A A list of computations

This appendix contains all of the computations for before and after whose results are summarized in Tables 1 and 3 .

A. 1 Before

Summary of proposal: the complement of before must QR to some higher position for the adjunct tense to be non-contradictory/non-redundant. Here are the computations for each base position, landing site, and choice of adjunct past or future.

Figure 1: Schematic of proposal: complement of before raises to some higher position, e.g. PerfP

Assuming T's sister is evaluated wrt t, the perfect's sister is evaluated wrt t^{\prime}, and aspect's sister is evaluated wrt $t^{\prime \prime}$, the meanings of before for each adjunction position are in (1).
(1) a. Eventuality-level before: $\llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. Perfect-level before: $\llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}>t^{\prime}$

The complement of before interpreted with adjunct past in different positions is in (3).
(2) a. QR to AspP: $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\right.$ [PAST PFV K's brother get PhD at $\left.\left.e_{3}\right]\right] \rrbracket^{t^{\prime}, g}$ the τ s.t. $\exists i^{\prime}<t^{\prime} . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother get PhD at $\tau \wedge \tau=i^{\prime \prime}$
b. QR to PerfP: $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\right.$ [PAST PFV K's brother get PhD at $\left.\left.\left.e_{3}\right]\right]\right]^{t, g}$ the τ s.t. $\exists i^{\prime}<t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother get PhD at $\tau \wedge \tau=i^{\prime \prime}$
c. QR to TP: $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\right.$ [PAST PFV K's brother get PhD at $\left.\left.\left.e_{3}\right]\right]\right]^{u, g}$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother get PhD at $\tau \wedge \tau=i^{\prime \prime}$

The complement of before interpreted with adjunct future in different positions is in (3).
(3) a. QR to AspP: $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV K's brother get PhD at $\left.\left.\left.e_{3}\right]\right]\right]^{t^{\prime}, g}$ the τ s.t. $\exists i^{\prime}>t^{\prime} . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother get PhD at $\tau \wedge \tau=i^{\prime \prime}$
b. QR to PerfP: $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\right.$ [FUT PFV K's brother get PhD at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}$ the τ s.t. $\exists i^{\prime}>t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother get PhD at $\tau \wedge \tau=i^{\prime \prime}$
c. QR to TP: $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV K's brother get PhD at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}$ the τ s.t. $\exists i^{\prime}>u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother get PhD at $\tau \wedge \tau=i^{\prime \prime}$

The English sentences:
(4) If all goes according to plan, by the time she is 30 , Katie will have gotten her PhD before her brother did/does.

Putting them together, starting with adjunct past:
(5) E-level before+QR to AspP: *adjunct past
a. $\llbracket \lambda_{2} \mathrm{PFV}$ Katie get PhD before $e_{2} \rrbracket^{t^{\prime}, g}=$ $\lambda i . \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t^{\prime}, g}=$ the τ s.t. $\exists i^{\prime}<t^{\prime} . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime \prime}$
ii. presupposition: $\tau<t^{\prime}$ contradiction!
(6) E-level before + QR to PerfP: \checkmark adjunct past
a. $\llbracket \lambda_{2} \mathrm{Perf}$ Pfv Katie get PhD before $e_{2} \rrbracket^{t, g}=$ $\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}=$ the τ s.t. $\exists i^{\prime}<t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime \prime}$
ii. presupposition: $\tau<t=R B\left(t^{\prime}\right)$ no contradiction!
(7) E-level before +QR to TP: *adjunct past
a. $\llbracket \lambda_{2}$ Fut Perf Pfv Katie get PhD before $e_{2} \rrbracket \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}=$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime \prime}$
ii. presupposition: $\tau<u$ contradiction!
(8) P-level before +QR to PerfP: *adjunct past
a. $\llbracket \lambda_{2}$ Perf PFv Katie get PhD before $e_{2} \rrbracket^{t, g}=$ $\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}>t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}=$ the τ s.t. $\exists i^{\prime}<t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother <get PhD> at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime}$
ii. presupposition: $\tau<t=R B\left(t^{\prime}\right)$ contradiction!
(9) P-level before +QR to TP: *adjunct past
a. $\llbracket \lambda_{2}$ FUT PERF PFV Katie get PhD before $e_{2} \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket t^{t^{\prime}, g(2 / i)}>t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}=$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime}$
ii. presupposition: $\tau<u$ contradiction!

And now for adjunct future:
(10) E-level before +QR to AspP: *adjunct future
a. $\llbracket \lambda_{2} \mathrm{PFV}$ Katie get PhD before $e_{2} \rrbracket \rrbracket^{t^{\prime}, g}=$ $\lambda i . \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t^{\prime}, g}=$ the τ s.t. $\exists i^{\prime}>t^{\prime} . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get PhD> at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime \prime}$
ii. presupposition: $\tau>t^{\prime}$ entails the assertion: redundant!
(11) E-level before + QR to PerfP: *adjunct future
a. $\llbracket \lambda_{2}$ Perf PFV Katie get PhD before $e_{2} \rrbracket^{\downarrow, g}=$ $\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}=$ the τ s.t. $\exists i^{\prime}>t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime \prime}$
ii. presupposition: $\tau>t=R B\left(t^{\prime}\right)$ entails the assertion: redundant!
(12) E-level before + QR to TP: \checkmark adjunct future
a. $\llbracket \lambda_{2}$ FUT PERF PFV Katie get PhD before $e_{2} \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}>t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}=$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime \prime}$
ii. presupposition: $\tau>u$ does not entail the assertion: not redundant!
(13) P-level before + QR to PerfP: *adjunct future
a. $\llbracket \lambda_{2} \mathrm{Perf}$ Pfv Katie get PhD before $e_{2} \rrbracket^{t, g}=$
$\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}>t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.\left.e_{3}\right]\right]\right]^{t, g}=$ the τ s.t. $\exists i^{\prime}>t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother <get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime}$
ii. presupposition: $\tau>t=R B\left(t^{\prime}\right)$ entails the assertion: redundant!
(14) P-level before + QR to TP: \checkmark adjunct future
a. $\llbracket \lambda_{2}$ FUT PERF PFV Katie get PhD before $e_{2} \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket \rrbracket^{\prime, g(2 / i)}>t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}=$ the τ s.t. $\exists i^{\prime}>u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau>t^{\prime}$
ii. presupposition: $\tau>u$ does not entail the assertion: not redundant!

A. 2 After

Everything is the same except for the asserted content.

Figure 2: Schematic of proposal: complement of after raises to some higher position, e.g. PerfP

Assuming T's sister is evaluated wrt t, the perfect's sister is evaluated wrt t^{\prime}, and aspect's sister is evaluated wrt $t^{\prime \prime}$, the meanings of after for each adjunction position are in (15).
a. Eventuality-level after: $\llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. Perfect-level after: $\llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}<t^{\prime}$

The English sentences:
(16) If all goes according to plan, by the time she is 30 , Katie will have gotten her PhD after her brother did/??does.
Putting them together, starting with adjunct past:
(17) E-level after+QR to AspP: *adjunct past
a. $\llbracket \lambda_{2} \mathrm{PFV}$ Katie get PhD after $e_{2} \rrbracket^{t^{\prime}, g}=$
$\lambda i \cdot \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t^{\prime}, g}=$ the τ s.t. $\exists i^{\prime}<t^{\prime} . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime \prime}$
ii. presupposition: $\tau<t^{\prime}$ entails the assertion: redundant!
(18) E-level after + QR to PerfP: \checkmark adjunct past
a. $\llbracket \lambda_{2}$ Perf PFV Katie get PhD after $e_{2} \rrbracket^{t, g}=$
$\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}=$ the τ s.t. $\exists i^{\prime}<t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime \prime}$
ii. presupposition: $\tau<t=R B\left(t^{\prime}\right)$ does not entail the assertion: not redundant!
(19) E-level after +QR to TP: *adjunct past
a. $\llbracket \lambda_{2}$ Fut perf pfv Katie get PhD after $e_{2} \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket t^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}=$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime \prime}$
ii. presupposition: $\tau<u$ entails the assertion: redundant!
(20) P-level after + QR to PerfP: \checkmark adjunct past
a. $\llbracket \lambda_{2}$ Perf PFV Katie get PhD after $e_{2} \rrbracket^{t, g}=$ $\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}<t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}=$ the τ s.t. $\exists i^{\prime}<t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime}$
ii. presupposition: $\tau<t=R B\left(t^{\prime}\right)$ does not entail the assertion: not redundant!
(21) P-level after +QR to TP: *adjunct past
a. $\llbracket \lambda_{2}$ FUT PERF PFV Katie get PhD after $e_{2} \rrbracket^{u, g}=$
$\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}<t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ PAST PFV I leave at $\left.\left.\left.e_{3}\right]\right]\right]^{u, g}=$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime}$
ii. presupposition: $\tau<u$ entails the assertion: redundant!

And now for adjunct future:
(22) E-level after + QR to AspP: *adjunct future
a. $\llbracket \lambda_{2} \mathrm{PFV}$ Katie get PhD after $e_{2} \rrbracket^{t^{\prime}, g}=$ $\lambda i . \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t^{\prime}, g}=$ the τ s.t. $\exists i^{\prime}>t^{\prime} . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime \prime}$
ii. presupposition: $\tau>t^{\prime}$ contradiction!
(23) E-level after + QR to PerfP: *adjunct future
a. $\llbracket \lambda_{2}$ Perf PFV Katie get PhD after $e_{2} \rrbracket^{t, g}=$ $\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket \rrbracket^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.\left.e_{3}\right]\right]\right]^{t, g}=$ the τ s.t. $\exists i^{\prime}>t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime \prime}$
ii. presupposition: $\tau>t=R B\left(t^{\prime}\right)$ contradiction!
(24) E-level after + QR to TP: \checkmark adjunct future
a. $\llbracket \lambda_{2}$ FUT PERF PFV Katie get PhD after $e_{2} \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime \prime}, g(2 / i)}<t^{\prime \prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.\left.e_{3}\right]\right]\right]^{u, g}=$ the τ s.t. $\exists i^{\prime}<u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\mathrm{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime \prime}$
ii. presupposition: $\tau>u$ no contradiction!
(25) P-level after + QR to PerfP: *adjunct future
a. $\llbracket \lambda_{2}$ Perf pfv Katie get PhD after $e_{2} \rrbracket^{t, g}=$ $\lambda i . \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}<t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{t, g}=$ the τ s.t. $\exists i^{\prime}>t . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother $<$ get $\operatorname{PhD}>$ at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime}$
ii. presupposition: $\tau>t=R B\left(t^{\prime}\right)$ contradiction!
(26) P-level after + QR to TP: \checkmark adjunct future
a. $\llbracket \lambda_{2}$ FUT PERF PFV Katie get PhD after $e_{2} \rrbracket^{u, g}=$ $\lambda i . \exists t>u \wedge \exists t^{\prime}: t=R B\left(t^{\prime}\right) \wedge \exists t^{\prime \prime}: t^{\prime \prime} \subseteq t^{\prime}$. Katie get PhD at $t^{\prime \prime} \wedge \llbracket e_{2} \rrbracket^{t^{\prime}, g(2 / i)}<t^{\prime}$
b. $\llbracket \mathrm{Op}_{3}\left[\lambda_{3}\left[\right.\right.$ FUT PFV I leave at $\left.\left.e_{3}\right]\right] \rrbracket^{u, g}=$ the τ s.t. $\exists i^{\prime}>u . \exists i^{\prime \prime} \subseteq i^{\prime}$. K's brother <get PhD> at $\tau \wedge \tau=i^{\prime \prime}$.
c. i. assertion: $\tau<t^{\prime}$
ii. presupposition: $\tau>u$ no contradiction!

