Appendix: Conditions on linearity in MaxEnt

Because the MaxEnt framework is based on relatively simple equations relating Harmony and probability, we can explicitly outline the weighting conditions under which a MaxEnt + Null Parse grammar will depart from linear cumulativity. To start, we use variables to abstract away from specific constraint weights, and thus can characterize the probability of the singly-marked poti, violating AGr([back]), as being proportional to $e^{-w(AGr([back]))}$, and that of the other singly-marked type ponu, violating AGr([nas]), as being proportional to $e^{-w(AGr([nas]))}$. By the same logic, the probability of the doubly-marked type ponlu, violating both AGr([back]) and AGr([nas]), is proportional to $e^{-w(AGr([back]))} + e^{-w(AGr([nas]))}$, and the probability of the Null Parse is proportional to $e^{-w(MParse)}$.

It follows, therefore, that the probability of the backness-violating poti, when competing against the Null Parse, should be $e^{-w(AGr([back]))}/Z$, where Z is $e^{-w(AGr([back]))} + e^{-w(MParse)}$, and that the probability of nasal-violating ponu in its own competition against the Null Parse is $e^{-w(AGr([nas]))}/Z$, where Z is $e^{-w(AGr([nas]))} + e^{-w(MParse)}$. Continuing in this vein, the probability of the doubly-violating form ponlu in competition with the Null Parse is $e^{-w(AGr([back]))} + e^{-w(AGr([nas]))}/Z$, where Z is $e^{-w(MParse)}$. In contrast, we can can obtain the probability of violating both constraints by multiplying the probability of the forms with each of those individual violations. This is shown in equation 1.

$$\frac{e^{-w(AGr([nas]))}}{e^{-w(MParse)} + e^{-w(AGr([nas]))}} \times \frac{e^{-w(AGr([back]))}}{e^{-w(MParse)} + e^{-w(AGr([back]))}}$$

This expression simplifies to the following:

$$\frac{e^{-w(AGr([back]))} - w(AGr([nas]))}{(e^{-w(MParse)} + e^{-w(AGr([back]))})(e^{-w(MParse)} + e^{-w(AGr([nas]))})}$$

This equation simplifies again, and allows us to characterize the joint probability of two Markedness violations as the following:

$$\frac{e^{-w(AGr([back]))} - w(AGr([nas]))}{e^{-w(MParse)} - w(AGr([back])) + e^{-w(MParse)} - w(AGr([nas])) + e^{-w(AGr([nas]))} - w(AGr([back])) + e^{-2w(MParse)}}$$

Comparing this quantity to the probability of the doubly-marked candidate in its own competition against the Null Parse, it becomes clear why certain weighting conditions in MaxEnt yields non-linear cumulativity: the denominators in equations 3 and 4 are not the same.

$$\frac{e^{-w(AGr([back]))} - w(AGr([nas]))}{e^{-w(MParse)} + e^{-w(AGr([back]))} - w(AGr([nas]))}$$

Because Harmony is computed via the simple addition of penalties before exponentiation in equation 4, the probability of the doubly-violating candidate ponlu is not guaranteed to equal the joint probability of the candidates bearing the two different structures which make it marked (the backness harmony violation of poti and the nasal harmony violation of ponu). We can examine the conditions on non-linear cumulativity by looking at the relationship between the quantities in 3 and 4. If 3 is greater than 4, MaxEnt will exhibit super-linear cumulativity of violations:
the probability of the doubly-violating candidate will be less than the joint probability of the violating structures in the language. If 3 is less than 4, MaxEnt predicts sub-linear cumulativity: the probability of the doubly-marked candidate will be greater than the joint probability of the violating structures in the language. Finally, when equations 3 and 4 are equal, MaxEnt will exhibit linear cumulativity: the probability of the doubly-marked structure will equal the joint probability of its component structures.