Finally, previous studies examining the history of gozar- have revealed that after it had obtained the use of an AH marking, it underwent several morphosyntactic/semantic changes in the Edo period, before eventually being only observed in the fossilized grammatical context (namely, the gozai-mas- construction). Of course, why the gozar-based system became obsolete is another important question. However, I leave this issue to future research, because the change took place during a different historical period.
Second, if it is a phonological erosion (at PF), the semantics of the two sentences must be truth-conditionally equivalent. However, the two sentences are not interchangeable in meaning; only the no des-construction has a certain nuance that the prejacent is an explanation to the context (Kuno 1973), and/or that is has a focus reading (Hiraiwa & Ishihara 2002). So this construction will not be investigated any further in the subsequent discussion.

2.3.3 Uses with an epistemic marker

Unlike the two constructions above, there is one important construction more relevant to the discussion of the development of Grammar 2 — a sentence with an epistemic marker. Independently of, and prior to, the transition of the AH system, the system of epistemic markers had undergone a change (Nakamura 1948: 156–170, Ogawa et al. 2020: 252).

In Early Middle Japanese, -amu (the old form of -oo) was used as an epistemic suffix, and it appeared in a position directly adjacent to a verb phrase, as shown in (37)a.

(37) Verb
 a. [[vP Hasir] -amu].
 run EPI
 b. [[[vP Hasir-u] de] ar-oo].
 run-u de COP-EPI

'(He) will run'

However, it could not be directly preceded by a noun or nominal adjective (= (38)a); instead, a predicative and dummy copula were needed (= (38)b).

(i) (Zyookyoo-wa) [Alex-ga utukusi i no] des-u.
 situation-TOP Alex-NOM beautiful PRED.PRS COMP PRED.COP.AH-PRS
 'It (= the situation) is that Alex is beautiful.'

This is consistent with several observations. First, no clauses can receive a case marker, just like a noun:

(ii) Watasi-wa [Alex-ga utukusi i no]-o sit-tet-u.
 I-TOP Alex-NOM beautiful PRED.PRS COMP-ACC KNOW-PRF-PRS
 'I know that Alex is beautiful.'

Second, the preceding element takes the adnominal form (the form for a relative clause):

(iii) (Zyookyoo-wa) [Alex-ga gakusya (na/*da) no] des-u.
 situation-TOP Alex-NOM beautiful PRED.COP.ADN/PRED.COP COMP PRED.COP.AH-PRS
 'It (= the situation) is that Alex is beautiful.'

Third, notice that the English translation is given ‘it is [that …].’ Since the subordinate marker that introduces a clause appearing in an argument position, it is no wonder why the corresponding no introduces as a noun clause.

21 A reviewer asks how the sentence in (35)b is generated in Grammar 1. One possible analysis is that the no is a nominalizer/complementizer making a nominal clause:

(i) (Zyookyoo-wa) [Alex-ga utukusi i no] des-u.
 situation-TOP Alex-NOM beautiful PRED.PRS COMP PRED.COP.AH-PRS
 'It (= the situation) is that Alex is beautiful.'

This is consistent with several observations. First, no clauses can receive a case marker, just like a noun:

(ii) Watasi-wa [Alex-ga utukusi i no]-o sit-tet-u.
 I-TOP Alex-NOM beautiful PRED.PRS COMP-ACC KNOW-PRF-PRS
 'I know that Alex is beautiful.'

Second, the preceding element takes the adnominal form (the form for a relative clause):

(iii) (Zyookyoo-wa) [Alex-ga gakusya (na/*da) no] des-u.
 situation-TOP Alex-NOM beautiful PRED.COP.ADN/PRED.COP COMP PRED.COP.AH-PRS
 'It (= the situation) is that Alex is beautiful.'

Third, notice that the English translation is given ‘it is [that …].’ Since the subordinate marker that introduces a clause appearing in an argument position, it is no wonder why the corresponding no introduces as a noun clause.
Presumably as an extension from (38)b, the verb came to be able to take an epistemic suffix with *de* and *ar-*, as in (37)b, making (37)a obsolete in contemporary Japanese. The spread of this spurious *de* started from this verbal construction, and after a while, the same shift happened to the canonical adjective:

(39) Canonical adjective

(a) ```
[pred] Utukusi i ar{-amu/oo}.
```
‘(He) will be beautiful’

(b) ```
[pred] Utukusi  i  de  ar{-oo}.
```
‘(He) will be beautiful’

Although (39)a used to be the right form for a canonical adjective, it became obsolete, and alternatively, (39)b has become the standard form. As before, *de* and *ar-* can contract to *dat-* in the plain sentence (= (40)a); in the polite sentence, this *dat-* is replaced by *des-* (= (40)b).

(40) a. ```
[pred] Utukusi i dar{-oo}.
```
‘(He) will be beautiful’

b. ```
[pred] Utukusi  i  des-yoo.
```
‘(He) will be beautiful’

If so, one might wonder if this *des-* is *des-* (low). Certainly, it alternates with *de* ar-/dar-.

However, it coexists with a predicative copula. Hence, the *de* in (39)b cannot be treated as a genuine predicative copula.

One might also wonder if this *-oo* is pronounced at T just like the English auxiliary *will*. However, unlike in English, *-oo* is pronounced separately from — and, thus, can coexist with — the tense marker:

22 In contemporary Japanese, the form in (37)a can no longer encode an epistemic meaning, but nonetheless, the form *hasir-oo* has continued to be used to encode the volitionality of the subject; to put it another way, in the old days, the form in (37)a was ambiguous between the volitional reading and epistemic reading, just like the English work *will*.

23 The *y* in *yoo* is not an inserted consonant. I use the Cabinet-ordered romanization system, in which *[j]* is expressed as a combination of *s* and *y* as in *des-yoo*. Under the IPA system, however, it is expressed as *[des-ɔː]* > *[deʃoː]*. So what looks like an allomorph of *oo* is in fact a phonological change in *des*.
Therefore, -oo must not be treated as an element in T. Rather, it should be seen as an instance of another sentence-final element. We will come back to this example in Section 3.2 when we examine the influence of (41) on the development of des- (high).

3 Analysis

The emergence of des- (high) seems to have been caused by the need to fill a gap in the AH-system. However, the true question is why and how. The fact that there is a gap does not fully explain why des- (high) was recruited instead of other possible constructions, and how this change started. After presenting my morphosyntactic analysis of Grammars 1 and 2, this section proposes a hypothesis answering the questions by proposing that the change is driven by abductive reasoning in pursuit of obtaining default vocabulary insertion rules.

3.1 Grammar 1

First, consider des- (low) in Grammar 1. As previously mentioned, Yamada (2019c) proposes that -mas is obtained as a result of an AH-agreement between a speech act projection and a lower head Σ (= (6)b). Advancing this view, we propose that des- (low) is obtained as a result of the agreement between a speech act projection and another lower head Pred.

3.1.1 With a noun or a nominal adjective

To instantiate the main idea, consider the sentences below.

(42) a. Alex-ga gakusya de at-ta.
 Alex-NOM scholar PRED COP.AH-PST

(43) Alex-ga gakusya desi-ta.
 Alex-NOM scholar PRED.COP.AH-PST

34 For representational purposes, I use Epi(stemic)P à la Cinque (1999) for presentational purposes, but the choice of this label does not affect the analysis of this paper.
Derivation of (42)a. Following the seminal work of Nishiyama (1997; 1999), who gives an elaborate theory of Japanese copular sentences, we assume that de is the head of PredP, and ar- is a dummy element. When this PredP analysis is combined with Performative Hypothesis, the structure in (44) is obtained (Portner et al. 2019).

(44) $$\begin{array}{c}
\text{cP} \\
\text{TP} \\
\text{PredP} \\
\text{NP} \\
\text{T} \\
\text{Pred} \\
\rightarrow \text{N}
\end{array}$$

Based on this structure, several postsyntactic modifications are applied. First, the stranded suffix T needs a dummy element. This problem is solved by the ar-support:

(45) $$\begin{array}{c}
| \text{cP} \ldots | \text{TP} \ldots | \text{PredP} \ldots | \text{NP} \ldots | \text{N} \ldots | \text{Pred} \ldots | \text{T} \text{ dummy} | \text{T} \text{ } | \ldots | \text{c} \\
\uparrow
\end{array}$$

With the vocabulary insertion rule in (46), we obtain the terminal nodes, as represented in (47) (= (42)a).

(46) a. Pred \leftrightarrow de
 b. T$_{[\text{pst}:s]}$ \leftrightarrow ta
 c. dummy \leftrightarrow ar

(47) $$\begin{array}{c}
| \text{cP} \ldots | \text{TP} \ldots | \text{PredP} \ldots | \text{NP} \ldots | \text{N} \ldots | \text{Pred} \ldots | \text{T} \text{ dummy} | \text{T} \text{ } | \ldots | \text{c} \\
\downarrow \text{de} \quad \downarrow \text{ar} \quad \text{-ta}
\end{array}$$

Derivation of (42)b. The probabilistic alternation between (42)a and (42)b is attributed to the optionality of morphological merger (Marantz 1984; Embick & Noyer 2001). When Pred and T are adjacent, Pred can optionally adjoin the T-node:

(48) $$\begin{array}{c}
| \text{cP} \ldots | \text{TP} \ldots | \text{PredP} \ldots | \text{NP} \ldots | \text{N} \ldots | \text{t}_j | \text{[Pred}_j \text{ dummy} \text{ T}] \ldots | \text{a} \text{ c} \\
\end{array}$$

The rules in (46), however, wrongly predict de at-ta for (48). To avoid this, an allomorphy rule is added, as in (49)b, providing the terminal nodes in (50) (= (42)b).

25 To be more precise, Nishiyama (1997; 1999) assumes that the dummy element is the head of VP (cf., Miyama 2011; Watanabe 2013), whereas in (45), the ar- is analyzed as a post-syntactically inserted supporting element. However, this difference does not make any significant differences to the subsequent discussions.
20

Derivation of (43). Pred enters into an agreement relation with the AH feature in c. The current paper leaves open the question of the timing regarding the morphological merger; the subsequent discussion will not be affected, regardless of whether the agreement takes place before the morphological merger (= (51)a) or not (= (51)b).

(51) a. \[\{cP \ldots \{TP \ldots \{PredP \ldots \{NP \ldots N \ldots \} \ldots t_i \} \ldots T \{Pred_i \{dummy\} \ldots \} \ldots c \} \]

\[\text{AGREE} \]

b. \[\{cP \ldots \{TP \ldots \{PredP \ldots \{NP \ldots N \ldots \} \ldots t_i \} \ldots T \{Pred_i \{ar\} \ldots \} \ldots c \} \]

\[\text{AGREE} \]

Finally, when the Pred has a positive honorific feature, Pred and the dummy element are fused into a single terminal node before vocabulary insertion (= (53)), and with the rules in (52), des is inserted, as shown in (54). With an epenthetic vowel i, (43) is derived.

26 Given that the pattern in the plain form is well-organized, we do not have motivation for analyzing dar and kar as a single fused form, and I assume that the fusion is applied when there is an honorific feature in Pred.

27 A reviewer asks what would happen if we dispensed with the morphological merger, proposing (i)a or (i)b.

(i) a. \[\{cP \ldots \{TP \ldots \{PredP \ldots \{NP \ldots N \ldots \} \ldots t_i \} \ldots T \{dummy\} \ldots \} \ldots c \] \[d \quad es \quad ta \]

b. \[\{cP \ldots \{TP \ldots \{PredP \ldots \{NP \ldots N \ldots \} \ldots t_i \} \ldots T \{dummy\} \ldots \} \ldots c \] \[des \quad ta \]

Unfortunately, these analyses run into an empirical problem: a focus particle can be introduced between de and ar for the de ar-sentence, as in (ii)a, indicating that a focus particle can select a PredP. The structures in (i) predict (ii)b and (ii)c, contrary to the fact.

(ii) a. Alex-ga gakusya-de-wa ari-masi-ta.
 Alex-NOM scholar-PRED-FOC be-AH-PST

b. *Alex-ga gakusya-d-wa esi-ta.
 Alex-NOM scholar-PRED-FOC COP-PST

c. *Alex-ga gakusya-∅-wa desi-ta.
 Alex-NOM scholar-PRED-FOC COP-PST

‘It is true that Alex was a scholar.’
3.1.2 With a canonical adjective

Now consider the derivation of a canonical adjective:

(55) a. Alex-ga utukusi ku at-ta.
 Alex-NOM beautiful PRED COP-PST

b. Alex-ga utukusi kat-ta.
 Alex-NOM beautiful PRED.COP-PST

c. *Alex-ga utukusi dat-ta.
 Alex-NOM beautiful PRED.COP-PST

‘Alex was beautiful.

(56). *Alex-ga utukusi desi-ta.
 Alex-NOM beautiful PRED.COP.AH-PST

‘Alex was beautiful (intended).

Assuming the structure in (57), one might propose the rules in (58).

(57) \[cP \ldots [TP \ldots [PredP \ldots [NP \ldots N \ldots] \ldots ti_i] \ldots [\ T] \] \ldots c\]

(58) a. Pred \leftrightarrow de

b. Pred \leftrightarrow ku/[CA _]

c. Pred \leftrightarrow d/[_ dummy]

d. X_{[AIE+]} \leftrightarrow des/[_ T]

e. \ T_{[PST+]} \leftrightarrow ta

f. dummy \leftrightarrow ar

However, this analysis — while certainly explaining the sentence in (55)a — runs into a problem, because, as shown below, it wrongly predicts that the sentences in (55)c and (56) are both acceptable, contrary to the fact.
To obtain the correct form, we need to somehow remember what projection Pred is initially merged with, even after it morphologically merges with T. In Minimalist Program, c-selection has been treated as a special case of agreement (Chomsky 2000: 132, 138; Collins 2002; Adger 2010). Following this tradition, particularly the work of Adger (2010), we treat a selectional feature as a tuple of attribute and value, with the value being unsaturated, thus probing for the value of the goal (n.b. the adoption of Adger’s (2010) system is for purposes of illustration, and different agreement notations also do the job). At the time when Pred is externally-merged, as in (60), the unvalued selectional feature obtains its value from the category feature of the head of the projection with which it merges.30

Being saturated, the selectional feature is no longer active in future ‘syntactic’ operations. But it remains, and is taken into consideration at the time of ‘postsyntactic’ operations. Since Pred undergoes a morphological-merger, the feature is pied-piped to the sister position of the dummy element:30

(60) [PredP ... [CA ...] ... Pred]
 [Cat: (CA, 1)] [Cat: (Pred, 2)] [Sel: (CA, _)]

In Adger (2003), the c-selection is done via checking. However, the choice between checking and agreement is rather conceptual, and does not result in a significant change in the subsequent discussion.

For the ease of illustration, I adopt the bracket notation in place of the set notation. The number used in the value slot is intended to capture the scopal hierarchies (i.e., the Hierarchies of Projection, HoPs), and constrains the distribution of the features. For instance, (CA, 1) and (Pred, 2) ensure that Pred appears in a position higher than the CA in the structure (Adger 2010: 198).

For limited space, the current paper only presents examples of past-tense sentences. However, our analysis can explain the data in the present tense (e.g., de ar-u and des-u), if the following rule is added to the list in (62): T_{pre-j} $\leftrightarrow u$. A potential problem that has been acknowledged by the previous literature is the treatment of i that appears in the non-polite, present-tense canonical adjective, as shown below (Nishiyama 1997; 1999). Note that this is not a vowel harmony: even if the root does not end with i (e.g., omosiro ‘funny’), it is pronounced i.

(i) Alex-ga utukusi i.
 Alex-NOM beautiful i
 ‘Alex is beautiful.’

30 In Adger (2003), the c-selection is done via checking. However, the choice between checking and agreement is rather conceptual, and does not result in a significant change in the subsequent discussion.

30 For the ease of illustration, I adopt the bracket notation in place of the set notation. The number used in the value slot is intended to capture the scopal hierarchies (i.e., the Hierarchies of Projection, HoPs), and constrains the distribution of the features. For instance, (CA, 1) and (Pred, 2) ensure that Pred appears in a position higher than the CA in the structure (Adger 2010: 198).

30 For limited space, the current paper only presents examples of past-tense sentences. However, our analysis can explain the data in the present tense (e.g., de ar-u and des-u), if the following rule is added to the list in (62): T_{pre-j} $\leftrightarrow u$. A potential problem that has been acknowledged by the previous literature is the treatment of i that appears in the non-polite, present-tense canonical adjective, as shown below (Nishiyama 1997; 1999). Note that this is not a vowel harmony: even if the root does not end with i (e.g., omosiro ‘funny’), it is pronounced i.
(61) a. \[
\begin{array}{c}
[\text{CP} \ldots [\text{TP} \ldots [\text{PredP} \ldots [\text{NAP} \ldots \text{NA} \ldots] \ldots t_i] [T [\text{Pred}^{[\text{ASP}]} d_{\text{um}}.] T]] \ldots c] \\
\end{array}
\]

\[
\begin{array}{c}
d \quad \text{ar} \quad \text{ta} \\
\end{array}
\]

b. \[
\begin{array}{c}
[\text{CP} \ldots [\text{TP} \ldots [\text{PredP} \ldots [\text{CAP} \ldots \text{CA} \ldots] \ldots t_i] [T [\text{Pred}^{[\text{ASP}]} d_{\text{um}}.] T]] \ldots c] \\
\end{array}
\]

\[
\begin{array}{c}
k \quad \text{ar} \quad \text{ta} \\
\end{array}
\]

Then the vocabulary insertion rules in (62) and the fusion rule in (63) are utilized, which are sensitive to the difference between \([\text{Sel:}\langle \text{NA}, 1 \rangle]\) and \([\text{Sel:}\langle \text{CA}, 1 \rangle]\), hence resulting in different phonological exponents.\(^{31}\)

The status of this \(i\) can be analyzed in different ways. One can see it as an allomorph of \(u \ '\text{PRS.}'\) Under this view, it remains unclear why it does not trigger an \(ar\)-support, as in \(ku \ ar-u\). Nishiyama (1999) tries to answer this question by proposing that that “present tense does not require an overt form of the (dummy) copula (ibid.: 191–192).” This explanation raises a deeper question of why a dummy copula tends to disappear cross-linguistically, and why there is a split in Japanese between \(u\) and \(i\).

An alternative is to see it as an allomorph of \(k(u) \ '\text{PRED.}'\) By seeing \(k\) as the real morpheme and \(u\) as an epenthetic vowel, this line of thinking seems plausible with an additional rule such that \(k \rightarrow i\). Under this view, we assume a silent tense morpheme at \(T\), and the absence of a dummy copula is easily derived; since \(\emptyset\) is silent, it does not need substance to which it attaches. This analysis, too, is not without problems. For example, the choice of \(T \ (u \ and \ \emptyset)\) must be sensitive to the phrase to which Pred is merged with. However, \(T\) and \(CA/NA\) are not in a sister node relation, so we need to devise a mechanism as to how this works.

The current paper does not have a good solution to the problem of this morpheme, either, leaving this issue to future research, but it is not likely that a treatment of this morpheme will substantially change our main analysis.

\(^{31}\) The sequence \(de \ ar-u\) can be contracted to \(da\), as shown below. So, one may wish to propose an additional fusion rule \(\langle [\text{Pred}^{\text{ASP}} d_{\text{um}}.] T_{\text{pr}-1} \rangle \rightarrow [\# \text{Pred}^{\text{ASP}} d_{\text{um}}.] T_{\text{pr}-1} \# \rangle\) and a vocabulary insertion rule \(\langle \text{Pred}_{\text{pr}-1} d_{\text{um}}. + \text{Pred}_{\text{pr}-1} \rightarrow d_{\text{um}}. \rangle\).

(i) Alex-ga gaku-sya \(\langle \text{de ar-u/da} \rangle\).
Alex-NOM scholar PRED COP-PRS/PRED.COP.PRS
‘Alex is a scholar.’

But this analysis is empirically challenged; this morpheme cannot be embedded in a relative clause, as in (ii) although it can be embedded in a quotative and an interrogative clause (= (iii) and (iv)).

(ii) [Alex-ga gaku-sya \(\langle \text{de ar-u/da} \rangle\)] zizitu-o sit-teir-u.
Alex-NOM scholar PRED COP-PRS/PRED.COP.PRS fact-ACC know-PRS
‘I know the fact that Alex is a scholar.’

(iii) [Alex-ga gaku-sya \(\langle \text{de ar-u/da} \rangle\)]-to sit-teir-u.
Alex-NOM scholar PRED COP-PRS/PRED.COP.PRS-COMP know-PRS
‘I know that Alex is a scholar.’

(iv) [Alex-ga gaku-sya \(\langle \text{de ar-u/da} \rangle\) ka]-o sit-teir-u.
Alex-NOM scholar PRED COP-PRS/PRED.COP.PRS Q-ACC know-PRS
‘I know whether Alex is a scholar.’
With these, we can derive (42)a and (55)a, as follows:

\[
\begin{align*}
(62) & \quad \textbf{Pred}_{[\text{AH}: -]} \leftrightarrow \text{de} \\
& \quad \textbf{Pred}_{[\text{AH}: -]} \leftrightarrow \text{d/[_dummy]} \\
& \quad \textbf{Pred}_{[\text{Sel:CA, 1}], [\text{AH}: -]} \leftrightarrow \text{ku} \\
& \quad \textbf{Pred}_{[\text{Sel:CA, 1}], [\text{AH}: -]} \leftrightarrow \text{k/[_dummy]} \\
& \quad \textbf{X}_{[\text{AH}+: +]} \leftrightarrow \text{des/[_T]} \\
& \quad \textbf{T}_{[\text{PST}: +]} \leftrightarrow \text{ta} \\
& \quad \text{dummy} \leftrightarrow \text{ar}
\end{align*}
\]

\[(63) \quad \text{[Pred}_{[\text{AH}+: +]} \text{dummy}] \to \# \text{Pred}_{[\text{AH}+: +]} \text{dummy} \# \]

iff Pred bears [Sel: (N, 1)] or [Sel: (NA, 1)]

As for a nominal adjective (as well as a noun) with [AH : +], neither (62)a nor (62)b can be applied, so the sentence is ill-formed without a fusion (= (65)a). In contrast, it is grammatical once the terminal nodes are fused (= (65)b), because (62)e is available. As for a canonical adjective, however, the fusion cannot be applied, due to the categorical specification in (63); hence, a canonical adjective cannot be used with des (= (65)c).

\[
\begin{align*}
(64) & \quad \text{[\text{Cp} ... \text{TP} ... \text{PredP} ... \text{NAP} ... \text{NA} ...] \ldots \text{Pred}_{[\text{AH}+: +]}[\text{T dum. T}] \ldots \text{c]} \\
& \quad \left. \begin{array}{c}
\text{de} \\
\text{ar} \\
\text{ta}
\end{array} \right\} \text{[Sel: (NA, 1)]}
\end{align*}
\]

\[
\begin{align*}
& \quad \text{[\text{Cp} ... \text{TP} ... \text{PredP} ... \text{CAP} ... \text{CA} ...] \ldots \text{Pred}_{[\text{AH}+: +]}[\text{T dum. T}] \ldots \text{c]} \\
& \quad \left. \begin{array}{c}
\text{ku} \\
\text{ar} \\
\text{ta}
\end{array} \right\} \text{[Sel:CA, 1]}
\end{align*}
\]

Therefore, we must make the vocabulary insertion rule sensitive to the status of it being in a relative clause. Two analyses seem plausible. The first is to assume an agreement between C_{[Rel: +]} and T (or Pred), and use the rule in (vi). Another is to assume a further morphological merger, making the c and Pred, dummy, and T within the same terminal node when there is C_{[Rel: +]}; with the rule in (vi), this analysis works, as desired.

\[
\begin{align*}
(55) & \quad \text{[\text{Cp} ... \text{TP} ... \text{PredP} ... \text{NAP} ... \text{NA} ...] ... \text{t} \ldots \text{[Pred}_{[\text{AH}+: +]}\text{dum. T}] \ldots \text{c]} \\
& \quad \left. \begin{array}{c}
\text{*} \\
\text{ar} \\
\text{ta}
\end{array} \right\} \text{[Sel: (NA, 1)]}
\end{align*}
\]

Admittedly, the current paper does not have any further data to show which is better, leaving this problem to future research. However, in either way, the rules in (62) remain intact and the analysis of da does not affect analysis of the historical development of des-.
b. \[\begin{array}{c}
\text{[CP} \quad \text{[TP} \quad \text{[PredP} \quad \text{[NAP} \quad \text{NA} \ldots] \quad \text{t} \downarrow \text{[T} \quad \text{Pred}_{\text{AH}^+} \quad \text{dum.} \quad \text{T}] \quad \text{c}]}
\end{array} \]
\[
\begin{array}{c}
\text{des} \quad \text{ta}
\end{array}
\]

c. \[\begin{array}{c}
\text{[CP} \quad \text{[TP} \quad \text{[PredP} \quad \text{[CAP} \quad \text{CA} \ldots] \quad \text{t} \downarrow \text{[T} \quad \text{Pred}_{\text{AH}^+} \quad \text{dum.} \quad \text{T}] \quad \text{c}]}
\end{array} \]
\[
\begin{array}{c}
* \quad \text{ar} \quad \text{ta}
\end{array}
\]

Finally, when the morphological-merger does not take place, no well-formed sentence is obtained, because (62)a and (62)c are only applicable to a non-AH Pred:

\[
\begin{array}{c}
\text{[CP} \quad \text{[TP} \quad \text{[PredP} \quad \text{[NAP} \quad \text{NA} \ldots] \quad \text{Pred}_{\text{AH}^+} \quad \text{dum.} \quad \text{T}] \quad \text{c}]}
\end{array}
\]

\[
\begin{array}{c}
* \quad \text{ar} \quad \text{ta}
\end{array}
\]

3.1.3 With a verb and an epistemic marker

Let us complete the list of the rules, by adding a few more for verbs, and epistemic markers.

Verbs. As mentioned earlier, the derivation of -mas is analyzed as a node-sprouting at Σ (Yamada 2019c) (i.e., creating an adjunct to Σ):

\[
\begin{array}{c}
\text{[CP} \quad \text{[TP} \quad \text{[PredP} \quad \text{[NAP} \quad \text{NA} \ldots] \quad \text{Pred}_{\text{AH}^+} \quad \text{dum.} \quad \text{T}] \quad \text{c}]}
\end{array}
\]

Having this in mind, one might wish to propose the rules in (68). However, the rule in (68)a runs into the problem of overgeneralization: not only does it generate (69)a, but it also allows (69)b, where PredP and \([\Sigma X_{\text{AH}^+} \Sigma]\) are in the sister node relation.

\[
\begin{array}{c}
\text{[CP} \quad \text{[TP} \quad \text{[PredP} \quad \text{[NAP} \quad \text{NA} \ldots] \quad \text{Pred}_{\text{AH}^+} \quad \text{dum.} \quad \text{T}] \quad \text{c}]}
\end{array}
\]

\[
\begin{array}{c}
* \quad \text{ar} \quad \text{ta}
\end{array}
\]

(68)

a. \[\text{X}_{\text{AH}^+} \leftrightarrow \text{mas} /[_\Sigma] \]

b. \[\Sigma_{\text{NEG}^+} \leftrightarrow \text{en} /[\Sigma X_{\text{AH}^+} -] \]

(69)

a. Alex-wa hasiri-mas-en.

Alex-TOP run-AH-u

‘Alex does not run.’

b. *Alex-wa {gakusya/siawase} (de) mas-en.

Alex-TOP scholar/happy PRED AH-u

‘Alex is not a scholar/happy (intended)’

In order to prevent the rule from being applied to sentences like (69)b, we need to impose a condition on Σ, as below:
This rule states that a node with an \textit{AH}-feature is realized as \textit{mas} if and only if it appears in the sister node of \(\Sigma \) which selects a verb.\footnote{In addition to a verb, some auxiliaries are followed by \textit{-mas}, but not by \textit{desi}. For example, consider the example in (i)b, where the passive auxiliary is attached to the verb.}

Note that the rule in (62)e cannot be applied, because the relevant terminal node is not the sister node of \(T \). Hence, the following sentence is ungrammatical.

\begin{itemize}
\item \(*\text{Alex-wa hasiri-desi-ta.} \)
\item \(\text{Alex-TOP run-AH-PST} \)
\item \('\text{Alex ran (intended).}'\)
\end{itemize}

Lastly, the following rules are needed for non-polite sentences, as in (73).

\begin{itemize}
\item \(\Sigma_{\text{NEG-\text{-}}{+}} \leftrightarrow \emptyset \)
\item \(\Sigma_{\text{NEG-\text{-}}{+}} \leftrightarrow \text{\textit{nai}} \)
\end{itemize}

\footnote{In addition to a verb, some auxiliaries are followed by \textit{-mas}, but not by \textit{desi}. For example, consider the example in (i)b, where the passive auxiliary is attached to the verb.}

These expressions differ from \(\text{(rare)}\)-type auxiliaries in three important ways. First, unlike \textit{-\text{rare}} in (i)b, they can be preceded not only by verbs, but also by adjectives and nouns; n.b., \textit{*siawase-rare} ‘happy-PASS.’ Second, etymologically, these expressions used to be nouns referring to a specific part of an arrow, and to a manner, respectively. Third, the copula preceding them takes the adnominal form \(\text{na} \) (the form for a relative clause), not \(\text{da} \), (see also Footnote 21). With all these considerations into account, \textit{hazu} and \textit{yoo} are morphosyntactically ‘nouns’ (or ‘nounish auxiliaries’) being modified by a relative clause, despite their semantics which would be expressed by auxiliaries in English. In other words, only ‘verbish’ auxiliaries are used with \textit{-mas}.

The rule in (70) has room for capturing this selectional restriction. Notice that the idea that categorical information can be further decomposed into more primitive features has been advocated since old days (e.g., Chomsky 1974; Stowell 1981: 21). If a primitive feature is shared by a verb and a verbal auxiliary, we can replace the “\textit{V}” in (70) with that feature, and correctly capturing the distributional property of \textit{-mas}. Although a full resolution awaits further work, it should be noted that at least as far as the rules for \textit{-mas} restricted to verbs and auxiliaries (i.e., something ‘verbish’), the subsequent discussion is unaffected.
(73) a. Alex-wa hasir-u.
Alex-TOP run-PRS
‘Alex runs.’

b. Alex-wa hasira-nai.
Alex-TOP run-NEG
‘Alex does not run.’

c. Alex-wa {gakusya/siawase} de ar-u.
Alex-TOP scholar/happy PRED COP-PRS
‘Alex is a scholar/happy.’

d. Alex-wa {gakusya/siawase} de nai.
Alex-TOP scholar/happy PRED NEG
‘Alex is not a scholar/happy.’

Epistemic markers. Recall from Section 2.3.3 that when used with an epistemic marker, des- is used independently of the past tense marker:

(74) [[ₚₚ Hasit-ta] des-oo].
 run-PST de.COP-EPI
 ‘It is probable that (he) ran.’

Just as Σ and Pred, Epi also receives a node-sprouting operation when c-commanded by c_{[AH+]} as in (75). By extending the list of rules as in (76), now (74) is correctly derived.

(75) [ₚₚ ... [EPⅢ ... {TP ... [VP ... V] ... T] [EPⅢ X_{[AH+]} Epi] ... c_{[AH+]}]
 ₜₐ des oo

(76) a. Pred_{[AH]} ⧫ de (Version 5 out of 5; Grammar 1)
b. Pred_{[AH]} ⧫ d/[_ dummy]
c. Pred_{[Sel(CA, 1)],[AH]} ⧫ ku
d. Pred_{[Sel(CA, 1)],[AH]} ⧫ k/[_ dummy]
e. Σ_{[NEG]} ⧫ Ø
f. Σ_{[NEG]} ⧫ nai
g. Σ_{[NEG]} ⧫ en /[_ X_{[AH+]} _]
h. X_{[AH+]} ⧫ des/[_ T]
i. X_{[AH+]} ⧫ des/[_ Epi]
j. X_{[AH+]} ⧫ mas /[_ Σ_{[Sel(v, 1)]}]
k. T_{[PST]} ⧫ ta
l. dummy ⧫ ar
3.2 Grammar 2

Now that our analysis for Grammar 1 has been proposed, let us turn to our central question: how did Grammar 2 emerge in an environment where Grammar 1 is the only available system, resulting in a variation within a single speaker? To consider this question, this paper inherits the following assumptions from the previous literature:

(77) a. The competing grammars model of (morphosyntactic) variation and change (Kroch 1995; Pintzuk 1999; Yang 2000; Fuss & Trips 2002; Embick 2008; Amaral & Roeper 2014; Simonenko & Carlier 2020; Truswell 2021)
 b. Reanalysis in language change as a result of learners’ abductive reasoning (Andersen 1973; Lightfoot 1979; 2006; Roberts 2007)

First, the competing grammars (or grammar competition) model refers to the view widely-held in diachronic syntacticians that a single individual speaker possesses (more than) two distinct grammatical options. Specifically, this theory rejects the view that syntactic change progresses by means of an abrupt transition in grammar, that is, the view that an individual during a language change must possess either the old grammar or the new grammar. This is because a sudden change cannot explain the fact that “during a period of syntactic change, variation may exist not only on the level of the language community, but also within the grammars of the individual speakers of that community (Pintzuk 1999: 6).” To account for such intra-speaker variations, the competing grammars model proposes that a single individual can have multiple grammars which alternate in some regulated fashion. Hence, the variation is attributed not to the heterogeneity within one single grammar: each grammar is considered stable, and only allows a single output (Single Output property, Embick 2008: 65). Rather, the gradualness in language change is analyzed as coming from the competition between competing grammars. With “the new option competing with the old one and gradually replacing it (Pintzuk 2002: 510),” language change proceeds in a continuous manner.

Embick (2008) develops this idea by fleshing out technical details within the framework of Distributed Morphology. For example, the variation between *dove* and *dived* is analyzed as a consequence of two competing grammars, as formulated below (Embick 2008: 66–67):

(78) *dove*-grammar
 a. $T_{[PST]} \leftrightarrow -t/\{\sqrt{\text{LEAVE}}, \sqrt{\text{BEND}}, \cdots\}$
 b. $T_{[PST]} \leftrightarrow -\emptyset/\{\sqrt{\text{HIT}}, \sqrt{\text{SING}}, \sqrt{\text{DIVE}}, \cdots\}$
 c. $T_{[PST]} \leftrightarrow -ed$

(79) *dived*-grammar
 a. $T_{[PST]} \leftrightarrow -t/\{\sqrt{\text{LEAVE}}, \sqrt{\text{BEND}}, \cdots\}$
b. \(T_{pST} \leftrightarrow -\varnothing/\{\sqrt{H_T}, \sqrt{SING}, \ldots\} \)

c. \(T_{pST} \leftrightarrow -ed \)

Second, this paper also assume a language acquisition-based explanation for language change (Paul 1920; Andersen 1973; Harris & Campbell 1995; Lightfoot 2006; Roberts 2007). Note that the grammar competition theory does not say anything about the way a new generation started having multiple grammars despite their parents’ not having the new grammar as their second option. In order to explain the emergence of a new grammar, the literature has hypothesized that abductive reasoning in language acquisition is the source of language change. Children exposed to language data make an inference about the set of rules that are supposed to generate the language output. However, there is no guarantee that the conclusion that they reach is identical to the rules of the grammar of their parents (Andersen 1973). The reasoning of this kind is called an abductive inference, and is considered responsible for language change.

The grammar competition model and the theory of acquisition-based language change are not in contradiction. The latter is concerned about the initial stage of language change when the new grammar emerges, and the former describes the situation after the new grammar has started being used. Adopting the two, this paper argues that the emergence of Grammar 2 (the grammar that produces des- (high)) is triggered by learners’ abductively de-categorizing or overgeneralizing a set of vocabulary insertion rules, and the traditional grammar and the new grammar started being in competition.

Notice that one important characteristic of the AH rules in (76) is that there is no default rule. Although these vocabulary insertion rules are empirically learnable, the lack of a default rule is not what is assumed in a textbook scenario (Halle & Marantz 1993). With this in mind, we can reasonably assume that the emergence of new grammar is motivated by children’s looking for a default rule; that is, in pursuit of a default vocabulary insertion rule, children abductively overgeneralized and acquired the rule in (80) via abductive reasoning (Roberts 2007) by synthesizing (76)h and (76)i.

\[(80)\quad X_{[AH+1]} \leftrightarrow des/[_ Y] \quad (\text{where } X \text{ and } Y \text{ are an arbitrary category})\]

When Y is c, the rule in (80) enables des to appear in a sister node of a sentence-final particle, as in (81).

\[(81)\quad a. \quad [_p[T_P \quad \text{Moo} \quad \text{tukare-ta}] \quad [_c \quad \text{desu-ne}]. \quad \text{already get tired-PST} \quad \text{AH-SFP}
\quad \text{‘(We) already got tired.’} \]

\[\quad b. \quad [_p[T_P \quad \text{Alex-ga} \quad \text{utuki} \quad \text{kat-ta}] \quad [_c \quad \text{desu-ne}]. \quad \text{Alex-NOM beautiful} \quad \text{PRED.COP-PST} \quad \text{AH-SFP}
\quad \text{‘Alex was beautiful.’} \]
This overgeneralization, in fact, kills two undesirable issues with one stone. In addition to providing a default vocabulary insertion rule, it can provide a sequence that better-fits the prediction of the Performative Hypothesis (Miyagawa 2017): since the AH-feature can now be directly pronounced at c, agreement between Pred/Σ and c is no longer needed. Consequently, a plain form is inserted in Pred and Σ (u is an epenthetic vowel): hence, (81)b is derived, as shown in (82).

(82) \[\text{[eP} \ldots [\text{TP} \ldots [\text{PredP} \ldots [\text{CAP} \ldots] \text{t}_i] [\text{T} [\text{Pred}_i^{\text{Sel:CA,1}}] \text{dum.}] \text{T}]] \text{[c c}_{\text{AH:+}} \text{c}] \]\[k \quad \text{ar ta des ne}\]

But (80) is not unmarked enough to be called a ‘genuine’ default rule. Exposed to sentences like (82), children are likely to make another overgeneralization by completely removing the distributional requirement, as in (83), enabling des(u) to appear in c without a sentence-final marker. This is how (84) (= (23)) is derived.

(83) \[\text{X}_{\text{AH:+}} \leftrightarrow \text{des}\]

(84) \[[\text{cf TP} \text{ Alex-ga utukusi kat-ta }] [\text{c desu}].\]

Alex-NOM beautiful PRED.COP-PST AH

‘Alex was beautiful.’

As a result of these abductive reasonings (a sequence of overgeneralizations), a new grammar emerged in the colloquial register, where the following rules are at our disposal:

(85) a. \[\text{Pred}_{\text{AH:–}} \leftrightarrow \text{de}\]
(b. \[\text{Pred}_{\text{AH:–}} \leftrightarrow d/[_ \text{dummy}]\]
(c. \[\text{Pred}_{\text{Sel:CA,1), \{\text{AH:–}\}}} \leftrightarrow \text{ku}\]
(d. \[\text{Pred}_{\text{Sel:CA,1), \{\text{AH:–}\}}} \leftrightarrow k/[_ \text{dummy}]\]
(e. \[\text{Σ}_{\text{NEG:–}} \leftrightarrow \emptyset\]
(f. \[\text{Σ}_{\text{NEG:+}} \leftrightarrow \text{nai}\]

\(^{33}\) This chain reduction could be a side-effect of pursuing an economical grammatical architecture (Chomsky 2005), and the diachronic loss of Agree has been discussed in the literature (Roberts 2007: 123, 193). However, the detailed mechanism needs further elaboration in future research: since agreement applies before vocabulary insertion, one cannot tell (in advance) how the AH-feature is pronounced at the time when Agree is ready to apply, which appears to cause an ordering paradox.

\(^{34}\) (80) predicts that when des- can also be distributed in positions other than T/c. This prediction is borne out by a phrase-final particle construction. Japanese can put a particle in every phrase-boundary. When politely used, des is used with each phrase-final particle:

(i) \[[\text{Watasi-wa desu-ne}] [\text{totemo desu-ne}] \text{tukare-ta desu-yo}.\]

Alex-TOP AH-PFP very AH-PFP get tired-PST AH-SFP

‘I got so tired.’

\(^{35}\) Considering the phrase-final particle (see Footnote 34), \[\text{X}_{\text{AH:+}}\] is more reasonable than \[c_{\text{AH:+}}\].
Lastly, why does the reanalysis cause a genre-sensitive grammar competition, instead of Grammar 2 abruptly replacing Grammar 1? Although this paper does not have a decisive answer, we can imagine a possible scenario: language acquisition starts in a casual register with children surrounded by caretakers, but as they grow up, children become more familiar with more prescriptive situations, for example, by entering school or by being exposed to adult conversations not necessarily directed to them. The social pressure to use the prescriptive grammar of earlier generation forces them to relearn a more restrictive rule, making the vocabulary insertion sensitive to the category, and they may end up using Grammar 1 for formal situations, as well as maintaining Grammar 2 for casual situations; hence, an individual has competing grammars relativized by registers. Thinking this way, we can answer why, in general, a new grammar is found in casual registers, not the other way round. Speakers who do not like casual registers may not accept using Grammar 2, because it sounds cutesy or jokey. Hence, there emerge an inter-speaker variation.

In sum, the emergence of Grammar 2 is boiled down to the problem of acquiring a set of new vocabulary insertion rules: (76)h and (76)i are replaced by (85)h. After Grammar 2 is established, Grammars 1 and 2 are in competition within a single speaker, just in the case of the dove/dived-alternation. As previously mentioned, the competition is subject to genres and registers in which an utterance is produced, but it is also affected by other factors. This point will be discussed in more detail in the next section.

4 Verifying the hypothesis

Under the proposed analysis, instances with a sentence-final particle are interpreted as providing a ‘catalytic’ environment facilitating the overgeneralization — because (80) is assumed as an intermediate step prior to (83). If so, it is predicted that there should be a stage where des- (high) is only permitted when there is a sentence-final particle. Even though we cannot access the I-language of speakers in the past, we can alternatively examine E-languages of the given period to see if there is any indication that the new use truly started out from such environments.

In fact, this prediction is partially verified by previous quantitative studies (Tanomura 1994; Noda 2004; Ozaki 2004; Kawaguchi 2014), which all show that the presence of a sentence-final

36 One could ask what other morphological rules are responsible for multiple grammars. Although this paper does not have a decisive answer, proposals for synchronic variations — such as probabilistic impoverishment rules (Nevins 2008; Nevins & Parrott 2010; Havenhill 2016) — are also other candidates that deserves our attention.
particle facilitates people’s producing of the new form. Yet the findings of the previous literature have some room for improvement.

First, the data examined in the literature are samples produced in the late twentieth and twenty-first centuries. The change from Grammar 1 to Grammar 2 is, however, estimated to take place in the early twentieth century (Kawaguchi 2014). To assess and verify our analysis in Section 3, we need to observe the data from much earlier days.

Second, the methods used in the literature do not utilize appropriate methods in the inferential statistics, preventing us from making an inference of the population beyond the samples accidentally at our disposal.

Third, without an elaborate statistical model, it is quite hard to tease an effect of one factor from the other. The use of a new form is quite likely to be simultaneously affected by multiple factors. For example, genres may affect the use as well as the use of -ne. We, thus, need to separate the influence of such extralinguistic factors from intralinguistic factors, so we can avoid making the wrong inference about the extent to which each factor contributes to the change in language.

For these reasons, we cannot conclude that our prediction is fully supported by the literature. However, by closely examining data from the first half of the twentieth century with elaborate statistical reasoning, this section now shows that our prediction is borne out.

4.1 Data

To look at examples from the first half of the twentieth century, the current paper examines the tokens in the CHJ (Corpus of Historical Japanese), one of the largest corpora covering the early twentieth century (National Institute for Japanese Language and Linguistics, version 2021.3; Last accessed Nov 24, 2021) — and investigates the alternation between the gozai-mas-form and the des-form, as shown below.

(86) a. \[cP\[TP Flatten] Alex-ga utukusyu\[gozai-masi-ta\] (ne)\].
 Alex-NOM beautifully exist.AHU-AH-PST SFP

b. \[cP\[TP Flatten] Alex-ga utukusi k-at-ta\[des-u(-ne)\]\].
 Alex-NOM beautiful PRED-COP-PST AH-u-SFP

‘Alex was beautiful.’

Accessed through Chunagon 2.5.2, the instances of (86) are obtained with the following query formulae:

(87) Prescriptive form: POS LIKE “Canonical Adjective%” AND FOLLOWING WORDS: LEXEME gozar- ON 1 WORDS FROM KEY AND FOLLOWING WORDS: LEXEME -mas ON 2 WORDS FROM KEY
New form:

a. POS LIKE “Canonical Adjective%” AND FOLLOWING WORDS: LEXEME des- ON 1 WORDS FROM KEY

b. POS LIKE “Canonical Adjective%” AND FOLLOWING WORDS: LEXEME -ta ON 1 WORDS FROM KEY AND FOLLOWING WORDS: LEXEME des- ON 2 WORDS FROM KEY

The results, however, contain unwanted examples, so we restrict our results to a subset. First, to avoid unintended homophonous instances from the earlier period, the current study only focuses on the observations from the Meiji era and onward (1868–1947). Second, since the annotation scheme of the CHJ classifies some negation markers as a canonical adjective, we exclude such spurious cases.37 Finally, to accurately make an inference on the random-effects, adjectives whose raw frequency is less than five are excluded; the remaining 1,031 instances (32 canonical adjectives) are used to estimate the parameters of the statistical models (see also Appendix A).

4.2 Statistical modeling

The diachronic development of the new form against the old prescriptive variant is reasonably modeled as a type of (i) logistic regression, one having (ii) a mixed-effects component combined with (iii) a time series structure.

37 Apparently nai and utukusī look similar regarding the conjugation (they both result in a sequence of k-at-ta), so one might wish to treat the sentence in (i)a as an instance of a canonical adjective in Grammar 2. But there is good reason to believe that this is not the case.

 Alex-NOM scholar PRED-FOC NEG COP-PST AH-u
 ‘Alex was not a scholar.’

b. [cP, [TP, [ΣP, [PredP, Alex-ga gakusya de]-wa ari-mas-en] desi-ta]].
 Alex-NOM scholar PRED-FOC COP-AH-NEG AH-PST
 ‘Alex was not a scholar.’

First, the corresponding sentence in Grammar 1 is given in (i)b, which is predicated by a noun. If one treated (i)a as a canonical adjective construction, it would follow that the sentence changes the sentence type depending on whether it is in Grammar 1 or not. Second, a canonical adjective takes the adverbial form when used in Grammar 1, as in (17), but nak in (i) does not. Note, however, that this does not mean that nai completely lacks the use of a canonical adjective. When used alone, that is, not being preceded by a PredP, it can be used as an adjective that means ‘absent.’ The nai in (i) is, thus, seen as a negation marker, and the one in (ii) as a canonical adjective. In the present study, I manually distinguished all the instances of nai, and exclude the former cases only; however, the frequency of such examples is less than five, and as a result, the remaining examples are ruled out based on an independent criterion.

 sugar-NOM absent PRED-COP-PST AH-u
 ‘There was no sugar (lit., sugar was absent).’

 sugar-NOM absently AHU.exist-AH-PST
 ‘There was no sugar (lit., sugar existed absently).’
In the linguistic literature and other fields, logistic regressions are used in modeling the choice of binary variants (Cedergren & Sankoff 1974; Levshina 2018; Yamada 2019b); in the current study, the following variables are used as fixed-effects independent variables.38

\[(89)\]

a. **Textbook** \(x_1\): Dummy variable taking the value of 1 iff the sample is taken from a textbook, and 0 otherwise.

b. **Literature** \(x_2\): Dummy variable taking the value of 1 iff the sample is taken from the literature, and 0 otherwise.

c. **Sentence-final particle** \(x_3\): Dummy variable taking the value of 1 iff the AH is used with a sentence-final particle, and 0 otherwise.

d. **Epistemic model suffix** \(x_4\): Dummy variable taking the value of 1 iff the AH is used with an epistemic modal suffix -oo, and 0 otherwise.

e. **Tense** \(x_5\): Dummy variable taking the value of 1 iff the AH is used in a past tense, and 0 otherwise.

The CHJ provides information about the genre from which each sentence is sampled: whether it is from a textbook, the literature (e.g., novels and essays), or the non-literature (the remaining genres).39 We create two dummy variables that indicate whether it is from a textbook and the literature \((x_1, x_2)\), making the remaining miscellaneous non-literature genre as the reference category. The variables in \((89)c\) through \((89)e\) are designed to capture the linguistic factors.

To test the predictions from the previous section, we use dummy variables for a sentence-final particle and epistemic marker. For example, if \(ne\) is pronounced in \((86)a\) or \((86)b\), \(x_3\) is coded 1, and 0 otherwise. Since the variants can take both present tense and past tense sentences, the tense variable is created to see the difference \((x_5)\).

Furthermore, the following random-effects variable is taken into consideration to scrutinize the idiosyncrasies among canonical adjectives (Levshina 2018; Yamada 2019b).

\[(90)\] **Idiosyncrasies among canonical adjectives** \(u_{01}, u_{02}, ..., u_{032}\): The idiosyncrasy of the \(j\)-th adjective, which is assumed to follow \(N(0, \tau^2)\).

In addition, to incorporate chronological information, the intercept is assigned a time-series structure (the State-Space Model; Shumway & Stoffer 2017; Durbin & Koopman 2001; Hagiwara

38 Each sentence of this corpus is provided with an annotation about the genre (textbooks, literature, and nonliterature) and the neighboring morphemes; based on this annotation scheme, the variables \(x_1, x_2, x_4, \text{ and } x_5\) are created. As for \(x_3\), the researcher manually annotated the information for all instances.

39 The textbook in this data set consists of government-designed textbooks on Japanese published from 1904 to 1947. Rather than explicitly teaching grammar rules, they comprise essays and writings for elementary school (the 1st to the sixth year) and the first year middle school students. Such censored writings are reasonably considered representing the prescriptive grammar at that time. The literature includes novels and essays written not for the purpose of promoting the prescriptive grammar, but for general purposes, reasonably seen as being sensitive to the use of day-to-day conversation. The non-literature genre consists of miscellaneous remaining categories (e.g., magazines).
2021, a.m.o). Here each intercept (the state) at time t is designed to depend only on the state at the previous time point (i.e., a random walk).

These structural components are combined to yield to the model provided in (91); $y_{ij}^{(t)}$ and $\pi_{ij}^{(t)}$, respectively, denote the dependent variable and parameter of the Bernoulli distribution of the i-th observation of the j-th adjective at time t; $y_{ij}^{(t)} = 1$ iff it takes the new variant, and 0 otherwise. $x_{1i}^{(t)}, x_{2i}^{(t)}, \ldots, x_{5i}^{(t)}$ are the values of the aforementioned independent variables at time t, and $\beta_1, \beta_2, \ldots, \beta_5$ are the corresponding effect sizes; $\beta_0^{(t)}$ is the intercept at t. u_{ij} ($j \in \{1, 2, \ldots, 32\}$) are the random effects representing the idiosyncrasies attributed to the j-th adjective.

\begin{align}
 y_{ij}^{(t)} & \sim \text{Bern}(\pi_{ij}^{(t)}) \\
 \pi_{ij}^{(t)} & \sim \text{logistic}(\eta_{ij}^{(t)}) \\
 \eta_{ij}^{(t)} & = \beta_0^{(t)} + \beta_1 x_{1i}^{(t)} + \beta_2 x_{2i}^{(t)} + \beta_3 x_{3i}^{(t)} + \beta_4 x_{4i}^{(t)} + \beta_5 x_{5i}^{(t)} + u_{ij} \\
 u_{ij} & \sim N(0, \tau^2) \\
 \beta_0^{(t)} & \sim N(\beta_0^{(t-1)}, \sigma^2)
\end{align}

The parameters are estimated using a Hamiltonian Monte Carlo algorithm with Stan (Stan Development Team 2020) on R (Gelman et al. 2013; R Core Team 2020). The model comparison is conducted by the R package \texttt{loo}, which provides us with an efficient approximate leave-one-out cross-validation information criterion (LOOIC), approximate standard errors for the estimated predictive errors, and the Watanabe-Akaike/widely applicable information criterion (WAIC). As a result, among the 2^5 (five fixed- and random-effects variables) = 32 constructed models, the model in which x_5 is unselected turns out the best model (see Appendix B). The subsequent discussion proceeds based on the results of the posterior distribution of the parameters of this model.

4.3 Results

Figure 1 summarizes the results of the estimated random-effect of each adjective (i.e., u_{ij}’s). Each bar represents the 95% and the 66% credible intervals of the random-effects u_{ij} (the white circles are the posterior medians and the number in the square brackets shows how many times the adjective is used with an AH form in the CHJ). Arigata ‘rare’ has the largest negative value, showing its strong preference for the prescriptive. However, the results are not surprising, because arigatoo gozai-mas is entrenched as a fixed expression meaning thank you, which should reasonably increase the relative ratio of the old variant. On the other hand, there are no adjectives with an extremely large positive value (a candidate leading to a change). The largest is unu ‘hot,’ but the posterior median is not as high as $+2$; although the upper limit of the 95% credible interval slightly goes beyond the commonly-assumed +3 threshold, the sample size for this adjective is as many as twelve instances, and with few more examples, it is expected that
the posterior range becomes smaller. It is, thus, reasonable to conclude that other than *arigata*,
the adjectives are almost randomly distributed with no significant idiosyncratic tendency in the
change in language.

F**igure 2** shows the posterior distribution of π^t from 1873 to 1947. For each year, the posterior
median (the solid line) and its 95% credible intervals (the shaded gray area) are drawn. The clear
trend of increasing values corroborates the findings of previous studies that the new variant is
gradually becoming popular in the first half of the twentieth century (Kawaguchi 2014).

F**igure 3** represents the results of the posterior distributions of the fixed-effects. β_1 and β_2
are text genres, which are associated with formality and other sociolinguistic factors. The textbook (β_1)
takes a large negative value, suggesting that examples in this genre are resistant to a change; given
that textbooks are written maximally respecting the prescriptive grammar, its preference for the old
variant seems reasonable. In contrast, the literature (β_2) (novels and essays) has a positive value,
suggesting examples in this genre prefer taking the new form. Since novels and essays reasonably
reflect everyday conversations to a greater degree, this tendency is also understandable.

40 One unexpected move is the ‘spike’ between 1897 and 1907, which may be attributed to the idiomsinscracies of the
sampled texts. It could, however, be caused by a social movement: in those days, some novelists started writing nov-
els in a colloquial register (aka the Genbun-Icchi movement, that is, the movement to unify the written and spoken
forms of a language; Yamamoto 1971, Kamei et al. 1965: 184, Nomura 2013: 269). However, to convincingly prove
the influence, finer-grained analysis would be necessary, which I would like to leave open to future research.

41 Although it does give us a natural interpretation, we need to be aware that the effect size of this variable is not as
strong as the others. Furthermore, in terms of LOOIC and WAIC, the second best model in the model selection lacks
this variable (see Figures 4 and 5). Thus too much emphasis on the difference would not be helpful; it is the least
important among the four fixed-effects factors.

\[\text{Figure 1: Posterior Distributions for the Random-Effects.}\]
Finally, let us turn to intralinguistic factors. First, tense (x_5) is excluded from the best model in (91), suggesting that when other factors are controlled, it is not useful in predicting the use of new variants: the spread of the new form is not sensitive to the present/past tense distinction. Second, the extreme large value for β_4 (an epistemic marker) stems from the fact that -oo is used with des- (high), not with -mas, as discussed in Section 2.3.3. Lastly, what is most relevant for our discussion is β_3 (a sentence-final particle). As clearly seen, it has a positive effect size, whose 95% credible intervals are far from 0, strongly supporting our prediction that a new form is facilitated in the structure of $[X_{\text{sfp}(c)}]$.43

Even when we include x_5 and refit the model, the posterior median of the past tense shows a slightly negative value but the 95% credible interval includes 0.

Due to the limitation of the corpus used for this study which does not annotate the speaker of each instance, intraspeaker variations cannot be detected. With a fully annotated-corpus, future research is expected to improve the model by including the variable to such variations.
5 Conclusion

Grammar 1 in Japanese is peculiar in that AH markers are not distributed in clause periphery. The language change, however, enabled people to additionally use Grammar 2 in colloquial register, where des- is pronounced in clause periphery, in agreement with the prediction of Performative Hypothesis. From the perspective of diachronic syntax, this change is seen as a microparametric change in the Agree operation (activity condition in the sense of Baker (2008)).

This paper further develops this direction from a morphosyntactic perspective, by proposing that what is analyzed as a microparametric change can be given a finer-grained explanation that it was driven by children’s abductive reasoning in pursuit of default vocabulary insertion rules, thus elucidating the role of morphological, postsyntactic operations in language change.

Several issues are left for future study. First, while this paper zooms in on the emergence of Grammar 2, it is as important to ask how Grammar 1 was established, attempting to answer why the grammar without a default rule was permitted in the early twentieth century to begin with. Second, as already mentioned, among the new variants, affirmative sentences with verbs and noun/nominal adjectives (= (30) and (31)) are relatively reluctant for the change. The current version of our theory does not explain such finer-grained tendency in use. An improvement is needed in this respect. Lastly, our analysis predicts that when a default vocabulary insertion rule is missing, an abductive reasoning is invited in any languages and beyond the AH-markers. Examination of other languages are to verify the direction developed in this current study.
Appendix A: Raw corpus analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>1868</th>
<th>1869</th>
<th>1870</th>
<th>1882</th>
<th>1883</th>
<th>1887</th>
<th>1889</th>
<th>1890</th>
<th>1892</th>
<th>1896</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old form</td>
<td>46</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>22</td>
<td>45</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>New form</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>1899</th>
<th>1902</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1910</th>
<th>1912</th>
<th>1913</th>
<th>1914</th>
<th>1920</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old form</td>
<td>22</td>
<td>8</td>
<td>11</td>
<td>148</td>
<td>2</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>New form</td>
<td>1</td>
<td>28</td>
<td>12</td>
<td>103</td>
<td>9</td>
<td>5</td>
<td>31</td>
<td>1</td>
<td>11</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>1922</th>
<th>1923</th>
<th>1925</th>
<th>1928</th>
<th>1936</th>
<th>1942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old form</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>27</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>New form</td>
<td>0</td>
<td>13</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 1: Raw frequencies of the two variants in each year.

<table>
<thead>
<tr>
<th>Adjective</th>
<th>1868</th>
<th>1869</th>
<th>1870</th>
<th>1882</th>
<th>1883</th>
<th>1887</th>
<th>1889</th>
<th>1890</th>
<th>1892</th>
<th>1896</th>
</tr>
</thead>
<tbody>
<tr>
<td>yorosi ‘fine’</td>
<td>175</td>
<td>155</td>
<td>79</td>
<td>32</td>
<td>26</td>
<td>23</td>
<td>22</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arigata ‘rare’</td>
<td>33</td>
<td>0</td>
<td>235</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yo ‘good’</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>waru ‘bad’</td>
<td>26</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uresi ‘happy’</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oo ‘many’</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>medeta ‘auspicious’</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>haya ‘early’</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Raw frequencies for each canonical adjective.
Appendix B: Statistical Modeling

Priors
This study uses the flat uniform prior, which is the default setting in Stan; for standard deviations, the lower limit is set to 0 so that they do not take negative values.

Convergence
By taking into account all combination of the variables, the present paper builds $2^5 = 32$ models. Under the condition of THIN = 15, ITER = 25000, and WARMUP = 18000, most models are converged under the commonly-used threshold $\hat{R} < 1.01$ (Vehtari et al. 2021).

Model Comparison
The performance of their models are assessed using Leave-One-Out Cross-Validation (LO-OIC) and the Watanabe–Akaike/Widely Applicable Information Criterion (WAIC), which are methods used in estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian model (Watanabe 2010; Vehtari et al. 2017), which are computed by loo package in R (Vehtari et al. 2016). The results are summarized in Figures 4 and 5; the models are ordered in increasing order. The barcode plots in the lower panel represent the variables included in the given model. For example, the leftmost models contain the variables from x_1 to x_4 lacking x_5. The model with the lowest LOOIC/WAIC is the best model, so this leftmost model is identified as the best model.

Figure 4: The LOOIC of each model.
Abbreviations
This paper uses the Leipzig glossing rules, with the following additions: ADN = adnomial form, AH = addressee-honorific, AHU = addressee-honorific upgrader, COP = dummy copula, CV = converb suffix, EPI = epistemic marker, FORM = formal, PRED = predicative copula, SFP = sentence-final particle

Funding information
This research has been supported by the JSPS Grant-in-Aid for Scientific Research (C) (#22K00507).

Acknowledgements
I am very grateful to the three anonymous reviewers for their critical remarks and insightful suggestions that significantly improved the paper. Additionally, Mahiro Yamada (Nunoue) has contributed with judgements, comments, clarification, and ideas. Last but not least, many thanks to the editor, Michael Yoshitaka Erlewine, for many useful comments and the smooth handling of the reviewing process. All errors are my own.

Competing interests
The author has no competing interests to declare.
References

Noda, Harumi. 2004. Hitei teineikei “masen” to “nai desu” no siyō ni kakawaru yōin: yōrei tyōsa to zyakunenso ankeito tyōsa ni motozuite [factors relating to the use of “-masen” and “-nai desu” as polite negative form — based on a usage investigation and on a questionnaire investigation of young generation speakers]. Mathematical Linguistics 24(5). 228–244.

