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A Learning: definitions

Following Bush and Mosteller (1955), suppose the learner has n possible actions (here, n
possible grammars) G1, . . . , Gn at their disposal and uses the ith action with probability pi,
so that the learner’s knowledge is represented by the probability vector p = (p1, . . . , pn).
Once the learner has chosen an action and acted on the environment, the latter responds
with one of m possible responses R1, . . . , Rm. The probability of the jth response occurring,
given that the learner chose the ith action, will be denoted ωij . The set of these probabilities
defines the (stationary random) learning environment; we require, of course, that

∑
j ωij = 1

for all i. Suppose the learner chose Gi and that the environment responded with Rj . Having
observed this, the learner adjusts the vector p by applying an operator fij which, in the
general case, is only required to be some mapping fij : ∆n−1 → ∆n−1 from the simplex

∆n−1 = {p = (p1, . . . , pn) ∈ [0, 1]n :
∑
i pi = 1} (1)

to itself. The process is then repeated: the next time, the learner chooses an action by draw-
ing from the distribution fij(p), and some fk` is applied to this vector to yield fk`(fij(p)),
and so on.

Many of the formal properties of this general framework are understood in detail for
various choices of operators fij , both for stationary (constant ωij) and non-stationary (time-
dependent ωij) environments (Bush & Mosteller, 1955; Narendra & Thathachar, 1989). In
what follows, I will utilize a special case in which the learner has two actions, the environment
is stationary and has two responses, and the operators fij are linear. The assumptions
of stationarity and linearity facilitate characterization of the asymptotic distribution of a
population of learners and turn out to give rise to tractable (although nonlinear) dynamics
across generations of learners. The restriction to n = 2 actions is not necessary, but is made
to keep the presentation manageable and also in view of the empirical application, which
concerns this special case. The two possible environmental responses will be interpreted as
reward and punishment, in a sense to be made precise later.

Thus let p = (p1, p2) = (p, 1−p). From now on, I will interpret the variables in a linguistic
setting and identify p1 = p with the probability of grammar G1 and p2 = 1 − p with the
probability of grammar G2. I assume in all that follows that grammar G1 incurs some
amount of L2-difficulty, while G2 is not subject to such an inherent bias. In other words,
adult L2 learners are expected to struggle more in acquiring G1 than in acquiring G2.

Assuming the learner is making a binary choice between two grammars and that the
environment signals two different responses only, four operators fij need to be specified.
Assuming further that these operators are linear in p = (p1, p2) = (p, 1− p), we have

fij(p) = M (ij)p =

[
m

(ij)
11 m

(ij)
12

m
(ij)
21 m

(ij)
22

] [
p1
p2

]
=

[
m

(ij)
11 p1 +m

(ij)
12 p2

m
(ij)
21 p1 +m

(ij)
22 p2

]
(2)
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for some matrix M (ij) with suitable constants m(ij)
k` chosen so that M (ij)p ∈ ∆1. In this

one-dimensional case we can, of course, drop p2 and work with functions that operate on
the scalar p1 = p:

fij(p) = m
(ij)
11 p+m

(ij)
12 (1− p) = (m

(ij)
11 −m

(ij)
12 )p+m

(ij)
12 (3)

or, what amounts to the same thing,

fij(p) = aijp+ bij (4)

for constants aij , bij (i, j = 1, 2). These operators are thus affine in p.
A classical choice is to interpret response R1 as reward and response R2 as punishment,

and to set
f11(p) = (1− γ)p+ γ

f12(p) = (1− γ)p

f21(p) = (1− γ)p

f22(p) = (1− γ)p+ γ

 i.e.

f11(p) = p+ γ(1− p)
f12(p) = p− γp
f21(p) = p− γp
f22(p) = p+ γ(1− p)

 (5)

for constant 0 < γ < 1. In other words, the value of p is augmented whenever grammar G1 is
rewarded or G2 is punished, and decreased otherwise, as is evident from the representation
on the right in (5). The parameter γ, which governs how large or small modifications to
p the learner makes in response to the environment’s responses, can be interpreted as a
learning rate.

The operators in (5) constitute the one-dimensional linear reward–penalty scheme of
Bush and Mosteller (1955), first applied to linguistic problems by Yang (2000). To extend
this model to cater for adult L2 acquisition, I now assume that adult L2 learners employ
the same general learning strategy but are, additionally, subject to a bias which discounts
grammars that are L2-difficult. As mentioned above, I take G1 to refer to the grammar that
incurs L2-difficulty, and assume G2 not to be targeted by a similar bias. A simple extension
of (5) is then the following, for secondary learning rate parameter δ:

f11(p) = (1− γ − δ)p+ γ

f12(p) = (1− γ − δ)p
f21(p) = (1− γ − δ)p
f22(p) = (1− γ − δ)p+ γ

 i.e.

f11(p) = p+ γ(1− p)− δp
f12(p) = p− γp− δp
f21(p) = p− γp− δp
f22(p) = p+ γ(1− p)− δp

 . (6)

As is evident from the forms on the right, the additional term −δp (with positive δ) consti-
tutes a negative bias experienced by grammar G1, regardless of the environment’s response.
We require 0 ≤ δ ≤ 1− γ to guarantee p always remains in the interval [0, 1].

B Learning: asymptotic results

Learning, under this operationalization, is a stochastic process. In particular, it is (in
practice) impossible to predict the exact evolution of p given an initial state p0. However,
an explicit recursive solution exists for all moments of the distribution of p:

Lemma 1 (Bush & Mosteller 1955: 98). For any linear operators of the form (4) in a
stationary random environment, the following recursion holds for the mth moment of p,
〈pm〉:

〈pm〉n+1 =

m∑
k=0

(
m

k

)(
Ω′m,k〈pk〉n + (Ωm,k − Ω′m,k)〈pk+1〉n

)
, (7)

where
Ωm,k = ak11b

m−k
11 ω11 + ak12b

m−k
12 ω12

Ω′m,k = ak21b
m−k
21 ω21 + ak22b

m−k
22 ω22

}
. (8)
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It will be useful to define the following averages (for i = 1, 2):

ai = ai1ωi1 + ai2ωi2

bi = bi1ωi1 + bi2ωi2

ai = a2i1ωi1 + a2i2ωi2

bi = b2i1ωi1 + b2i2ωi2

abi = ai1bi1ωi1 + ai2bi2ωi2


. (9)

It is then a straightforward algebraic exercise to derive the following results concerning the
first two raw moments from Lemma 1:

〈p〉n+1 = b2 + (b1 − b2 + a2)〈p〉n + (a1 − a2)〈p2〉n
〈p2〉n+1 = b+ (b1 − b2 + 2ab2)〈p〉n + (2ab1 − 2ab2 + a2)〈p2〉n + (a1 − a2)〈p3〉n

}
. (10)

Thus, in the general case, the mth moment depends on the (m + 1)th moment. This
problematic upward dependence disappears, however, if a1− a2 = 0 and a1− a2 = 0. Using
the fact that ωi1+ωi2 = 1, it is easy to check that this is the case if aij = a for some common
a, that is to say, if the slopes of the four affine operators are identical. This is obviously the
case with both the classical linear reward–penalty scheme (5) as well as its extension to L2
learning (6). For the mean, we then have

〈p〉n+1 = C0 + C1〈p〉n (11)

with C0 = b2 and C1 = b1 − b2 + a2, a simple linear difference equation with solution

〈p〉n = Cn1 〈p〉0 + (1− Cn1 )〈p〉∞ (12)

where
〈p〉∞ =

C0

1− C1
(13)

is the limit at n → ∞ as long as |C1| < 1. The latter inequality is easy to verify for
algorithms (5) and (6) as long as the environment satisfies 0 < ωii < 1, which we can
assume without loss of generality.

Lemma 2. Assume the learning environment satisfies 0 < ωii < 1 for i = 1, 2. Then
|C1| < 1 for both (5) and (6).

Proof. The constant C1 has been defined as

C1 = b1 − b2 + a2. (14)

For algorithm (6) this becomes, using the definitions in (9),

C1 = (ω11 − ω22)γ − γ + 1− δ. (15)

The learning rate parameters are assumed to satisfy 0 < γ < 1 and 0 ≤ δ ≤ 1 − γ, which
implies 1− δ ≥ γ. Hence

C1 ≥ (ω11 − ω22)γ. (16)

Since ω11 and ω22 are probabilities and we furthermore assume they belong to the open
interval ]0, 1[, their difference satisfies −1 < ω11 − ω22 < 1. Hence

C1 > −γ > −1. (17)

On the other hand, since δ ≥ 0,

C1 ≤ (ω11 − ω22)γ − γ + 1 < γ − γ + 1 = 1. (18)

All in all, |C1| < 1.
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Taking the constants aij , bij from (6) we then have, after simplifying all the factors,

〈p〉∞ =
ω22

ω12 + ω22 + d
, (19)

where d = δ/γ. Given that response R2 was identified as punishment, the parameters ω12

and ω22 here refer to the probability of grammars G1 and G2 being punished, respectively.
In line with previous work (Yang, 2000), I will call these the penalty probabilities associated
with the two grammars, and will write π1 = ω12 and π2 = ω22 in what follows for simplicity.
We have thus shown:

Proposition 1. For algorithm (6), the expected value of p, the probability of use of grammar
G1, after an infinity of learning iterations is

〈p〉∞ =
π2

π1 + π2 + d
, (20)

where π1 and π2 are the penalty probabilities of the two grammars and d = δ/γ supplies
the relative L2-difficulty of grammar G1. The asymptotic expectation for algorithm (5) is
obtained by setting δ = 0 and thus d = 0.

The second raw moment, in turn, evolves as

〈p2〉n+1 = D0 +D1〈p2〉n +D2〈p〉n (21)

with D0 = b2, D1 = 2ab1 − 2ab2 + a2 and D2 = b1 − b2 + 2ab2. Plugging the solution for
the mean (12) in this equation we have

〈p2〉n+1 = D0 +D1〈p2〉n +D2(〈p〉0 − 〈p〉∞)Cn1 +D2〈p〉∞ (22)

or, in other words,
〈p2〉n+1 = E0 +D1〈p2〉n + E1C

n
1 , (23)

where E0 = D0 +D2〈p〉∞ and E1 = D2(〈p〉0−〈p〉∞). For large n, we ignore the term E1C
n
1

since |C1| < 1. Hence as n→∞, the second raw moment tends to the limit

〈p2〉∞ =
E0

1−D1
=
D0 +D2〈p〉∞

1−D1
. (24)

It can further be shown that, for algorithms (5) and (6) and for fixed d, 〈p2〉∞ → 〈p〉2∞ as
γ → 0, meaning that the limiting variance of p, V [p]∞ = 〈p2〉∞ − 〈p〉2∞, converges to zero:

Proposition 2. For both (5) and (6), the variance of p in the limit n → ∞ can be made
arbitrarily small by assuming a sufficiently small learning rate.

Proof. We show the result for algorithm (6); the statement for algorithm (5) follows as the
special case δ = 0. Recall that algorithm (6) consists of the statement that the constants
of the linear operators satisfy aij = a = 1 − γ − δ (for i, j = 1, 2) and b11 = b22 = γ,
b12 = b21 = 0, where 0 < γ ≤ 1 and 0 ≤ δ ≤ 1− γ.

The difference in response probabilities ω22 − ω11 will recur often in the following calcu-
lations; let ω = ω22 − ω11 for convenience.

Let d = δ/γ and assume d is fixed, so that as γ → 0, also δ → 0. Substituting the
constants aij = a and bij in the definitions (9) yields

D0 = b2 = γ2ω22

D1 = 2ab1 − 2ab2 + a2 = a2 − 2aγω

D2 = b1 − b2 + 2ab2 = 2aγω22 − γ2ω

 . (25)
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Moreover,

1− a2 = 1− (1− γ − δ)2 = 2γ + 2δ − γ2 − 2γδ − δ2 = γ

(
2 + 2

δ

γ
− γ − 2δ − δ2

γ

)
, (26)

in other words
1− a2 = γ(2 + 2d− γ − 2δ − dδ). (27)

It now follows that

1−D1 = 1− a2 + 2aγω = γ(2 + 2d− γ − 2δ − dδ) + 2aγω. (28)

On the other hand
〈p2〉∞ =

D0 +D2〈p〉∞
1−D1

, (29)

in other words,

〈p2〉∞ =
γ2ω22 + (γ2ω + 2aγω22)〈p〉∞
γ(2 + 2d− γ − 2δ − dδ) + 2aγω

=
γω22 + (γω + 2aω22)〈p〉∞

2 + 2d− γ − 2δ − dδ + 2aω
. (30)

As γ → 0, δ → 0 and a→ 1. Hence

lim
γ→0
〈p2〉∞ =

2ω22〈p〉∞
2 + 2d+ 2ω

=
ω22

1 + ω + d
〈p〉∞. (31)

On the other hand,
1 + ω = 1− ω11 + ω22 = ω21 + ω22. (32)

Recalling the notational convention π1 = ω21 and π2 = ω22, we now have, with the help of
Proposition 1,

lim
γ→0
〈p2〉∞ =

π2
π1 + π2 + d

〈p〉∞ = 〈p〉∞〈p〉∞ = 〈p〉2∞ (33)

as desired.

To recap, a population of learners employing either the linear reward–penalty scheme (5)
or its L2 extension (6) will tend to a mean value of p in the limit of large learning iterations
which is given by Proposition 1. Moreover, if learning is slow, so that the learning rates γ
and δ have small values, variability between learners in this population will be small. To be
exact, that variability vanishes as γ and δ tend to zero.

C Population dynamics

We now concentrate on a learning environment characterized by the following penalty prob-
abilities (see the main paper for motivation):

π1 = (1− σ)α2(1− p) + σα2(1− q)
π2 = (1− σ)α1p+ σα1q

}
, (34)

where p and q are the probabilities of grammar G1 in the L1 and L2 speaker populations,
respectively, σ is the fraction of L2 speakers in the overall population, and α1 and α2 are
the grammatical advantages of G1 and G2.

Making use of the asymptotic results from the previous section, we have the following
general ansatz for inter-generational difference equations:

pn+1 − pn = 〈pn〉∞ − pn
qn+1 − qn = 〈qn〉∞ − qn

}
. (35)

5



We may, without loss of generality, study the continuous-time limit

ṗ = 〈p〉∞ − p
q̇ = 〈q〉∞ − q

}
(36)

instead. With Proposition 1, this becomes

ṗ =
π2 − (π1 + π2)p

π1 + π2
=
π2(1− p)− π1p

π1 + π2

q̇ =
π2 − (π1 + π2 + d)q

π1 + π2 + d
=
π2(1− q)− π1q − dq

π1 + π2 + d

 . (37)

The denominators are strictly positive as long as α1 6= 0 and α2 6= 0, which is the case of
interest here. They therefore do not contribute to the system’s equilibria, and we may drop
them without loss of generality. Doing this, filling in the penalties from (34), and adopting
the notational shorthand x̃ = 1− x for any real x, we now have

ṗ = α1(σ̃p+ σq)p̃− α2(σ̃p̃+ σq̃)p

q̇ = α1(σ̃p+ σq)q̃ − α2(σ̃p̃+ σq̃)q − dq

}
. (38)

Division of the right hand sides by α2, again without loss of generality, finally yields

ṗ = α(σ̃p+ σq)p̃− (σ̃p̃+ σq̃)p

q̇ = α(σ̃p+ σq)q̃ − (σ̃p̃+ σq̃ +D)q

}
, (39)

where α = α1/α2 gives the ratio of the grammatical advantages and D = d/α2 represents
the L2-difficulty of grammar G1 scaled by the advantage of grammar G2. It is easy to check
(by examining the signs of ṗ and q̇ at the four sides of [0, 1]2) that this system is well-defined,
in the sense that the unit square [0, 1]2 is forward-invariant under the dynamics.

Examination of (39) quickly shows that the origin (p, q) = (0, 0) is always an equilibrium
of this system, for any selection of parameter values α, D and σ. A further, non-origin
equilibrium may exist in [0, 1]2 depending on the combination of parameter values.

Proposition 3. The system (39) has either one or two equilibria, for any combination of
values of the parameters α, D and σ. The origin (p, q) = (0, 0) is always an equilibrium.

Proof. The two nullclines of (39), i.e. the sets

Np = {(p, q) ∈ [0, 1]2 : ṗ = 0} (40)

and
Nq = {(p, q) ∈ [0, 1]2 : q̇ = 0} (41)

are quadratic in p and q and define hyperbolas in the pq-plane in the general case. (An
exception is the trivial case α = 1, in which Np and Nq reduce to straight lines intersecting
at the origin.) In general, these hyperbolas will not have their centres at the origin, nor will
their axes of symmetry be parallel to the coordinate axes. The hyperbolas may also, in the
general case, intersect in up to four points in the real plane. Here, we show that at least one
and at most two of those intersections occur in [0, 1]2.

Performing the relevant substitutions in (39), it is quick to verify that the origin (0, 0)
always belongs to both nullclines, and that (1, 1) always belongs to Np. To show that Np and
Nq intersect in no more than two points in [0, 1]2, we examine the hyperbola Np in detail.
Setting the first equation in (39) to zero, multiplying all terms out and rearranging, we have
the canonical second-degree equation

Appp
2 + 2Apqpq +Aqqq

2 +Bpp+Bqq + C = 0 (42)
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with
App = α̃σ̃

2Apq = α̃σ

Aqq = 0

Bp = ασ̃ − 1

Bq = ασ

C = 0


. (43)

The idea now is to show that the centre of the hyperbola, (pc, qc), always satisfies either (i)
pc < 0 and qc > 1, or (ii) pc > 1 and qc < 0, and that therefore one of its branches never
intersects [0, 1]2. Using a translation of the coordinate system (see Kelly & Straus, 1968,
pp. 246–247), the centre is found to be at

(pc, qc) =

(
BqApq −BpAqq

2∆
,
BpApq −BqApp

2∆

)
, (44)

where ∆ is the discriminant
∆ = AppAqq −A2

pq. (45)

With the coefficients (43), we find

(pc, qc) =

(
−α
α̃
,
ασ̃ + 1

α̃σ

)
. (46)

Now, it is easy to check that, whenever 0 < α < 1, we have pc < 0 and qc > 1, and on the
other hand that, when α > 1, the conditions pc > 1 and qc < 0 obtain. Thus one of the
branches of Np never touches the unit square [0, 1]2. On the other hand, as the other branch
of Np always passes through both (0, 0) and (1, 1), and as Nq always passes through (0, 0),
it follows that Np and Nq can intersect in at most one other point in [0, 1]2 in addition to
the origin. In other words, the system (39) has either one or two equilibria in [0, 1]2.

When the non-origin equilibrium exists, it is tedious to solve (39) for it explicitly in
the general case. However, to understand the qualitative dynamics it suffices to study the
conditions under which the equilibrium at the origin reverses stability, giving rise to the
second equilibrium. To do this, we linearize about the origin, i.e. inspect the eigenvalues of
the system’s Jacobian matrix at that point. This is

J(p, q) =

(
2α̃σ̃p+ α̃σq + ασ̃ − 1 α̃σp+ ασ

α̃σ̃q + ασ̃ α̃σ̃p+ 2α̃σq + ασ −D − 1

)
. (47)

Evaluated at the origin, the Jacobian reduces to

J(0, 0) =

(
ασ̃ − 1 ασ
ασ̃ ασ −D − 1

)
. (48)

An eigenvalue λ must satisfy∣∣∣∣ασ̃ − 1− λ ασ
ασ̃ ασ −D − 1− λ

∣∣∣∣ = 0, (49)

which upon computation of the determinant yields the characteristic polynomial

λ2 + (D − α+ 2)λ+ (D + 1)(1− ασ̃)− ασ = 0. (50)

This has roots at

λ+ =
α− (D + 2) +

√
(α+D)2 − 4αDσ

2
(51)
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and

λ− =
α− (D + 2)−

√
(α+D)2 − 4αDσ

2
. (52)

Since 0 ≤ σ ≤ 1,

(α+D)2 − 4αDσ ≥ (α+D)2 − 4αD = α2 − 2αD +D2 = (α−D)2 ≥ 0, (53)

and so both eigenvalues are always real. The origin is asymptotically stable if and only if
both λ+ < 0 and λ− < 0.

If α > D + 2, then λ+ > 0, hence the origin is always unstable in this case. Thus let
α < D + 2, which covers the special case α < 1 (G1 less advantageous than G2) but also
a wide variety of empirically meaningful cases of α > 1. Then λ− < 0 always. For λ+, we
find λ+ < 0 if and only if

σ >
(α− 1)(D + 1)

αD
=: σcrit. (54)

We have thus found the following necessary and sufficient conditions for the total extinction
of the L2-difficult grammar G1 from both speaker populations:

Proposition 4. The system (39) has a unique (and stable) equilibrium (p, q) = (0, 0) if and
only if

α < D + 2 and σ > σcrit =
(α− 1)(D + 1)

αD
. (55)
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